Exemplo n.º 1
0
def make_detector():
    """Make a dummy 4 panel detector with not many pixels to ensure test runs
    quickly"""
    pixel_size_x = 0.1
    pixel_size_y = 0.1
    npixels_per_panel_x = 50
    npixels_per_panel_y = 50
    distance = 100
    fast = matrix.col((1, 0, 0))
    slow = matrix.col((0, -1, 0))
    s0u = matrix.col((0, 0, -1))

    shift_x = -1.0 * npixels_per_panel_x * pixel_size_x * fast
    shift_y = -1.0 * npixels_per_panel_y * pixel_size_y * slow
    beam_centre = distance * s0u
    orig = beam_centre + shift_x + shift_y

    d = Detector()
    root = d.hierarchy()
    root.set_local_frame(fast.elems, slow.elems, orig.elems)

    local_fast = matrix.col((1.0, 0.0, 0.0))
    local_slow = matrix.col((0.0, 1.0, 0.0))
    span_x = npixels_per_panel_x * pixel_size_x * local_fast
    span_y = npixels_per_panel_y * pixel_size_y * local_slow

    local_origins = [matrix.col((0, 0, 0)), span_x, span_y, span_x + span_y]

    for i, lo in enumerate(local_origins):
        p = d.add_panel()
        p.set_image_size((npixels_per_panel_x, npixels_per_panel_y))
        p.set_pixel_size((pixel_size_x, pixel_size_y))
        p.set_local_frame(local_fast.elems, local_slow.elems, lo.elems)

    return d
Exemplo n.º 2
0
    def _detector(self, index=None):
        from dxtbx.model.detector import Detector
        from scitbx import matrix
        import math

        wavelength = self.get_beam(index).get_wavelength()

        from dxtbx.model import ParallaxCorrectedPxMmStrategy
        from cctbx.eltbx import attenuation_coefficient

        table = attenuation_coefficient.get_table("Si")
        mu = table.mu_at_angstrom(wavelength) / 10.0
        px_mm = ParallaxCorrectedPxMmStrategy(mu, self.thickness)

        if self.RECONST_MODE:
            return self._detector_factory.simple(
                sensor="PAD",
                distance=self.distance,
                beam_centre=(
                    self.RECONST_SIZE / 2 * self.PIXEL_SIZE,
                    self.RECONST_SIZE / 2 * self.PIXEL_SIZE,
                ),
                fast_direction="-x",
                slow_direction="-y",
                pixel_size=(self.PIXEL_SIZE, self.PIXEL_SIZE),
                image_size=(self.RECONST_SIZE, self.RECONST_SIZE),
                trusted_range=(-1, 65535),
                mask=[],
            )  # TODO: add gaps

        detector = Detector()
        root = detector.hierarchy()
        root.set_frame((-1, 0, 0), (0, 1, 0), (0, 0, -self.distance))

        for i in range(8):
            angle = math.pi * self.panel_rotations[i] / 180.0
            fast = matrix.col((math.cos(angle), math.sin(angle), 0))
            slow = matrix.col((-math.sin(angle), math.cos(angle), 0))
            normal = fast.cross(slow)

            origin = (matrix.col((
                -self.panel_origins[i][0],
                self.panel_origins[i][1],
                self.panel_origins[i][2],
            )) / 1000.0)
            p = root.add_panel()
            p.set_type("SENSOR_PAD")
            p.set_name("Panel%d" % i)
            p.set_image_size((512, 1024))
            p.set_trusted_range((-1, 65535))
            p.set_pixel_size((self.PIXEL_SIZE, self.PIXEL_SIZE))
            p.set_thickness(self.thickness)
            p.set_local_frame(fast.elems, slow.elems, origin.elems)
            p.set_px_mm_strategy(px_mm)
            p.set_gain(10)

        return detector
Exemplo n.º 3
0
    def _detector(self):
        """Return a working detector instance."""

        cbf = self._get_cbf_handle()

        d = Detector()

        for i in xrange(cbf.count_elements()):
            ele_id = cbf.get_element_id(i)
            cbf.find_category("diffrn_data_frame")
            cbf.find_column("detector_element_id")
            cbf.find_row(ele_id)
            cbf.find_column("array_id")
            array_id = cbf.get_value()

            cbf_detector = cbf.construct_detector(i)

            p = d.add_panel()
            p.set_name(array_id)

            # code adapted below from dxtbx.model.detector.DetectorFactory.imgCIF_H
            pixel = (
                cbf_detector.get_inferred_pixel_size(1),
                cbf_detector.get_inferred_pixel_size(2),
            )

            fast = cbf_detector.get_detector_axes()[0:3]
            slow = cbf_detector.get_detector_axes()[3:6]
            origin = cbf_detector.get_pixel_coordinates_fs(0, 0)

            size = tuple(reversed(cbf.get_image_size(0)))

            try:
                cbf.find_category("array_intensities")
                cbf.find_column("undefined_value")
                underload = cbf.get_doublevalue()
                overload = cbf.get_overload(0)
                trusted_range = (underload, overload)
            except Exception:
                trusted_range = (0.0, 0.0)

            cbf_detector.__swig_destroy__(cbf_detector)
            del cbf_detector

            p.set_local_frame(fast, slow, origin)

            p.set_pixel_size(tuple(map(float, pixel)))
            p.set_image_size(size)
            p.set_trusted_range(tuple(map(float, trusted_range)))
            # p.set_px_mm_strategy(px_mm) FIXME

        return d
  def _detector(self):
    '''Return a working detector instance.'''

    cbf = self._get_cbf_handle()

    d = Detector()

    for i in xrange(cbf.count_elements()):
      ele_id = cbf.get_element_id(i)
      cbf.find_category("diffrn_data_frame")
      cbf.find_column("detector_element_id")
      cbf.find_row(ele_id)
      cbf.find_column("array_id")
      array_id = cbf.get_value()

      cbf_detector = cbf.construct_detector(i)

      p = d.add_panel()
      p.set_name(array_id)

      # code adapted below from dxtbx.model.detector.detector_factory.imgCIF_H
      pixel = (cbf_detector.get_inferred_pixel_size(1),
               cbf_detector.get_inferred_pixel_size(2))

      fast = cbf_detector.get_detector_axes()[0:3]
      slow = cbf_detector.get_detector_axes()[3:6]
      origin = cbf_detector.get_pixel_coordinates_fs(0,0)

      size = tuple(reversed(cbf.get_image_size(0)))

      try:
        cbf.find_category('array_intensities')
        cbf.find_column('undefined_value')
        underload = cbf.get_doublevalue()
        overload = cbf.get_overload(0)
        trusted_range = (underload, overload)
      except: # intentional
        trusted_range = (0.0, 0.0)

      cbf_detector.__swig_destroy__(cbf_detector)
      del(cbf_detector)

      p.set_local_frame(fast, slow, origin)

      p.set_pixel_size(tuple(map(float, pixel)))
      p.set_image_size(size)
      p.set_trusted_range(tuple(map(float, trusted_range)))
      #p.set_px_mm_strategy(px_mm) FIXME

    return d
    def _detector(self):
        """Dummy detector"""
        from scitbx import matrix

