Exemplo n.º 1
0
    def test_empty_list(self):
        # Set up defragmentation function
        pg = pegasus_graph(2)
        defragment_tuple = get_tuple_defragmentation_fn(pg)

        # De-fragment chimera coordinates
        chimera_coords = []
        pegasus_coords = defragment_tuple(chimera_coords)

        self.assertEqual([], pegasus_coords)
Exemplo n.º 2
0
    def test_mixed_fragments(self):
        # Set up defragmenation function
        pg = pegasus_graph(8)
        defragment_tuple = get_tuple_defragmentation_fn(pg)

        # De-fragment chimera coordinates
        chimera_coords = [(17, 14, 0, 0), (22, 14, 0, 0), (24, 32, 1, 0), (1, 31, 0, 0)]
        pegasus_coords = defragment_tuple(chimera_coords)

        expected_pegasus_coords = {(0, 2, 4, 2), (1, 4, 0, 4), (0, 5, 2, 0)}
        self.assertEqual(expected_pegasus_coords, set(pegasus_coords))
Exemplo n.º 3
0
    def test_multiple_fragments_from_same_qubit(self):
        # Set up defragmentation function
        pg = pegasus_graph(3)
        defragment_tuple = get_tuple_defragmentation_fn(pg)

        # De-fragment chimera coordinates
        chimera_coords = [(9, 8, 1, 1), (9, 11, 1, 1)]
        pegasus_coords = defragment_tuple(chimera_coords)

        expected_pegasus_coords = [(1, 1, 7, 1)]
        self.assertEqual(expected_pegasus_coords, pegasus_coords)
Exemplo n.º 4
0
    def test_single_fragment(self):
        # Set up defragmentation function
        pg = pegasus_graph(4)
        defragment_tuple = get_tuple_defragmentation_fn(pg)

        # De-fragment chimera coordinates
        chimera_coords = [(3, 7, 0, 0)]
        pegasus_coords = defragment_tuple(chimera_coords)

        expected_pegasus_coords = [(0, 1, 2, 0)]
        self.assertEqual(expected_pegasus_coords, pegasus_coords)
Exemplo n.º 5
0
def _pegasus_fragment_helper(m=None, target_graph=None):
    # This is a function that takes m or a target_graph and produces a
    # `processor` object for the corresponding Pegasus graph, and a function
    # that translates embeddings produced by that object back to the original
    # pegasus graph.  Consumed by `find_clique_embedding` and
    # `find_biclique_embedding`.

    # Organize parameter values
    if target_graph is None:
        if m is None:
            raise TypeError("m and target_graph cannot both be None.")
        target_graph = pegasus_graph(m)

    m = target_graph.graph['rows']  # We only support square Pegasus graphs

    # Deal with differences in ints vs coordinate target_graphs
    if target_graph.graph['labels'] == 'nice':
        back_converter = pegasus_coordinates.pegasus_to_nice
        back_translate = lambda embedding: {
            key: [back_converter(p) for p in chain]
            for key, chain in embedding.items()
        }
    elif target_graph.graph['labels'] == 'int':
        # Convert nodes in terms of Pegasus coordinates
        coord_converter = pegasus_coordinates(m)

        # A function to convert our final coordinate embedding to an ints embedding
        back_translate = lambda embedding: {
            key: list(coord_converter.iter_pegasus_to_linear(chain))
            for key, chain in embedding.items()
        }
    else:
        back_translate = lambda embedding: embedding

    # collect edges of the graph produced by splitting each Pegasus qubit into six pieces
    fragment_edges = list(fragmented_edges(target_graph))

    # Find clique embedding in K2,2 Chimera graph
    embedding_processor = processor(fragment_edges,
                                    M=m * 6,
                                    N=m * 6,
                                    L=2,
                                    linear=False)

    # Convert chimera fragment embedding in terms of Pegasus coordinates
    defragment_tuple = get_tuple_defragmentation_fn(target_graph)

    def embedding_to_pegasus(nodes, emb):
        emb = map(defragment_tuple, emb)
        emb = dict(zip(nodes, emb))
        emb = back_translate(emb)
        return emb

    return embedding_processor, embedding_to_pegasus
Exemplo n.º 6
0
def find_clique_embedding(k, m=None, target_graph=None):
    """Find an embedding of a k-sized clique on a Pegasus graph (target_graph).

