Exemplo n.º 1
0
def main_basic(job, task):
    cfg = {"worker": ["localhost:2222",
                      "localhost:2223"]}
    make_distribute_host(cfg, job, task, None, 'worker', 0)
    master_host = Master.master_host()
    this_host = ThisHost.host()
    host1 = Host(job, 1)
    hmi = DistributeGraphInfo(None, None, None, master_host)
    with tf.variable_scope('scope_test'):
        t0 = TensorVariable(VariableInfo(None, [1], tf.float32),
                            hmi.update(name='v0'))
        aop = tf.assign(t0.data, tf.constant([3.]))
        t1 = TensorNumpyNDArray([1.0], None,
                                hmi.update(name='v1'))
        t1c = t1.copy_to(host1)
        t1p = Tensor(t1c.data + 1, t1c.data_info,
                     t1c.graph_info.update(name='t1_plus'))
    make_distribute_session()
    if task == 0:
        ptensor(t1)
        Server.join()
    if task == 1:
        ptensor(t1)
        ptensor(t1c)
        ptensor(t1p)
        ptensor(t0)
        ThisSession.run(aop)
        ptensor(t0)
Exemplo n.º 2
0
def main_summation(job, task):
    cfg = {"master": ["localhost:2221"],
           "worker": ["localhost:2222",
                      "localhost:2223"]}
    make_distribute_host(cfg, job, task, None, 'master', 0)
    master_host = Master.master_host()
    this_host = ThisHost.host()
    host0 = Host('worker', 0)
    host1 = Host('worker', 1)
    hmi = DistributeGraphInfo(None, None, None, master_host)
    tm = TensorNumpyNDArray([1.0], None,
                            DistributeGraphInfo.from_graph_info(hmi, name='t0'))
    t0c = tm.copy_to(host0)
    t1c = tm.copy_to(host1)
    m_sum = Summation(name='summation', graph_info=DistributeGraphInfo(
        'summation', None, None, host0))([t0c, t1c])
    make_distribute_session()
    if task == 0:
        ptensor(tm)
        Server.join()
    if task == 1:
        ptensor(tm, 'tm')
        ptensor(t0c, 't0c')
        ptensor(t1c, 't1c')
        ptensor(m_sum)
Exemplo n.º 3
0
 def sino_range(self,  task_index=None):
     if task_index is None:
         task_index = ThisHost.host().task_index
     if self._sino_range is not None:
         return self._maybe_broadcast_value(self._sino_range, task_index)
     else:
         return None
Exemplo n.º 4
0
def main_sync(job, task):
    cfg = {"master": ["localhost:2221"],
           "worker": ["localhost:2222",
                      "localhost:2223"]}
    make_distribute_host(cfg, job, task, None, 'master', 0)
    master_host = Master.master_host()
    this_host = ThisHost.host()
    host0 = Host('worker', 0)
    host1 = Host('worker', 1)