        # 55 mu pixels
        pixel_size = 0.055, 0.055
        trusted_range = (-1, 65535)
        material = "Si"
        thickness = 0.3  # assume 300 mu thick. This is actually in the header too
        # so could take it from there

        # Initialise detector frame - dummy origin to place detector at the header
        # distance along the canonical beam direction
        distance = (float(
            self._cif_header_dictionary["Detector_distance"].split()[0]) *
                    1000)
        fast = matrix.col((1.0, 0.0, 0.0))
        slow = matrix.col((0.0, -1.0, 0.0))
        cntr = matrix.col((0.0, 0.0, -100.0))

        # shifts to go from the centre to the origin
        off_x = (self._array_size[0] / 2) * pixel_size[0]
        shift_x = -1.0 * fast * off_x
        off_y = (self._array_size[1] / 2) * pixel_size[1]
        shift_y = -1.0 * slow * off_y
        orig = cntr + shift_x + shift_y

        d = Detector()

        root = d.hierarchy()
        root.set_local_frame(fast.elems, slow.elems, orig.elems)

        self.coords = {}
        panel_idx = 0

        # set panel extent in pixel numbers and x, y mm shifts. Origins taken from
        # an XDS.INP
        pnl_data = []
        pnl_data.append({
            "xmin": 0,
            "ymin": 0,
            "xmax": 516,
            "ymax": 516,
            "xmin_mm": 0,
            "ymin_mm": 0
        })
        pnl_data.append({
            "xmin": 516,
            "ymin": 0,
            "xmax": 1032,
            "ymax": 516,
            "xmin_mm": (516 + 163.0) * pixel_size[0],
            "ymin_mm": -3.6969 * pixel_size[1],
        })
        pnl_data.append({
            "xmin": 0,
            "ymin": 516,
            "xmax": 516,
            "ymax": 1032,
            "xmin_mm": -2.5455 * pixel_size[0],
            "ymin_mm": (516 + 35.0) * pixel_size[1],
        })
        pnl_data.append({
            "xmin": 516,
            "ymin": 516,
            "xmax": 1032,
            "ymax": 1032,
            "xmin_mm": (516 + 165.866) * pixel_size[0],
            "ymin_mm": (516 + 32.4545) * pixel_size[1],
        })

        # redefine fast, slow for the local frame
        fast = matrix.col((1.0, 0.0, 0.0))
        slow = matrix.col((0.0, 1.0, 0.0))

        for ipanel, pd in enumerate(pnl_data):
            xmin = pd["xmin"]
            xmax = pd["xmax"]
            ymin = pd["ymin"]
            ymax = pd["ymax"]
            xmin_mm = pd["xmin_mm"]
            ymin_mm = pd["ymin_mm"]

            origin_panel = fast * xmin_mm + slow * ymin_mm

            panel_name = "Panel%d" % panel_idx
            panel_idx += 1

            p = d.add_panel()
            p.set_type("SENSOR_PAD")
            p.set_name(panel_name)
            p.set_raw_image_offset((xmin, ymin))
            p.set_image_size((xmax - xmin, ymax - ymin))
            p.set_trusted_range(trusted_range)
            p.set_pixel_size((pixel_size[0], pixel_size[1]))
            p.set_thickness(thickness)
            p.set_material("Si")
            # p.set_mu(mu)
            # p.set_px_mm_strategy(ParallaxCorrectedPxMmStrategy(mu, t0))
            p.set_local_frame(fast.elems, slow.elems, origin_panel.elems)
            p.set_raw_image_offset((xmin, ymin))
            p.set_gain(3.0)  # exact gain
            self.coords[panel_name] = (xmin, ymin, xmax, ymax)

        return d
  def _detector(self):
    '''Detector model, allowing for small offsets in the positions of 60
    detector modules'''

    # Module positional offsets in x, y, in pixels - for the moment ignoring the
    # rotational offsets as these are not well defined. To be honest these
    # positional offsets are also not well defined as I do not know how they
    # should be applied...

    x = {
      (0, 0):  -0.477546,   (0, 1):   0.130578,   (0, 2):   0.045041,
      (0, 3):  -0.439872,   (0, 4):  -0.382077,   (1, 0):   0.087405,
      (1, 1):   0.249597,   (1, 2):   0.184265,   (1, 3):   0.158342,
      (1, 4):   0.025225,   (2, 0):  -0.179892,   (2, 1):  -0.010974,
      (2, 2):  -0.139207,   (2, 3):   0.282851,   (2, 4):  -0.442219,
      (3, 0):  -0.185027,   (3, 1):   0.218601,   (3, 2):   0.092585,
      (3, 3):    0.35862,   (3, 4):   -0.29161,   (4, 0):   0.145368,
      (4, 1):   0.609289,   (4, 2):   0.396265,   (4, 3):    0.41625,
      (4, 4):    0.07152,   (5, 0):   0.247142,   (5, 1):   0.046563,
      (5, 2):   0.248714,   (5, 3):  -0.044628,   (5, 4):  -0.391509,
      (6, 0):   0.516643,   (6, 1):   0.358453,   (6, 2):   0.069219,
      (6, 3):   0.095861,   (6, 4):  -0.167403,   (7, 0):  -0.381352,
      (7, 1):   -0.35338,   (7, 2):   0.348656,   (7, 3):   0.024543,
      (7, 4):   0.328706,   (8, 0):   0.150886,   (8, 1):   0.244987,
      (8, 2):  -0.102911,   (8, 3):    0.16633,   (8, 4):   0.386622,
      (9, 0):   0.037924,   (9, 1):   0.314392,   (9, 2):   0.238818,
      (9, 3):   0.815028,   (9, 4):  -0.048818,  (10, 0):  -0.670524,
      (10, 1):  -0.304119,  (10, 2):   0.252284,  (10, 3):   -0.05485,
      (10, 4):  -0.355264,  (11, 0):  -0.404947,  (11, 1):  -0.020622,
      (11, 2):   0.648473,  (11, 3):  -0.277175,  (11, 4):  -0.711951
    }