    This clique is found by transforming the Pegasus graph into a K2,2 Chimera graph and then
    applying a Chimera clique finding algorithm. The results are then converted back in terms of
    Pegasus coordinates.

    Note: If target_graph is None, m will be used to generate a m-by-m Pegasus graph. Hence m and
    target_graph cannot both be None.

    Args:
        k (int/iterable/:obj:`networkx.Graph`): Number of members in the requested clique; list of nodes;
          a complete graph that you want to embed onto the target_graph
        m (int): Number of tiles in a row of a square Pegasus graph
        target_graph (:obj:`networkx.Graph`): A Pegasus graph

    Returns:
        dict: A dictionary representing target_graphs's clique embedding. Each dictionary key
        represents a node in said clique. Each corresponding dictionary value is a list of pegasus
        coordinates that should be chained together to represent said node.

    """
    # Organize parameter values
    if target_graph is None:
        if m is None:
            raise TypeError("m and target_graph cannot both be None.")
        target_graph = pegasus_graph(m)

    m = target_graph.graph['rows']  # We only support square Pegasus graphs
    _, nodes = k

    # Deal with differences in ints vs coordinate target_graphs
    if target_graph.graph['labels'] == 'nice':
        fwd_converter = get_nice_to_pegasus_fn(m=m)
        back_converter = get_pegasus_to_nice_fn(m=m)
        pegasus_coords = [fwd_converter(*p) for p in target_graph.nodes]
        back_translate = lambda embedding: {
            key: [back_converter(*p) for p in chain]
            for key, chain in embedding.items()
        }
    elif target_graph.graph['labels'] == 'int':
        # Convert nodes in terms of Pegasus coordinates
        coord_converter = pegasus_coordinates(m)
        pegasus_coords = map(coord_converter.tuple, target_graph.nodes)

        # A function to convert our final coordinate embedding to an ints embedding
        back_translate = lambda embedding: {
            key: list(coord_converter.ints(chain))
            for key, chain in embedding.items()
        }
    else:
        pegasus_coords = target_graph.nodes
        back_translate = lambda embedding: embedding

    # Break each Pegasus qubits into six Chimera fragments
    # Note: By breaking the graph in this way, you end up with a K2,2 Chimera graph
    fragment_tuple = get_tuple_fragmentation_fn(target_graph)
    fragments = fragment_tuple(pegasus_coords)

    # Create a K2,2 Chimera graph
    # Note: 6 * m because Pegasus qubits split into six pieces, so the number of rows and columns
    #   get multiplied by six
    chim_m = 6 * m
    chim_graph = chimera_graph(chim_m, t=2, coordinates=True)

    # Determine valid fragment couplers in a K2,2 Chimera graph
    edges = chim_graph.subgraph(fragments).edges()

    # Find clique embedding in K2,2 Chimera graph
    embedding_processor = processor(edges,
                                    M=chim_m,
                                    N=chim_m,
                                    L=2,
                                    linear=False)
    chimera_clique_embedding = embedding_processor.tightestNativeClique(
        len(nodes))

    # Convert chimera fragment embedding in terms of Pegasus coordinates
    defragment_tuple = get_tuple_defragmentation_fn(target_graph)
    pegasus_clique_embedding = map(defragment_tuple, chimera_clique_embedding)
    pegasus_clique_embedding = dict(zip(nodes, pegasus_clique_embedding))
    pegasus_clique_embedding = back_translate(pegasus_clique_embedding)

    if len(pegasus_clique_embedding) != len(nodes):
        raise ValueError("No clique embedding found")

    return pegasus_clique_embedding
Exemplo n.º 7
0
def find_clique_embedding(k, m=None, target_graph=None):
    """Find an embedding for a clique in a Pegasus graph.

