Exemplo n.º 1
0
# この時点でIsing形式用のJ, h, BINARY形式用のQが生成済みである。
# ISING形式の場合
#bqm = dimod.BinaryQuadraticModel.from_ising(h, J)
# BINARY形式の場合
bqm = dimod.BinaryQuadraticModel.from_qubo(Q)

url = "https://cloud.dwavesys.com/sapi"
token = "your_token"
solver_name = "DW_2000Q_5"

sampler = DWaveSampler(endpoint=url, token=token, solver=solver_name)

# minorminerでエンベディング
embedding = minorminer.find_embedding(S, sampler.edgelist)
bqm_embed = embed_bqm(bqm, embedding, sampler.adjacency)

# D-Waveによるサンプリング
result = sampler.sample(bqm_embed, num_reads=1000, postprocess="optimization", beta=3.0)

# minimize energyによる後処理
cbm = MinimizeEnergy(bqm, embedding)
unembedded, idx = cbm(result, list(embedding.values()))

# アンエンベッドされた解に関して、エネルギーの再計算や重複解などの整理をする
# 出力結果はdimod.SampleSetの形式 (Ocean SDKによる他のサンプリング結果と同じデータ形式)
sample = dimod.SampleSet.from_samples_bqm(unembedded, bqm, num_occurrences=result.record['num_occurrences']).aggregate()

# 出力のテンプレート
print(sample)
print(sample.record['sample'])
Exemplo n.º 2
0
# Confirm that a P variable has been removed from the BQM, for example, "p0"
print("Variable p0 in BQM: ", 'p0' in bqm)
print("Variable a0 in BQM: ", 'a0' in bqm)

# Use a D-Wave system as the sampler
# sampler = DWaveSampler(solver={'qpu': True})  # Some accounts need to replace this line with the next:
sampler = DWaveSampler(solver='DW_2000Q_2_1',
                       token='DEV-289c9dcb0d1d85f3a9059f77fd53bc84e3935d52')
_, target_edgelist, target_adjacency = sampler.structure

# Find an embedding
embedding = minorminer.find_embedding(bqm.quadratic, target_edgelist)
if bqm and not embedding:
    raise ValueError("no embedding found")

bqm_embedded = embed_bqm(bqm, embedding, target_adjacency, 3.0)

# Confirm mapping of variables from a0, b0, etc to indexed qubits
print("Variable a0 in embedded BQM: ", 'a0' in bqm_embedded)
print("First five nodes in QPU graph: ", sampler.structure.nodelist[:5])

kwargs = {}
if 'num_reads' in sampler.parameters:
    kwargs['num_reads'] = 5
if 'answer_mode' in sampler.parameters:
    kwargs['answer_mode'] = 'histogram'

# Request num_reads samples
kwargs['num_reads'] = 1000
response = sampler.sample(bqm_embedded, **kwargs)
Exemplo n.º 3
0
    def sample(self,
               bqm,
               chain_strength=1.0,
               chain_break_method=None,
               chain_break_fraction=True,
               embedding_parameters=None,
               return_embedding=None,
               warnings=None,
               **parameters):
        """Sample from the provided binary quadratic model.

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            chain_strength (float, optional, default=1.0):
                Magnitude of the quadratic bias (in SPIN-space) applied between
                variables to create chains. The energy penalty of chain breaks
                is 2 * `chain_strength`.

            chain_break_method (function, optional):
                Method used to resolve chain breaks during sample unembedding.
                See :func:`~dwave.embedding.unembed_sampleset`.

            chain_break_fraction (bool, optional, default=True):
                Add a `chain_break_fraction` field to the unembedded response with
                the fraction of chains broken before unembedding.

            embedding_parameters (dict, optional):
                If provided, parameters are passed to the embedding method as
                keyword arguments. Overrides any `embedding_parameters` passed
                to the constructor.

            return_embedding (bool, optional):
                If True, the embedding, chain strength, chain break method and
                embedding parameters are added to :attr:`dimod.SampleSet.info`
                of the returned sample set. The default behaviour is defined
                by :attr:`return_embedding_default`, which itself defaults to
                False.

            warnings (:class:`~dwave.system.warnings.WarningAction`, optional):
                Defines what warning action to take, if any. See
                :mod:`~dwave.system.warnings`. The default behaviour is defined
                by :attr:`warnings_default`, which itself defaults to
                :class:`~dwave.system.warnings.IGNORE`

            **parameters:
                Parameters for the sampling method, specified by the child
                sampler.

        Returns:
            :obj:`dimod.SampleSet`

        Examples:
            See the example in :class:`EmbeddingComposite`.