    def sleep(ips):
        for i in range(5, 0, -1):
            time.sleep(1)
        return 0
    # hmi = DistributeGraphInfo(None, None, None, master_host)
    tm = TensorNumpyNDArray([1.0], None,
                            DistributeGraphInfo.from_graph_info(hmi, name='t0'))
    tcs = []
    # t0c = tm.copy_to(host0)
    # t1c = tm.copy_to(host1)
    # m_sum = Summation(name='summation', graph_info=DistributeGraphInfo(
    #     'summation', None, None, host0))([t0c, t1c])
    ops = tf.FIFOQueue(2, tf.bool, shapes=[],
                       name='barrier', shared_name='barrier')
    # ptensor(tm)
    if ThisHost.host() == master_host:
        join = ops.dequeue_many(2)
    else:
        signal = ops.enqueue(False)
    no = tf.constant('tmp')
    ops = [tf.Print(no, data=[no], message='Done_{}'.format(i), name='p_{}'.format(i))
           for i in range(3)]
    # ops.enqueue()
    make_distribute_session()
    if ThisHost.host() == master_host:
        ThisSession.run(join)
        print('Joined.')
        time.sleep(2)
        ThisSession.run(ops[0])
        # Server.join()
    elif ThisHost.host() == host0:
        ThisSession.run(signal)
        ThisSession.run(ops[1])
    elif ThisHost.host() == host1:
        time.sleep(3)
        ThisSession.run(signal)
        ThisSession.run(ops[2])
Exemplo n.º 5
0
def main_sync_2(job, task):
    cfg = {"master": ["localhost:2221"],
           "worker": ["localhost:2222",
                      "localhost:2223"]}
    make_distribute_host(cfg, job, task, None, 'master', 0)
    master_host = Master.master_host()
    this_host = ThisHost.host()
    hosts = [Host('worker', i) for i in range(2)]
    hmi = DistributeGraphInfo(None, None, None, master_host)
    tm = TensorNumpyNDArray([0.0], None,
                            DistributeGraphInfo.from_graph_info(hmi, name='tm'))
    t_local_var = []
    t_local_copied = []
    for h in hosts:
        ta, tv = tm.copy_to(h, True)
        t_local_copied.append(ta)
        t_local_var.append(tv)
    t_local_plus = [TensorTest.from_(t) for t in t_local_copied]
    for i in range(1):
        t_local_plus = [t.add_one() for t in t_local_plus]
    t_write_back = []
    for i in range(len(hosts)):
        t_write_back.append(t_local_var[i].assign(t_local_plus[i]))
    t_global_pluses = [t.copy_to(master_host) for t in t_local_var]
    sm = Summation(name='summation', graph_info=hmi.update(name='summatin'))
    t_res = sm(t_global_pluses)
    br = Barrier('barrier', hosts)
    # ops = tf.FIFOQueue(2, tf.bool, shapes=[],
                    #    name='barrier', shared_name='barrier')
    # join = ops.dequeue_many(2)
    # signal = ops.enqueue(False)
    make_distribute_session()
    if ThisHost.host() == master_host:
        # ThisSession.run(join)
        # ThisSession.run(br)
        br.run()
        ptensor(t_res)
    else:
        time.sleep(5)
        ptensor(t_local_plus[task])
        ptensor(t_write_back[task])
        # ThisSession.run(signal)
        # ThisSession.run(br)
        br.run()
    Server.join()
Exemplo n.º 6
0
Arquivo: data.py Projeto: tech-pi/SRF
 def _maybe_broadcast_value(self,
                            value,
                            task_index=None,
                            valid_type=(list, tuple)):
     if task_index is None:
         task_index = ThisHost.host().task_index
     if isinstance(value, valid_type):
         return value[task_index]
     else:
         return value
Exemplo n.º 7
0
Arquivo: sino.py Projeto: tech-pi/SRF
 def bind_local_sino(self, task_index=None):
     if task_index is None:
         task_index = ThisHost.host().task_index
     if ThisHost.is_master():
         logger.info("On Master node, skip bind local sino.")
         return
     else:
         logger.info(
             "On Worker node, local data for worker {}.".format(task_index))
         worker_sinos = self.load_local_sino(task_index)
         self.worker_graphs[task_index].init_sino(worker_sinos)
Exemplo n.º 8
0
Arquivo: data.py Projeto: tech-pi/SRF
 def lors_ranges(self, axis, task_index=None):
     if task_index is None:
         task_index = ThisHost.host().task_index
     if self._lors_ranges is not None:
         return self._maybe_broadcast_value(self._lors_ranges[axis], task_index)
     elif self._lors_steps is not None:
         step = self._maybe_broadcast_value(
             self._lors_steps[axis], task_index)
         return [task_index * step, (task_index + 1) * step]
     else:
         return None
Exemplo n.º 9
0
Arquivo: sino.py Projeto: tech-pi/SRF
 def bind_local_matrix(self, task_index=None):
     if task_index is None:
         task_index = ThisHost.host().task_index
     if ThisHost.is_master():
         logger.info("On Master node, skip bind local matrix.")
         return
     else:
         logger.info(
             "On Worker node, local data for worker {}.".format(task_index))
         worker_matrix = self.load_local_matrix(task_index)
         worker_matrix = sparse.coo_matrix(worker_matrix)
         self.worker_graphs[task_index].init_matrix(worker_matrix)
Exemplo n.º 10
0
Arquivo: osem.py Projeto: tech-pi/SRF
 def bind_local_data(self, data_info, task_index=None):
     if task_index is None:
         task_index = ThisHost.host().task_index
     if ThisHost.is_master():
         logger.info("On Master node, skip bind local data.")
         return
     else:
         logger.info(
             "On Worker node, local data for worker {}.".format(task_index))
         emap, lors = self.load_local_data(data_info, task_index)
         self.worker_graphs[task_index].assign_efficiency_map(emap)
         self.worker_graphs[task_index].assign_lors(lors)
Exemplo n.º 11
0
Arquivo: sino.py Projeto: tech-pi/SRF
 def bind_local_data(self):
     """
     bind the static effmap data
     """
     return
     map_file = self.work_directory + self.image_info.map_file
     #matrix_file = self.work_directory + self.Inputinfo.sm
     task_index = ThisHost.host().task_index
     if ThisHost.is_master():
         logger.info("On Master node, skip bind local data.")
         return
     else:
         logger.info(
             "On Worker node, local data for worker {}.".format(task_index))
         emap = self.load_local_effmap(map_file)
         self.worker_graphs[task_index].init_efficiency_map(emap)
     self.bind_local_sino()
     self.bind_local_matrix()
Exemplo n.º 12
0
def main(job, task):
    tf.logging.set_verbosity(0)
    cfg = {"worker": ["localhost:2222",
                      "localhost:2223"]}
    make_distribute_host(cfg, job, task, None, 'worker', 0)
    # # if task == 1:
    #     # time.sleep(10)
    # with tf.device(Master.master_host().device_prefix()):
    #     with tf.variable_scope('test'):
    #         t1 = tf.get_variable('var', [], tf.float32)
    master_host = Master.master_host()
    this_host = ThisHost.host()
    host2 = Host(job, 1)
    hmi = DistributeGraphInfo(None, None, None, master_host)
    with tf.variable_scope('scope_test'):
        t0 = TensorVariable(VariableInfo(None, [1], tf.float32),
                            DistributeGraphInfo.from_(hmi, name='t1'))
        aop = tf.assign(t0.data, tf.constant([3.]))
        t1 = TensorNumpyNDArray([1.0], None,
                                DistributeGraphInfo.from_(hmi, name='t1_copy'))
        t1c = t1.copy_to(host2)
        t1p = Tensor(t1c.data + 1, t1c.data_info, DistributeGraphInfo.from_(t1c.graph_info, name='t1_plus'))
        # t2 = t0.copy_to(host2)
    make_distribute_session()
    if task == 0:
        # ThisSession.run(tf.global_variables_initializer())
        ptensor(t1)
        Server.join()
    if task == 1:
        ptensor(t1)
        ptensor(t1c)
        ptensor(t1p)
        # print(t2.run())
        # print(t2.data)
        # print(t0.run())
        # print(t0)
        ptensor(t0)
        print(ThisSession.run(aop))
        ptensor(t0)
Exemplo n.º 13
0
Arquivo: sino.py Projeto: tech-pi/SRF
    def run(self):
        KS = self.KEYS.STEPS
        self.run_step_of_this_host(KS.INIT)
        logger.info('STEP: {} done.'.format(KS.INIT))
        nb_iterations = self.Reconinfo.nb_iterations
        #nb_subsets = self.Reconinfo.nb_subsets
        image_name = self.image_info.name
        for i in tqdm(range(nb_iterations), ascii=True):