    Given a clique (fully connected graph) and target Pegasus graph, attempts
    to find an embedding by transforming the Pegasus graph into a :math:`K_{2,2}`
    Chimera graph and then applying a Chimera clique-finding algorithm. Results
    are converted back to Pegasus coordinates.

    Args:
        k (int/iterable/:obj:`networkx.Graph`): A complete graph to embed,
            formatted as a number of nodes, node labels, or a NetworkX graph.
        m (int): Number of tiles in a row of a square Pegasus graph. Required to
            generate an m-by-m Pegasus graph when `target_graph` is None.
        target_graph (:obj:`networkx.Graph`): A Pegasus graph. Required when `m`
            is None.

    Returns:
        dict: An embedding as a dict, where keys represent the clique's nodes and
        values, formatted as lists, represent chains of pegasus coordinates.

    Examples:
        This example finds an embedding for a :math:`K_3` complete graph in a
        2-by-2 Pegaus graph.

        >>> from dwave.embedding.pegasus import find_clique_embedding
        ...
        >>> print(find_clique_embedding(3, 2))    # doctest: +SKIP
        {0: [10, 34], 1: [35, 11], 2: [32, 12]}

    """
    # Organize parameter values
    if target_graph is None:
        if m is None:
            raise TypeError("m and target_graph cannot both be None.")
        target_graph = pegasus_graph(m)

    m = target_graph.graph['rows']     # We only support square Pegasus graphs
    _, nodes = k

    # Deal with differences in ints vs coordinate target_graphs
    if target_graph.graph['labels'] == 'nice':
        fwd_converter = get_nice_to_pegasus_fn()
        back_converter = get_pegasus_to_nice_fn()
        pegasus_coords = [fwd_converter(*p) for p in target_graph.nodes]
        back_translate = lambda embedding: {key: [back_converter(*p) for p in chain]
                                      for key, chain in embedding.items()}
    elif target_graph.graph['labels'] == 'int':
        # Convert nodes in terms of Pegasus coordinates
        coord_converter = pegasus_coordinates(m)
        pegasus_coords = map(coord_converter.tuple, target_graph.nodes)

        # A function to convert our final coordinate embedding to an ints embedding
        back_translate = lambda embedding: {key: list(coord_converter.ints(chain))
                                      for key, chain in embedding.items()}
    else:
        pegasus_coords = target_graph.nodes
        back_translate = lambda embedding: embedding

    # Break each Pegasus qubits into six Chimera fragments
    # Note: By breaking the graph in this way, you end up with a K2,2 Chimera graph
    fragment_tuple = get_tuple_fragmentation_fn(target_graph)
    fragments = fragment_tuple(pegasus_coords)

    # Create a K2,2 Chimera graph
    # Note: 6 * m because Pegasus qubits split into six pieces, so the number of rows and columns
    #   get multiplied by six
    chim_m = 6 * m
    chim_graph = chimera_graph(chim_m, t=2, coordinates=True)

    # Determine valid fragment couplers in a K2,2 Chimera graph
    edges = chim_graph.subgraph(fragments).edges()

    # Find clique embedding in K2,2 Chimera graph
    embedding_processor = processor(edges, M=chim_m, N=chim_m, L=2, linear=False)
    chimera_clique_embedding = embedding_processor.tightestNativeClique(len(nodes))

    # Convert chimera fragment embedding in terms of Pegasus coordinates
    defragment_tuple = get_tuple_defragmentation_fn(target_graph)
    pegasus_clique_embedding = map(defragment_tuple, chimera_clique_embedding)
    pegasus_clique_embedding = dict(zip(nodes, pegasus_clique_embedding))
    pegasus_clique_embedding = back_translate(pegasus_clique_embedding)

    if len(pegasus_clique_embedding) != len(nodes):
        raise ValueError("No clique embedding found")

    return pegasus_clique_embedding