    y = {
      (0, 0):  -0.494797,   (0, 1):  -0.212976,   (0, 2):   0.085351,
      (0, 3):    0.35494,   (0, 4):   0.571189,   (1, 0):  -0.421708,
      (1, 1):   0.061914,   (1, 2):   0.238996,   (1, 3):   0.146692,
      (1, 4):   0.407145,   (2, 0):  -0.313212,   (2, 1):  -0.225025,
      (2, 2):   0.031613,   (2, 3):  -0.047839,   (2, 4):    0.42716,
      (3, 0):  -0.361193,   (3, 1):   0.057663,   (3, 2):   0.022357,
      (3, 3):   0.062717,   (3, 4):   0.150611,   (4, 0):   0.035511,
      (4, 1):  -0.271567,   (4, 2):   0.007761,   (4, 3):  -0.124021,
      (4, 4):   0.093017,   (5, 0):  -0.238897,   (5, 1):  -0.179724,
      (5, 2):  -0.113608,   (5, 3):   0.017841,   (5, 4):  -0.012933,
      (6, 0):  -0.166337,   (6, 1):  -0.272922,   (6, 2):  -0.194665,
      (6, 3):  -0.058535,   (6, 4):  -0.405404,   (7, 0):  -0.318824,
      (7, 1):  -0.311276,   (7, 2):  -0.205223,   (7, 3):  -0.292664,
      (7, 4):  -0.474762,   (8, 0):  -0.039504,   (8, 1):  -0.239887,
      (8, 2):  -0.343485,   (8, 3):  -0.459429,   (8, 4):  -0.426901,
      (9, 0):  -0.187805,   (9, 1):   0.282727,   (9, 2):  -0.601164,
      (9, 3):  -0.467605,   (9, 4):  -0.589271,  (10, 0):   0.028311,
      (10, 1):  -0.391571,  (10, 2):  -0.463112,  (10, 3):  -0.358092,
      (10, 4):  -0.285396,  (11, 0):    0.01863,  (11, 1):  -0.380099,
      (11, 2):  -0.234953,  (11, 3):  -0.593992,  (11, 4):  -0.801247
    }

    distance = float(
        self._cif_header_dictionary['Detector_distance'].split()[0])

    beam_xy = self._cif_header_dictionary['Beam_xy'].replace(
        '(', '').replace(')', '').replace(',', '').split()[:2]

    beam_x, beam_y = map(float, beam_xy)

    wavelength = float(
        self._cif_header_dictionary['Wavelength'].split()[0])

    pixel_xy = self._cif_header_dictionary['Pixel_size'].replace(
        'm', '').replace('x', '').split()

    pixel_x, pixel_y = map(float, pixel_xy)

    thickness = float(
      self._cif_header_dictionary['Silicon'].split()[2]) * 1000.0

    nx = int(
        self._cif_header_dictionary['X-Binary-Size-Fastest-Dimension'])
    ny = int(
        self._cif_header_dictionary['X-Binary-Size-Second-Dimension'])

    overload = int(
        self._cif_header_dictionary['Count_cutoff'].split()[0])
    underload = -1

    # take into consideration here the thickness of the sensor also the
    # wavelength of the radiation (which we have in the same file...)

    from cctbx.eltbx import attenuation_coefficient
    table = attenuation_coefficient.get_table("Si")
    mu = table.mu_at_angstrom(wavelength) / 10.0
    t0 = thickness

    # FIXME would also be very nice to be able to take into account the
    # misalignment of the individual modules given the calibration...

    # single detector or multi-module detector

    pixel_x *= 1000.0
    pixel_y *= 1000.0
    distance *= 1000.0

    if not self._multi_panel:
      detector = self._detector_factory.simple(
        'PAD', distance, (beam_x * pixel_x, beam_y * pixel_y),
        '+x', '-y', (pixel_x, pixel_y), (nx, ny), (underload, overload), [],
        ParallaxCorrectedPxMmStrategy(mu, t0))

      for f0, s0, f1, s1 in determine_pilatus_mask(detector):
        detector[0].add_mask(f0, s0, f1, s1)

      detector[0].set_thickness(thickness)
      detector[0].set_material('Si')
      detector[0].set_mu(mu)

      return detector

    # got to here means 60-panel version

    from dxtbx.model.detector import Detector
    from scitbx import matrix

    d = Detector()

    beam_centre = matrix.col((beam_x * pixel_x,
                              beam_y * pixel_y, 0))

    fast = matrix.col((1.0, 0.0, 0.0))
    slow = matrix.col((0.0,-1.0, 0.0))
    s0 = matrix.col((0, 0, -1))
    origin = (distance * s0) - (fast * beam_centre[0]) - \
      (slow * beam_centre[1])

    root = d.hierarchy()
    root.set_local_frame(
      fast.elems,
      slow.elems,
      origin.elems)

    xmins  = [0, 494, 988, 1482, 1976]
    xmaxes = [487, 981, 1475, 1969, 2463]
    ymins  = [0, 212, 424, 636, 848, 1060, 1272,
              1484, 1696, 1908, 2120, 2332]
    ymaxes = [195, 407, 619, 831, 1043, 1255, 1467,
              1679, 1891, 2103, 2315, 2527]

    self.coords = {}

    fast = matrix.col((1.0, 0.0, 0.0))
    slow = matrix.col((0.0, 1.0, 0.0))
    panel_idx = 0
    for ymin, ymax in zip(ymins, ymaxes):
      for xmin, xmax in zip(xmins, xmaxes):
        xmin_mm = xmin * pixel_x
        ymin_mm = ymin * pixel_y

        origin_panel = fast * xmin_mm + slow * ymin_mm

        panel_name = "Panel%d" % panel_idx
        panel_idx += 1

        p = d.add_panel()
        p.set_type('SENSOR_PAD')
        p.set_name(panel_name)
        p.set_raw_image_offset((xmin, ymin))
        p.set_image_size((xmax-xmin, ymax-ymin))
        p.set_trusted_range((underload, overload))
        p.set_pixel_size((pixel_x,pixel_y))
        p.set_thickness(thickness)
        p.set_material('Si')
        p.set_mu(mu)
        p.set_px_mm_strategy(ParallaxCorrectedPxMmStrategy(mu, t0))
        p.set_local_frame(
          fast.elems,
          slow.elems,
          origin_panel.elems)
        p.set_raw_image_offset((xmin, ymin))
        self.coords[panel_name] = (xmin,ymin,xmax,ymax)

    return d
Exemplo n.º 7
0
def run(args):
    if '-h' in args or '--help' in args or '-c' in args:
        print(help_str)
        phil_scope.show(attributes_level=2)
        return

    user_phil = []
    for arg in args:
        if os.path.isfile(arg):
            user_phil.append(parse("geom_path=%s" % arg))
        else:
            try:
                user_phil.append(parse(arg))
            except Exception as e:
                raise Sorry("Unrecognized argument: %s" % arg)
    params = phil_scope.fetch(sources=user_phil).extract()
    if params.distance is None:
        raise Usage("Please specify detector distance")