        """
        if return_embedding is None:
            return_embedding = self.return_embedding_default

        # solve the problem on the child system
        child = self.child

        # apply the embedding to the given problem to map it to the child sampler
        __, target_edgelist, target_adjacency = self.target_structure

        # add self-loops to edgelist to handle singleton variables
        source_edgelist = list(bqm.quadratic) + [(v, v) for v in bqm.linear]

        # get the embedding
        if embedding_parameters is None:
            embedding_parameters = self.embedding_parameters
        else:
            # we want the parameters provided to the constructor, updated with
            # the ones provided to the sample method. To avoid the extra copy
            # we do an update, avoiding the keys that would overwrite the
            # sample-level embedding parameters
            embedding_parameters.update(
                (key, val) for key, val in self.embedding_parameters
                if key not in embedding_parameters)

        embedding = self.find_embedding(source_edgelist, target_edgelist,
                                        **embedding_parameters)

        if warnings is None:
            warnings = self.warnings_default
        elif 'warnings' in child.parameters:
            parameters.update(warnings=warnings)

        warninghandler = WarningHandler(warnings)

        warninghandler.chain_strength(bqm, chain_strength)
        warninghandler.chain_length(embedding)

        if bqm and not embedding:
            raise ValueError("no embedding found")

        bqm_embedded = embed_bqm(bqm,
                                 embedding,
                                 target_adjacency,
                                 chain_strength=chain_strength,
                                 smear_vartype=dimod.SPIN)

        if 'initial_state' in parameters:
            # if initial_state was provided in terms of the source BQM, we want
            # to modify it to now provide the initial state for the target BQM.
            # we do this by spreading the initial state values over the
            # chains
            state = parameters['initial_state']
            parameters['initial_state'] = {
                u: state[v]
                for v, chain in embedding.items() for u in chain
            }

        if self.scale_aware and 'ignored_interactions' in child.parameters:

            ignored = []
            for chain in embedding.values():
                # just use 0 as a null value because we don't actually need
                # the biases, just the interactions
                ignored.extend(chain_to_quadratic(chain, target_adjacency, 0))

            parameters['ignored_interactions'] = ignored

        response = child.sample(bqm_embedded, **parameters)

        warninghandler.chain_break(response, embedding)

        sampleset = unembed_sampleset(
            response,
            embedding,
            source_bqm=bqm,
            chain_break_method=chain_break_method,
            chain_break_fraction=chain_break_fraction,
            return_embedding=return_embedding)

        if return_embedding:
            sampleset.info['embedding_context'].update(
                embedding_parameters=embedding_parameters,
                chain_strength=chain_strength)

        if chain_break_fraction and len(sampleset):
            warninghandler.issue(
                "all samples had broken chains",
                func=lambda:
                (sampleset.record.chain_break_fraction.all(), None))

        if warninghandler.action is WarningAction.SAVE:
            # we're done with the warning handler so we can just pass the list
            # off, if later we want to pass in a handler or similar we should
            # do a copy
            sampleset.info.setdefault('warnings',
                                      []).extend(warninghandler.saved)

        return sampleset
}

chainstrength = 1.01
numruns = 100

dwave_sampler = DWaveSampler()
A = dwave_sampler.edgelist
Adj = dwave_sampler.adjacency
embedding = find_embedding(Q, A)
print(embedding)

bqm = BinaryQuadraticModel.from_qubo(Q)

# Cannot use a Composite to get the broken chains, so do the embedding
# directly
bqm_embedded = embed_bqm(bqm, embedding, Adj, chain_strength=chainstrength)
response = DWaveSampler().sample(bqm_embedded, num_reads=numruns)