            self.run_step_of_this_host(KS.RECON)
            logger.info('STEP: {} done.'.format(KS.RECON))

            self.run_step_of_this_host(KS.MERGE)
            logger.info('STEP: {} done.'.format(KS.MERGE))

            self.run_and_print_if_not_master(
                self.worker_graphs[ThisHost.host().task].tensor(
                    self.worker_graphs[0].KEYS.TENSOR.RESULT))
            self.run_and_print_if_is_master(self.master_graph.tensor('x'))

            self.run_and_save_if_is_master(self.master_graph.tensor('x'),
                                           image_name + '_{}.npy'.format(i))
        logger.info('Recon {} steps done.'.format(nb_iterations))
Exemplo n.º 14
0
def main_add_one(job, task):
    cfg = {"worker": ["localhost:2222",
                      "localhost:2223"]}
    make_distribute_host(cfg, job, task, None, 'worker', 0)
    master_host = Master.master_host()
    this_host = ThisHost.host()
    host1 = Host(job, 1)
    hmi = DistributeGraphInfo(None, None, None, master_host)
    with tf.variable_scope('scope_test'):
        t0 = TensorNumpyNDArray([1.0], None,
                                hmi.update(name='v0'))
        t1 = TensorTest.from_(t0)
        t2 = t1.add_one()
    make_distribute_session()
    if task == 0:
        ptensor(t0)
        ptensor(t1)
        ptensor(t2)
        Server.join()
    if task == 1:
        ptensor(t0)
        ptensor(t1)
        ptensor(t2)
Exemplo n.º 15
0
Arquivo: data.py Projeto: tech-pi/SRF
 def lors_steps(self, axis, task_index=None):
     if task_index is None:
         task_index = ThisHost.host().task_index
     return self._lors_steps[axis]
Exemplo n.º 16
0
 def matrix_steps(self, task_index = None):
     if task_index is  None:
         task_index = ThisHost.host().task_index
     return self._matrix_steps
Exemplo n.º 17
0
 def sino_steps(self, task_index = None):
     if task_index is  None:
         task_index = ThisHost.host().task_index
     return self._sino_steps