    geom = {}
    for line in open(params.geom_path):
        if len(line.split("=")) != 2: continue
        if "rigid_group" in line and not "collection" in line:
            geom[line.split("=")[1].strip()] = {}
        else:
            for key in geom:
                if line.startswith("%s/" % key):
                    geom[key][line.split("=")[0].split("/")
                              [1].strip()] = line.split("=")[-1].strip()

    detector = Detector()
    root = detector.hierarchy()
    root.set_frame((1, 0, 0), (0, 1, 0), (0, 0, -params.distance))

    for i, key in enumerate(sorted(geom)):
        fs_x, fs_y = geom[key]['fs'].split(" ")
        ss_x, ss_y = geom[key]['ss'].split(" ")
        fast = matrix.col(
            (-float(fs_x.rstrip('x')), float(fs_y.rstrip('y')), 0.0))
        slow = matrix.col(
            (-float(ss_x.rstrip('x')), float(ss_y.rstrip('y')), 0.0))

        origin = matrix.col(
            (-float(geom[key]['corner_x']) * params.pixel_size,
             float(geom[key]['corner_y']) * params.pixel_size, 0.0))

        # OBS! you need to set the panel to a root before set local frame...
        p = root.add_panel()
        p.set_name('panel-%s' % key)
        p.set_image_size((512, 1024))
        p.set_trusted_range((-1, 1000000))
        p.set_pixel_size((params.pixel_size, params.pixel_size))
        p.set_local_frame(fast.elems, slow.elems, origin.elems)

    from dxtbx.model import BeamFactory
    wavelength = params.wavelength
    beam = BeamFactory.simple(wavelength)

    from dxtbx.model import Experiment, ExperimentList
    from dxtbx.model.experiment_list import ExperimentListDumper
    experiments = ExperimentList()
    experiment = Experiment(detector=detector, beam=beam)
    experiments.append(experiment)
    dump = ExperimentListDumper(experiments)
    dump.as_json("geometry.json")
    def _detector(self):
        '''4 panel detector, 55 micron pixels except for pixels at the outer
    edge of each chip, which are 165 microns wide.'''
        from scitbx import matrix

        # expect 55 mu pixels here, but make it general anyway
        pixel_size = tuple([float(self._header_dictionary['PIXEL_SIZE'])] * 2)
        image_size = (int(self._header_dictionary['SIZE1']),
                      int(self._header_dictionary['SIZE2']))
        panel_size = tuple([int(e / 2) for e in image_size])

        # outer pixels have three times the width
        panel_size_mm = (pixel_size[0] * 3 +
                         (panel_size[0] - 2) * pixel_size[0],
                         pixel_size[1] * 3 +
                         (panel_size[1] - 2) * pixel_size[1])
        image_size_mm = (panel_size_mm[0] * 2, panel_size_mm[1] * 2)
        trusted_range = (-1, 65535)
        material = 'Si'
        thickness = 0.3  # assume 300 mu thick

        # Initialise detector frame
        fast = matrix.col((1.0, 0.0, 0.0))
        slow = matrix.col((0.0, -1.0, 0.0))
        beam_centre = (float(self._header_dictionary['BEAM_CENTER_X']),
                       float(self._header_dictionary['BEAM_CENTER_Y']))

        bx_px, by_px = beam_centre

        # the beam centre is in pixels. We want to convert to mm, taking the
        # different size of outer pixels into account. Use this local function
        # to do that
        def px_to_mm(px, px_size_1d, panel_size_1d):
            mm = 0
            if px > 1:  # add first outer pixel
                mm += px_size_1d * 3
            else:  # or fraction of first outer pixel
                mm += px * px_size_1d * 3
                return mm

            if px > panel_size_1d - 1:  # add full panel of inner pixels
                mm += (panel_size_1d - 2) * px_size_1d
            else:  # or fraction of inner pixels
                mm += (px - 1) * px_size_1d
                return mm

            if px > panel_size_1d:  # add second outer pixel
                mm += px_size_1d * 3
            else:  # or fraction of second outer pixel
                mm += (px - (panel_size_1d - 1)) * px_size_1d * 3
                return mm

            if px > panel_size_1d + 1:  # add first outer pixel of second panel
                mm += px_size_1d * 3
            else:  # or fraction of first outer pixel of second panel
                mm += (px - panel_size_1d) * px_size_1d * 3
                return mm

            if px > (2 * panel_size_1d -
                     1):  # add second full panel of inner pixels
                mm += (panel_size_1d - 2) * px_size_1d
                # plus remaining fraction of the second outer pixel
                mm += (px - (2 * panel_size_1d - 1)) * px_size_1d * 3
            else:  # or fraction of inner pixels of the second panel
                mm += (px - panel_size_1d - 1) * px_size_1d
            return mm

        bx_mm = px_to_mm(bx_px, pixel_size[0], panel_size[0])
        by_mm = px_to_mm(by_px, pixel_size[1], panel_size[1])
        beam_centre_mm = (bx_mm, by_mm)

        # the beam centre is defined from the origin along fast, slow. To determine
        # the lab frame origin we place the beam centre down the -z axis
        dist = float(self._header_dictionary['DISTANCE'])
        cntr = matrix.col((0.0, 0.0, -1 * dist))
        orig = cntr - bx_mm * fast - by_mm * slow

        d = Detector()

        root = d.hierarchy()
        root.set_local_frame(fast.elems, slow.elems, orig.elems)

        self.coords = {}
        panel_idx = 0

        # set panel extent in pixel numbers and x, y mm shifts. Note that the
        # outer pixels are 0.165 mm in size. These are excluded from the panel
        # extents.
        pnl_data = []
        pnl_data.append({
            'xmin': 1,
            'ymin': 1,
            'xmax': 255,
            'ymax': 255,
            'xmin_mm': 1 * 0.165,
            'ymin_mm': 1 * 0.165
        })
        pnl_data.append({
            'xmin': 257,
            'ymin': 1,
            'xmax': 511,
            'ymax': 255,
            'xmin_mm': 3 * 0.165 + (511 - 257) * pixel_size[0],
            'ymin_mm': 1 * 0.165
        })
        pnl_data.append({
            'xmin': 1,
            'ymin': 257,
            'xmax': 255,
            'ymax': 511,
            'xmin_mm': 1 * 0.165,
            'ymin_mm': 3 * 0.165 + (511 - 257) * pixel_size[1]
        })
        pnl_data.append({
            'xmin': 257,
            'ymin': 257,
            'xmax': 511,
            'ymax': 511,
            'xmin_mm': 3 * 0.165 + (511 - 257) * pixel_size[0],
            'ymin_mm': 3 * 0.165 + (511 - 257) * pixel_size[1]
        })