# We need to get the chains directly, as a list
chains = [embedding[v] for v in list(bqm)]

# Obtain the broken chains
broken = broken_chains(response, chains)

# Interpret the results in terms of the embedding. Be sure to
# tell the method to compute the chain_break_frequency.
print(
    unembed_sampleset(response,
                      embedding,
                      source_bqm=bqm,
                      chain_break_fraction=True), broken)
Exemplo n.º 5
0
def from_bqm_sampleset(bqm,
                       sampleset,
                       sampler,
                       embedding_context=None,
                       warnings=None,
                       params=None):
    """Construct problem data for visualization based on the BQM and sampleset
    in logical space (both unembedded).

    In order for the embedded problem/response to be reconstructed, an embedding
    is required in either the sampleset, or as a standalone argument.

    Note:
        This adapter can only provide best-effort estimate of the submitted
        problem and received samples. Namely, because values of logical
        variables in `sampleset` are produced by a chain break resolution
        method, information about individual physical qubit values is lost.

        Please have in mind you will never see "broken chains" when using this
        adapter.

    Args:
        bqm (:class:`dimod.BinaryQuadraticModel`/:class:`dimod.core.bqm.BQM`):
            Problem in logical (unembedded) space, given as a BQM.

        sampleset (:class:`~dimod.sampleset.SampleSet`):
            Sampling response as a sampleset.

        sampler (:class:`~dimod.Sampler` or :class:`~dimod.ComposedSampler`):
            The :class:`~dwave.system.samplers.dwave_sampler.DWaveSampler`-
            derived sampler used to produce the sampleset off the bqm.

        embedding_context (dict, optional):
            A map containing an embedding of logical problem onto the
            solver's graph (the ``embedding`` key) and embedding parameters
            used (e.g. ``chain_strength``). It is optional only if
            ``sampleset.info`` contains it (see `return_embedding` argument of
            :meth:`~dwave.system.composites.embedding.EmbeddingComposite`).

        warnings (list[dict], optional):
            Optional list of warnings.

        params (dict, optional):
            Sampling parameters used.

    """
    logger.debug("from_bqm_sampleset({!r})".format(
        dict(bqm=bqm,
             sampleset=sampleset,
             sampler=sampler,
             warnings=warnings,
             embedding_context=embedding_context,
             params=params)))

    if not isinstance(sampler, dimod.Sampler):
        raise TypeError("dimod.Sampler instance expected for 'sampler'")

    # get embedding parameters
    if embedding_context is None:
        embedding_context = sampleset.info.get('embedding_context', {})
    if embedding_context is None:
        raise ValueError("embedding_context not given")
    embedding = embedding_context.get('embedding')
    if embedding is None:
        raise ValueError("embedding not given")
    chain_strength = embedding_context.get('chain_strength')

    def find_solver(sampler):
        if hasattr(sampler, 'solver'):
            return sampler.solver

        for child in getattr(sampler, 'children', []):
            try:
                return find_solver(child)
            except:
                pass

        raise TypeError("'sampler' doesn't use DWaveSampler")

    solver = find_solver(sampler)
    if not isinstance(solver, StructuredSolver):
        raise TypeError("only structured solvers are supported")

    topology = _get_solver_topology(solver)
    if topology['type'] not in SUPPORTED_SOLVER_TOPOLOGY_TYPES:
        raise TypeError("unsupported solver topology type")

    solver_id = solver.id
    problem_type = "ising" if sampleset.vartype is dimod.SPIN else "qubo"

    # bqm vartype must match sampleset vartype
    if bqm.vartype is not sampleset.vartype:
        bqm = bqm.change_vartype(sampleset.vartype, inplace=False)

    # if `embedding` is `dwave.embedding.transforms.EmbeddedStructure`, we don't
    # need `target_adjacency`
    emb_params = dict(embedding=embedding)
    if not hasattr(embedding, 'embed_bqm'):
        # proxy for detecting dict vs. EmbeddedStructure, without actually
        # importing EmbeddedStructure (did not exist in dwave-system<0.9.10)
        target_adjacency = edgelist_to_adjacency(solver.edges)
        emb_params.update(target_adjacency=target_adjacency)

    # get embedded bqm
    bqm_embedded = embed_bqm(bqm,
                             chain_strength=chain_strength,
                             smear_vartype=dimod.SPIN,
                             **emb_params)

    # best effort reconstruction of (unembedded/qmi) response/solutions
    # NOTE: we **can not** reconstruct physical qubit values from logical variables
    # (sampleset we have access to has variable values after chain breaks resolved!)
    active_variables = sorted(list(bqm_embedded.variables))
    active_variables_set = set(active_variables)
    logical_variables = list(sampleset.variables)
    var_to_idx = {var: idx for idx, var in enumerate(logical_variables)}
    unembedding = {q: var_to_idx[v] for v, qs in embedding.items() for q in qs}

    # sanity check
    assert set(unembedding) == active_variables_set

    def expand_sample(sample):
        return [int(sample[unembedding[q]]) for q in active_variables]

    solutions = [expand_sample(sample) for sample in sampleset.record.sample]

    # adjust energies to values returned by SAPI (offset embedding)
    energies = list(map(float, sampleset.record.energy - bqm_embedded.offset))

    num_occurrences = list(map(int, sampleset.record.num_occurrences))
    num_variables = solver.num_qubits
    timing = sampleset.info.get('timing')

    linear, quadratic, offset = bqm_embedded.to_ising()
    problem_data = {
        "format":
        "qp",  # SAPI non-conforming (nulls vs nans)
        "lin": [
            uniform_get(linear, v, 0 if v in active_variables_set else None)
            for v in solver._encoding_qubits
        ],
        "quad": [
            quadratic.get((q1, q2), 0) + quadratic.get((q2, q1), 0)
            for (q1, q2) in solver._encoding_couplers
            if q1 in active_variables_set and q2 in active_variables_set
        ],
        "embedding":
        embedding
    }

    # try to get problem id. if not available, auto-generate one
    problem_id = sampleset.info.get('problem_id')
    if problem_id is None:
        problem_id = "local-%s" % uuid.uuid4()

    # try to reconstruct sampling params
    if params is None:
        params = {'num_reads': int(sum(num_occurrences))}

    # expand with defaults
    params = _expand_params(solver, params, timing)

    # try to get warnings from sampleset.info
    if warnings is None:
        warnings = sampleset.info.get('warnings')

    # construct problem stats
    problem_stats = _problem_stats(response=None,
                                   sampleset=sampleset,
                                   embedding_context=embedding_context)

    data = {
        "ready":
        True,
        "details": {
            "id": problem_id,
            "type": problem_type,
            "solver": solver.id,
            "label": sampleset.info.get('problem_label'),
        },
        "data":
        _problem_dict(solver_id, problem_type, problem_data, params,
                      problem_stats),
        "answer":
        _answer_dict(solutions, active_variables, energies, num_occurrences,
                     timing, num_variables),
        "unembedded_answer":
        _unembedded_answer_dict(sampleset),
        "warnings":
        _warnings(warnings),
        "rel":
        dict(solver=solver),
    }

    logger.trace("from_bqm_sampleset returned %r", data)

    return data
Exemplo n.º 6
0
def from_bqm_response(bqm,
                      embedding_context,
                      response,
                      warnings=None,
                      params=None,
                      sampleset=None):
    """Construct problem data for visualization based on the unembedded BQM,
    the embedding used when submitting, and the low-level sampling response.

    Args:
        bqm (:class:`dimod.BinaryQuadraticModel`/:class:`dimod.core.bqm.BQM`):
            Problem in logical (unembedded) space, given as a BQM.

        embedding_context (dict):
            A map containing an embedding of logical problem onto the
            solver's graph (the ``embedding`` key) and embedding parameters
            used (e.g. ``chain_strength``, ``chain_break_method``, etc).

        response (:class:`dwave.cloud.computation.Future`):
            Sampling response, as returned by the low-level sampling interface
            in the Cloud Client (e.g. :meth:`dwave.cloud.solver.sample_ising`
            for Ising problems).

        warnings (list[dict], optional):
            Optional list of warnings.

        params (dict, optional):
            Sampling parameters used.

        sampleset (:class:`dimod.SampleSet`, optional):
            Optional unembedded sampleset.