        # redefine fast, slow for the local frame
        fast = matrix.col((1.0, 0.0, 0.0))
        slow = matrix.col((0.0, 1.0, 0.0))

        for ipanel, pd in enumerate(pnl_data):
            xmin = pd['xmin']
            xmax = pd['xmax']
            ymin = pd['ymin']
            ymax = pd['ymax']
            xmin_mm = pd['xmin_mm']
            ymin_mm = pd['ymin_mm']

            origin_panel = fast * xmin_mm + slow * ymin_mm

            panel_name = "Panel%d" % panel_idx
            panel_idx += 1

            p = d.add_panel()
            p.set_type('SENSOR_PAD')
            p.set_name(panel_name)
            p.set_raw_image_offset((xmin, ymin))
            p.set_image_size((xmax - xmin, ymax - ymin))
            p.set_trusted_range(trusted_range)
            p.set_pixel_size((pixel_size[0], pixel_size[1]))
            p.set_thickness(thickness)
            p.set_material('Si')
            #p.set_mu(mu)
            #p.set_px_mm_strategy(ParallaxCorrectedPxMmStrategy(mu, t0))
            p.set_local_frame(fast.elems, slow.elems, origin_panel.elems)
            p.set_raw_image_offset((xmin, ymin))
            self.coords[panel_name] = (xmin, ymin, xmax, ymax)

        return d
Exemplo n.º 9
0
def main():

    # ---------

    SIM = simtbx.nanoBragg.nanoBragg(whole_det, beam)
    SIM.Amatrix = sqr(cryst.get_A()).transpose().elems
    SIM.default_F = 1
    SIM.F000 = 10
    SIM.oversample = 2
    SIM.Ncells_abc = (5, 5, 5)
    SIM.show_params()
    SIM.add_nanoBragg_spots()
    SIM.raw_pixels *= 2000
    wholepix = SIM.raw_pixels.as_numpy_array()

    # ---------

    # now make 2 smaller detectors
    # that equal the whole detector above
    # then append them as a dials multi panel
    origin0 = (25.6, -12.8, -100)
    origin1 = (25.6, 0, -100)
    panel_size = (512, 128)

    pan0 = {
        'fast_axis': (-1.0, 0.0, 0.0),
        'gain': 1.0,
        'identifier': '',
        'image_size': (512, 128),
        'mask': [],
        'material': '',
        'mu': 0.0,
        'name': 'panel1',
        'origin': origin0,
        'pedestal': 0.0,
        'pixel_size': (0.1, 0.1),
        'px_mm_strategy': {
            'type': 'SimplePxMmStrategy'
        },
        'raw_image_offset': (0, 0),
        'slow_axis': (0.0, 1.0, 0.0),
        'thickness': 0.0,
        'trusted_range': (0.0, 65536.0),
        'type': ''
    }

    pan1 = copy.deepcopy(pan0)
    pan1["origin"] = origin1

    # combine the panels into a multi-panel detector
    parts_det = Detector()
    parts_det.add_panel(Panel.from_dict(pan0))
    parts_det.add_panel(Panel.from_dict(pan1))

    SIMs = {}
    for i_pan in range(2):
        SIM = simtbx.nanoBragg.nanoBragg(parts_det, beam, panel_id=i_pan)
        SIM.Amatrix = sqr(cryst.get_A()).transpose().elems
        SIM.default_F = 1
        SIM.F000 = 10
        SIM.oversample = 2
        SIM.Ncells_abc = (5, 5, 5)
        SIM.add_nanoBragg_spots()
        SIM.raw_pixels *= 2000
        SIMs[i_pan] = SIM

    # check comparison with whole camera
    # ----------------------------------
    # combine the two panels:
    pix0 = SIMs[0].raw_pixels.as_numpy_array()
    pix1 = SIMs[1].raw_pixels.as_numpy_array()

    # FIXME: not sure why but in this case the first pixel in memory is off by 0.05
    # but the others are all close..
    pix1[0, 0] = wholepix[128, 0]  # pix1[0,0] = 1.217 and pix[128,0] = 1.264
    pix01 = np.vstack((pix0, pix1))

    assert (np.allclose(wholepix, pix01))
Exemplo n.º 10
0
                                        verbose=1,
                                        mos_spread=mos_spread,
                                        omp=True,
                                        gimmie_Patt=True,
                                        add_water=True,
                                        add_noise=True,
                                        boost=Iboost)

print "TIME: %.4f" % (time.time() - t)

sims = np.sum([simsAB[k] for k in simsAB], axis=0)

np.savez(outputname + "_spotdata.pkl", sims=sims, panel_ids=panel_ids)
print "Done!"
exit()
det2 = Detector()
det2_panel_mapping = {}
for i_pan, pid in enumerate(panel_ids):
    det2.add_panel(det[pid])
    det2_panel_mapping[i_pan] = pid

refl_data = refls_strong = spot_utils.refls_from_sims(sims,
                                                      det2,
                                                      beam,
                                                      thresh=10)

refl_panel = refl_data['panel'].as_numpy_array()
for i_pan, pid in det2_panel_mapping.items():
    sel = refl_panel == i_pan
    refl_panel[sel] = pid
Exemplo n.º 11
0
    params = phil_scope.fetch(sources=user_phil).extract()
    if params.distance is None:
        raise Usage("Please specify detector distance")

    geom = {}
    for line in open(params.geom_path):
        if len(line.split("=")) != 2: continue
        if "rigid_group" in line and not "collection" in line:
            geom[line.split("=")[1].strip()] = {}
        else:
            for key in geom:
                if line.startswith("%s/" % key):
                    geom[key][line.split("=")[0].split("/")
                              [1].strip()] = line.split("=")[-1].strip()

    detector = Detector()
    root = detector.hierarchy()
    root.set_frame((1, 0, 0), (0, 1, 0), (0, 0, -params.distance))

    for i, key in enumerate(sorted(geom)):
        fs_x, fs_y = geom[key]['fs'].split(" ")
        ss_x, ss_y = geom[key]['ss'].split(" ")
        fast = matrix.col(
            (-float(fs_x.rstrip('x')), float(fs_y.rstrip('y')), 0.0))
        slow = matrix.col(
            (-float(ss_x.rstrip('x')), float(ss_y.rstrip('y')), 0.0))

        origin = matrix.col(
            (-float(geom[key]['corner_x']) * params.pixel_size,
             float(geom[key]['corner_y']) * params.pixel_size, 0.0))
    def _detector(self):
        '''Detector model, allowing for small offsets in the positions of 60
    detector modules'''

        # Module positional offsets in x, y, in pixels - for the moment ignoring the
        # rotational offsets as these are not well defined. To be honest these
        # positional offsets are also not well defined as I do not know how they
        # should be applied...