    """
    logger.debug("from_bqm_response({!r})".format(
        dict(bqm=bqm,
             response=response,
             response_energies=response['energies'],
             embedding_context=embedding_context,
             warnings=warnings,
             params=params,
             sampleset=sampleset)))

    solver = response.solver
    if not isinstance(response.solver, StructuredSolver):
        raise TypeError("only structured solvers are supported")

    topology = _get_solver_topology(solver)
    if topology['type'] not in SUPPORTED_SOLVER_TOPOLOGY_TYPES:
        raise TypeError("unsupported solver topology type")

    solver_id = solver.id
    problem_type = response.problem_type

    active_variables = response['active_variables']
    active = set(active_variables)

    solutions = list(map(itemsgetter(*active_variables),
                         response['solutions']))
    energies = response['energies']
    num_occurrences = response.num_occurrences
    num_variables = solver.num_qubits
    timing = response.timing

    # bqm vartype must match response vartype
    if problem_type == "ising":
        bqm = bqm.change_vartype(dimod.SPIN, inplace=False)
    else:
        bqm = bqm.change_vartype(dimod.BINARY, inplace=False)

    # get embedding parameters
    if 'embedding' not in embedding_context:
        raise ValueError("embedding not given")
    embedding = embedding_context.get('embedding')
    chain_strength = embedding_context.get('chain_strength')
    chain_break_method = embedding_context.get('chain_break_method')

    # if `embedding` is `dwave.embedding.transforms.EmbeddedStructure`, we don't
    # need `target_adjacency`
    emb_params = dict(embedding=embedding)
    if not hasattr(embedding, 'embed_bqm'):
        # proxy for detecting dict vs. EmbeddedStructure, without actually
        # importing EmbeddedStructure (did not exist in dwave-system<0.9.10)
        target_adjacency = edgelist_to_adjacency(solver.edges)
        emb_params.update(target_adjacency=target_adjacency)

    # get embedded bqm
    bqm_embedded = embed_bqm(bqm,
                             chain_strength=chain_strength,
                             smear_vartype=dimod.SPIN,
                             **emb_params)

    linear, quadratic, offset = bqm_embedded.to_ising()
    problem_data = {
        "format":
        "qp",  # SAPI non-conforming (nulls vs nans)
        "lin": [
            uniform_get(linear, v, 0 if v in active else None)
            for v in solver._encoding_qubits
        ],
        "quad": [
            quadratic.get((q1, q2), 0) + quadratic.get((q2, q1), 0)
            for (q1, q2) in solver._encoding_couplers
            if q1 in active and q2 in active
        ],
        "embedding":
        embedding
    }

    # try to reconstruct sampling params
    if params is None:
        params = {'num_reads': int(sum(num_occurrences))}

    # expand with defaults
    params = _expand_params(solver, params, timing)

    # TODO: if warnings are missing, calculate them here (since we have the
    # low-level response)

    # construct problem stats
    problem_stats = _problem_stats(response=response,
                                   sampleset=sampleset,
                                   embedding_context=embedding_context)

    data = {
        "ready":
        True,
        "details":
        _details_dict(response),
        "data":
        _problem_dict(solver_id, problem_type, problem_data, params,
                      problem_stats),
        "answer":
        _answer_dict(solutions, active_variables, energies, num_occurrences,
                     timing, num_variables),
        "warnings":
        _warnings(warnings),
        "rel":
        dict(solver=solver),
    }

    if sampleset is not None:
        data["unembedded_answer"] = _unembedded_answer_dict(sampleset)

    logger.trace("from_bqm_response returned %r", data)

    return data
Exemplo n.º 7
0
    def sample(self,
               bqm,
               chain_strength=1.0,
               chain_break_fraction=True,
               **parameters):
        """Sample from the provided binary quadratic model.