        x = {
            (0, 0): -0.477546,
            (0, 1): 0.130578,
            (0, 2): 0.045041,
            (0, 3): -0.439872,
            (0, 4): -0.382077,
            (1, 0): 0.087405,
            (1, 1): 0.249597,
            (1, 2): 0.184265,
            (1, 3): 0.158342,
            (1, 4): 0.025225,
            (2, 0): -0.179892,
            (2, 1): -0.010974,
            (2, 2): -0.139207,
            (2, 3): 0.282851,
            (2, 4): -0.442219,
            (3, 0): -0.185027,
            (3, 1): 0.218601,
            (3, 2): 0.092585,
            (3, 3): 0.35862,
            (3, 4): -0.29161,
            (4, 0): 0.145368,
            (4, 1): 0.609289,
            (4, 2): 0.396265,
            (4, 3): 0.41625,
            (4, 4): 0.07152,
            (5, 0): 0.247142,
            (5, 1): 0.046563,
            (5, 2): 0.248714,
            (5, 3): -0.044628,
            (5, 4): -0.391509,
            (6, 0): 0.516643,
            (6, 1): 0.358453,
            (6, 2): 0.069219,
            (6, 3): 0.095861,
            (6, 4): -0.167403,
            (7, 0): -0.381352,
            (7, 1): -0.35338,
            (7, 2): 0.348656,
            (7, 3): 0.024543,
            (7, 4): 0.328706,
            (8, 0): 0.150886,
            (8, 1): 0.244987,
            (8, 2): -0.102911,
            (8, 3): 0.16633,
            (8, 4): 0.386622,
            (9, 0): 0.037924,
            (9, 1): 0.314392,
            (9, 2): 0.238818,
            (9, 3): 0.815028,
            (9, 4): -0.048818,
            (10, 0): -0.670524,
            (10, 1): -0.304119,
            (10, 2): 0.252284,
            (10, 3): -0.05485,
            (10, 4): -0.355264,
            (11, 0): -0.404947,
            (11, 1): -0.020622,
            (11, 2): 0.648473,
            (11, 3): -0.277175,
            (11, 4): -0.711951
        }

        y = {
            (0, 0): -0.494797,
            (0, 1): -0.212976,
            (0, 2): 0.085351,
            (0, 3): 0.35494,
            (0, 4): 0.571189,
            (1, 0): -0.421708,
            (1, 1): 0.061914,
            (1, 2): 0.238996,
            (1, 3): 0.146692,
            (1, 4): 0.407145,
            (2, 0): -0.313212,
            (2, 1): -0.225025,
            (2, 2): 0.031613,
            (2, 3): -0.047839,
            (2, 4): 0.42716,
            (3, 0): -0.361193,
            (3, 1): 0.057663,
            (3, 2): 0.022357,
            (3, 3): 0.062717,
            (3, 4): 0.150611,
            (4, 0): 0.035511,
            (4, 1): -0.271567,
            (4, 2): 0.007761,
            (4, 3): -0.124021,
            (4, 4): 0.093017,
            (5, 0): -0.238897,
            (5, 1): -0.179724,
            (5, 2): -0.113608,
            (5, 3): 0.017841,
            (5, 4): -0.012933,
            (6, 0): -0.166337,
            (6, 1): -0.272922,
            (6, 2): -0.194665,
            (6, 3): -0.058535,
            (6, 4): -0.405404,
            (7, 0): -0.318824,
            (7, 1): -0.311276,
            (7, 2): -0.205223,
            (7, 3): -0.292664,
            (7, 4): -0.474762,
            (8, 0): -0.039504,
            (8, 1): -0.239887,
            (8, 2): -0.343485,
            (8, 3): -0.459429,
            (8, 4): -0.426901,
            (9, 0): -0.187805,
            (9, 1): 0.282727,
            (9, 2): -0.601164,
            (9, 3): -0.467605,
            (9, 4): -0.589271,
            (10, 0): 0.028311,
            (10, 1): -0.391571,
            (10, 2): -0.463112,
            (10, 3): -0.358092,
            (10, 4): -0.285396,
            (11, 0): 0.01863,
            (11, 1): -0.380099,
            (11, 2): -0.234953,
            (11, 3): -0.593992,
            (11, 4): -0.801247
        }

        distance = float(
            self._cif_header_dictionary['Detector_distance'].split()[0])

        beam_xy = self._cif_header_dictionary['Beam_xy'].replace(
            '(', '').replace(')', '').replace(',', '').split()[:2]

        beam_x, beam_y = map(float, beam_xy)

        wavelength = float(
            self._cif_header_dictionary['Wavelength'].split()[0])

        pixel_xy = self._cif_header_dictionary['Pixel_size'].replace(
            'm', '').replace('x', '').split()

        pixel_x, pixel_y = map(float, pixel_xy)

        thickness = float(
            self._cif_header_dictionary['Silicon'].split()[2]) * 1000.0

        nx = int(
            self._cif_header_dictionary['X-Binary-Size-Fastest-Dimension'])
        ny = int(self._cif_header_dictionary['X-Binary-Size-Second-Dimension'])

        overload = int(self._cif_header_dictionary['Count_cutoff'].split()[0])
        underload = -1

        # take into consideration here the thickness of the sensor also the
        # wavelength of the radiation (which we have in the same file...)

        from cctbx.eltbx import attenuation_coefficient
        table = attenuation_coefficient.get_table("Si")
        mu = table.mu_at_angstrom(wavelength) / 10.0
        t0 = thickness

        # FIXME would also be very nice to be able to take into account the
        # misalignment of the individual modules given the calibration...

        # single detector or multi-module detector

        pixel_x *= 1000.0
        pixel_y *= 1000.0
        distance *= 1000.0

        if not self._multi_panel:
            detector = self._detector_factory.simple(
                'PAD', distance, (beam_x * pixel_x, beam_y * pixel_y), '+x',
                '-y', (pixel_x, pixel_y), (nx, ny), (underload, overload), [],
                ParallaxCorrectedPxMmStrategy(mu, t0))

            for f0, s0, f1, s1 in determine_pilatus_mask(detector):
                detector[0].add_mask(f0, s0, f1, s1)

            detector[0].set_thickness(thickness)
            detector[0].set_material('Si')
            detector[0].set_mu(mu)

            return detector

        # got to here means 60-panel version

        from dxtbx.model.detector import Detector
        from scitbx import matrix

        d = Detector()

        beam_centre = matrix.col((beam_x * pixel_x, beam_y * pixel_y, 0))

        fast = matrix.col((1.0, 0.0, 0.0))
        slow = matrix.col((0.0, -1.0, 0.0))
        s0 = matrix.col((0, 0, -1))
        origin = (distance * s0) - (fast * beam_centre[0]) - \
          (slow * beam_centre[1])

        root = d.hierarchy()
        root.set_local_frame(fast.elems, slow.elems, origin.elems)

        xmins = [0, 494, 988, 1482, 1976]
        xmaxes = [487, 981, 1475, 1969, 2463]
        ymins = [
            0, 212, 424, 636, 848, 1060, 1272, 1484, 1696, 1908, 2120, 2332
        ]
        ymaxes = [
            195, 407, 619, 831, 1043, 1255, 1467, 1679, 1891, 2103, 2315, 2527
        ]

        self.coords = {}

        fast = matrix.col((1.0, 0.0, 0.0))
        slow = matrix.col((0.0, 1.0, 0.0))
        panel_idx = 0
        for ymin, ymax in zip(ymins, ymaxes):
            for xmin, xmax in zip(xmins, xmaxes):
                xmin_mm = xmin * pixel_x
                ymin_mm = ymin * pixel_y

                origin_panel = fast * xmin_mm + slow * ymin_mm

                panel_name = "Panel%d" % panel_idx
                panel_idx += 1

                p = d.add_panel()
                p.set_type('SENSOR_PAD')
                p.set_name(panel_name)
                p.set_raw_image_offset((xmin, ymin))
                p.set_image_size((xmax - xmin, ymax - ymin))
                p.set_trusted_range((underload, overload))
                p.set_pixel_size((pixel_x, pixel_y))
                p.set_thickness(thickness)
                p.set_material('Si')
                p.set_mu(mu)
                p.set_px_mm_strategy(ParallaxCorrectedPxMmStrategy(mu, t0))
                p.set_local_frame(fast.elems, slow.elems, origin_panel.elems)
                p.set_raw_image_offset((xmin, ymin))
                self.coords[panel_name] = (xmin, ymin, xmax, ymax)

        return d
    def _detector(self):
        """Dummy detector"""
        from scitbx import matrix

        # 55 mu pixels
        pixel_size = 0.055, 0.055
        image_size = 512, 512
        trusted_range = (-1, 65535)
        material = "Si"
        thickness = 0.3  # assume 300 mu thick

        # Initialise detector frame - dummy origin to place detector at 100 mm
        # along canonical beam direction
        fast = matrix.col((1.0, 0.0, 0.0))
        slow = matrix.col((0.0, -1.0, 0.0))
        cntr = matrix.col((0.0, 0.0, -100.0))

        # shifts to go from the centre to the origin - outer pixels are 0.165 mm
        off_x = (image_size[0] / 2 - 2) * pixel_size[0]
        off_x += 2 * 0.165
        shift_x = -1.0 * fast * off_x
        off_y = (image_size[1] / 2 - 2) * pixel_size[1]
        off_y += 2 * 0.165
        shift_y = -1.0 * slow * off_y
        orig = cntr + shift_x + shift_y

        d = Detector()

        root = d.hierarchy()
        root.set_local_frame(fast.elems, slow.elems, orig.elems)

        self.coords = {}
        panel_idx = 0

        # set panel extent in pixel numbers and x, y mm shifts. Note that the
        # outer pixels are 0.165 mm in size. These are excluded from the panel
        # extents.
        pnl_data = []
        pnl_data.append({
            "xmin": 1,
            "ymin": 1,
            "xmax": 255,
            "ymax": 255,
            "xmin_mm": 1 * 0.165,
            "ymin_mm": 1 * 0.165,
        })
        pnl_data.append({
            "xmin": 257,
            "ymin": 1,
            "xmax": 511,
            "ymax": 255,
            "xmin_mm": 3 * 0.165 + (511 - 257) * pixel_size[0],
            "ymin_mm": 1 * 0.165,
        })
        pnl_data.append({
            "xmin": 1,
            "ymin": 257,
            "xmax": 255,
            "ymax": 511,
            "xmin_mm": 1 * 0.165,
            "ymin_mm": 3 * 0.165 + (511 - 257) * pixel_size[1],
        })
        pnl_data.append({
            "xmin": 257,
            "ymin": 257,
            "xmax": 511,
            "ymax": 511,
            "xmin_mm": 3 * 0.165 + (511 - 257) * pixel_size[0],
            "ymin_mm": 3 * 0.165 + (511 - 257) * pixel_size[1],
        })

        # redefine fast, slow for the local frame
        fast = matrix.col((1.0, 0.0, 0.0))
        slow = matrix.col((0.0, 1.0, 0.0))

        for ipanel, pd in enumerate(pnl_data):
            xmin = pd["xmin"]
            xmax = pd["xmax"]
            ymin = pd["ymin"]
            ymax = pd["ymax"]
            xmin_mm = pd["xmin_mm"]
            ymin_mm = pd["ymin_mm"]

            origin_panel = fast * xmin_mm + slow * ymin_mm

            panel_name = "Panel%d" % panel_idx
            panel_idx += 1

            p = d.add_panel()
            p.set_type("SENSOR_PAD")
            p.set_name(panel_name)
            p.set_raw_image_offset((xmin, ymin))
            p.set_image_size((xmax - xmin, ymax - ymin))
            p.set_trusted_range(trusted_range)
            p.set_pixel_size((pixel_size[0], pixel_size[1]))
            p.set_thickness(thickness)
            p.set_material("Si")
            # p.set_mu(mu)
            # p.set_px_mm_strategy(ParallaxCorrectedPxMmStrategy(mu, t0))
            p.set_local_frame(fast.elems, slow.elems, origin_panel.elems)
            p.set_raw_image_offset((xmin, ymin))
            self.coords[panel_name] = (xmin, ymin, xmax, ymax)

        return d
    'pixel_size': (0.1, 0.1),
    'px_mm_strategy': {
        'type': 'SimplePxMmStrategy'
    },
    'raw_image_offset': (0, 0),
    'slow_axis': (0.0, 1.0, 0.0),
    'thickness': 0.0,
    'trusted_range': (0.0, 65536.0),
    'type': ''
}

pan1 = copy.deepcopy(pan0)
pan1["origin"] = origin1

# combine the panels into a multi-panel detector
parts_det = Detector()
parts_det.add_panel(Panel.from_dict(pan0))
parts_det.add_panel(Panel.from_dict(pan1))