        Also set parameters for handling a chain, the set of vertices in a target graph that
        represents a source-graph vertex; when a D-Wave system is the sampler, it is a set
        of qubits that together represent a variable of the binary quadratic model being
        minor-embedded.

        Args:
            bqm (:obj:`dimod.BinaryQuadraticModel`):
                Binary quadratic model to be sampled from.

            chain_strength (float, optional, default=1.0):
                Magnitude of the quadratic bias (in SPIN-space) applied between variables to create
                chains. The energy penalty of chain breaks is 2 * `chain_strength`.

            chain_break_fraction (bool, optional, default=True):
                If True, the unembedded response contains a ‘chain_break_fraction’ field
                that reports the fraction of chains broken before unembedding.

            **parameters:
                Parameters for the sampling method, specified by the child sampler.

        Returns:
            :class:`dimod.SampleSet`: A `dimod` :obj:`~dimod.SampleSet` object.

        Examples:
            This example submits an triangle-structured problem to a D-Wave solver, selected
            by the user's default
            :std:doc:`D-Wave Cloud Client configuration file <cloud-client:intro>`,
            using a specified minor-embedding of the problem’s variables to physical qubits.

            >>> from dwave.system.samplers import DWaveSampler
            >>> from dwave.system.composites import FixedEmbeddingComposite
            >>> import dimod
            ...
            >>> sampler = FixedEmbeddingComposite(DWaveSampler(), {'a': [0, 4], 'b': [1, 5], 'c': [2, 6]})
            >>> response = sampler.sample_ising({}, {'ab': 0.5, 'bc': 0.5, 'ca': 0.5}, chain_strength=2)
            >>> response.first    # doctest: +SKIP
            Sample(sample={'a': 1, 'b': -1, 'c': 1}, energy=-0.5, num_occurrences=1, chain_break_fraction=0.0)

        See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_
        for explanations of technical terms in descriptions of Ocean tools.

        """

        # solve the problem on the child system
        child = self.child

        # apply the embedding to the given problem to map it to the child sampler
        __, __, target_adjacency = child.structure

        # get the embedding
        embedding = self.embedding

        bqm_embedded = embed_bqm(bqm,
                                 embedding,
                                 target_adjacency,
                                 chain_strength=chain_strength,
                                 smear_vartype=dimod.SPIN)

        if 'initial_state' in parameters:
            parameters['initial_state'] = _embed_state(
                embedding, parameters['initial_state'])

        response = child.sample(bqm_embedded, **parameters)

        return unembed_sampleset(response,
                                 embedding,
                                 source_bqm=bqm,
                                 chain_break_fraction=chain_break_fraction)
Exemplo n.º 8
0
_, edgelist, adjacency = sampler.structure
from minorminer import find_embedding
embedding = find_embedding(qubo, edgelist, random_seed=0) # random_seed=0 - which ensures that the same embedding is always generated.


if manual_embed:
	# Pick the method for fixing broken chains.
	from dwave.embedding.chain_breaks import majority_vote # weighted_random
	method = majority_vote
	# Submit the job via an embedded BinaryQuadraticModel.
	from dimod import BinaryQuadraticModel as BQM
	from dwave.embedding import embed_bqm, unembed_sampleset
	# Generate a BQM from the QUBO.
	q = BQM.from_qubo(qubo)
	# Embed the BQM onto the target structure.
	embedded_q = embed_bqm(q, embedding, adjacency) # chain_strength=chain_strength, smear_vartype=dimod.SPIN
	# Collect the sample output.
	response = unembed_sampleset(
	   sampler.sample(embedded_q, num_reads=num_samples),
	   embedding, q, chain_break_method=method,
	   chain_break_fraction=True)
else:
	# Use a FixedEmbeddingComposite if we don't care about chains.
	from dwave.system.composites import FixedEmbeddingComposite
	system_composite = FixedEmbeddingComposite(sampler, embedding)
	response = system_composite.sample_qubo(qubo, num_reads=num_samples)


constant = 0

# Cycle through the results and yield them to the caller.