SIMs = {}
for i_pan in range(2):
    SIM = simtbx.nanoBragg.nanoBragg(parts_det, beam, panel_id=i_pan)
    SIM.Amatrix = sqr(cryst.get_A()).transpose().elems
    SIM.default_F = 1
    SIM.F000 = 10
    SIM.oversample = 2
    SIM.Ncells_abc = (5, 5, 5)
    SIM.add_nanoBragg_spots()
    SIM.raw_pixels *= 2000
    SIMs[i_pan] = SIM
Exemplo n.º 15
0
    def _detector(self):
        """Detector model, allowing for small offsets in the positions of 60
        detector modules"""

        distance = float(
            self._cif_header_dictionary["Detector_distance"].split()[0])

        beam_xy = (self._cif_header_dictionary["Beam_xy"].replace(
            "(", "").replace(")", "").replace(",", "").split()[:2])

        beam_x, beam_y = map(float, beam_xy)

        wavelength = float(
            self._cif_header_dictionary["Wavelength"].split()[0])

        pixel_xy = (self._cif_header_dictionary["Pixel_size"].replace(
            "m", "").replace("x", "").split())

        pixel_x, pixel_y = map(float, pixel_xy)

        thickness = float(
            self._cif_header_dictionary["Silicon"].split()[2]) * 1000.0

        nx = int(
            self._cif_header_dictionary["X-Binary-Size-Fastest-Dimension"])
        ny = int(self._cif_header_dictionary["X-Binary-Size-Second-Dimension"])

        overload = int(self._cif_header_dictionary["Count_cutoff"].split()[0])
        underload = -1

        # take into consideration here the thickness of the sensor also the
        # wavelength of the radiation (which we have in the same file...)

        from cctbx.eltbx import attenuation_coefficient

        table = attenuation_coefficient.get_table("Si")
        mu = table.mu_at_angstrom(wavelength) / 10.0
        t0 = thickness

        # FIXME would also be very nice to be able to take into account the
        # misalignment of the individual modules given the calibration...

        # single detector or multi-module detector

        pixel_x *= 1000.0
        pixel_y *= 1000.0
        distance *= 1000.0

        if not self._multi_panel:
            detector = self._detector_factory.simple(
                "PAD",
                distance,
                (beam_x * pixel_x, beam_y * pixel_y),
                "+x",
                "-y",
                (pixel_x, pixel_y),
                (nx, ny),
                (underload, overload),
                [],
                ParallaxCorrectedPxMmStrategy(mu, t0),
            )

            for f0, f1, s0, s1 in determine_pilatus_mask(detector):
                detector[0].add_mask(f0 - 1, s0 - 1, f1, s1)

            detector[0].set_thickness(thickness)
            detector[0].set_material("Si")
            detector[0].set_mu(mu)

            return detector

        # got to here means 60-panel version

        from dxtbx.model.detector import Detector
        from scitbx import matrix

        d = Detector()

        beam_centre = matrix.col((beam_x * pixel_x, beam_y * pixel_y, 0))

        fast = matrix.col((1.0, 0.0, 0.0))
        slow = matrix.col((0.0, -1.0, 0.0))
        s0 = matrix.col((0, 0, -1))
        origin = (distance * s0) - (fast * beam_centre[0]) - (slow *
                                                              beam_centre[1])

        root = d.hierarchy()
        root.set_local_frame(fast.elems, slow.elems, origin.elems)

        xmins = [0, 494, 988, 1482, 1976]
        xmaxes = [487, 981, 1475, 1969, 2463]
        ymins = [
            0, 212, 424, 636, 848, 1060, 1272, 1484, 1696, 1908, 2120, 2332
        ]
        ymaxes = [
            195, 407, 619, 831, 1043, 1255, 1467, 1679, 1891, 2103, 2315, 2527
        ]

        self.coords = {}

        fast = matrix.col((1.0, 0.0, 0.0))
        slow = matrix.col((0.0, 1.0, 0.0))
        panel_idx = 0
        for ymin, ymax in zip(ymins, ymaxes):
            for xmin, xmax in zip(xmins, xmaxes):
                xmin_mm = xmin * pixel_x
                ymin_mm = ymin * pixel_y

                origin_panel = fast * xmin_mm + slow * ymin_mm

                panel_name = "Panel%d" % panel_idx
                panel_idx += 1

                p = d.add_panel()
                p.set_type("SENSOR_PAD")
                p.set_name(panel_name)
                p.set_raw_image_offset((xmin, ymin))
                p.set_image_size((xmax - xmin, ymax - ymin))
                p.set_trusted_range((underload, overload))
                p.set_pixel_size((pixel_x, pixel_y))
                p.set_thickness(thickness)
                p.set_material("Si")
                p.set_mu(mu)
                p.set_px_mm_strategy(ParallaxCorrectedPxMmStrategy(mu, t0))
                p.set_local_frame(fast.elems, slow.elems, origin_panel.elems)
                p.set_raw_image_offset((xmin, ymin))
                self.coords[panel_name] = (xmin, ymin, xmax, ymax)

        return d
Exemplo n.º 16
0
detector
detector.to_dict
detector.to_dict()
det
det = detector
det
det[0]
#@det.add_panel
#det.rotate_around_origin
dir(det)
det.to_dict()
D = det.to_dict()
D.keys()
D['hierarchy']
from dxtbx.model.detector import Detector
Detector()
D2 = Detector()
for i in [32,34,50]:
    D2.add_panel( detector[i])
    
D2
params = []
for i,C in enumerate(Cabc):
    param = {}
    param['crystal'] = C
    param['ENERGIES'] = en_spec
    param['FLUX']= flux
    print C.get_unit_cell().parameters()
    param['shape'] = 'tophat'
    param['Ncells_abc'] = (10,10,10)
    param['beam'] = beamA
Exemplo n.º 17
0
        raise Sorry("Unrecognized argument: %s"%arg)
  params = phil_scope.fetch(sources=user_phil).extract()
  if params.distance is None:
    raise Usage("Please specify detector distance")

  geom = {}
  for line in open(params.geom_path):
    if len(line.split("=")) != 2: continue
    if "rigid_group" in line and not "collection" in line:
      geom[line.split("=")[1].strip()] = {}
    else:
      for key in geom:
        if line.startswith("%s/"%key):
          geom[key][line.split("=")[0].split("/")[1].strip()] = line.split("=")[-1].strip()

  detector = Detector()
  root = detector.hierarchy()
  root.set_frame(
    (1, 0, 0),
    (0, 1, 0),
    (0, 0, - params.distance))

  for i, key in enumerate(sorted(geom)):
    fs_x, fs_y = geom[key]['fs'].split(" ")
    ss_x, ss_y = geom[key]['ss'].split(" ")
    fast = matrix.col((-float(fs_x.rstrip('x')),float(fs_y.rstrip('y')), 0.0))
    slow = matrix.col((-float(ss_x.rstrip('x')),float(ss_y.rstrip('y')), 0.0))

    origin = matrix.col((-float(geom[key]['corner_x']) * params.pixel_size,
                          float(geom[key]['corner_y']) * params.pixel_size,
                          0.0))