Exemplo n.º 1
0
    def test_two_burn_orbit_raise_gl_rk_gl_constrained(self):
        import numpy as np

        import matplotlib.pyplot as plt

        from openmdao.api import Problem, Group, pyOptSparseDriver, DirectSolver
        from openmdao.utils.assert_utils import assert_rel_error
        from openmdao.utils.general_utils import set_pyoptsparse_opt

        from dymos import Phase, GaussLobatto, RungeKutta, Trajectory
        from dymos.examples.finite_burn_orbit_raise.finite_burn_eom import FiniteBurnODE

        traj = Trajectory()
        p = Problem(model=Group())
        p.model.add_subsystem('traj', traj)

        p.driver = pyOptSparseDriver()
        _, optimizer = set_pyoptsparse_opt('SNOPT', fallback=True)
        p.driver.options['optimizer'] = optimizer

        p.driver.options['dynamic_simul_derivs'] = True

        traj.add_design_parameter('c', opt=False, val=1.5, units='DU/TU')

        # First Phase (burn)

        burn1 = Phase(ode_class=FiniteBurnODE,
                      transcription=GaussLobatto(num_segments=10, order=3, compressed=True))

        burn1 = traj.add_phase('burn1', burn1)

        burn1.set_time_options(fix_initial=True, duration_bounds=(.5, 10))
        burn1.set_state_options('r', fix_initial=True, fix_final=False)
        burn1.set_state_options('theta', fix_initial=True, fix_final=False)
        burn1.set_state_options('vr', fix_initial=True, fix_final=False)
        burn1.set_state_options('vt', fix_initial=True, fix_final=False)
        burn1.set_state_options('accel', fix_initial=True, fix_final=False)
        burn1.set_state_options('deltav', fix_initial=True, fix_final=False)
        burn1.add_control('u1', rate_continuity=True, rate2_continuity=True, units='deg',
                          scaler=0.01, lower=-30, upper=30)

        # Second Phase (Coast)
        coast = Phase(ode_class=FiniteBurnODE,
                      transcription=RungeKutta(num_segments=20, compressed=True))

        traj.add_phase('coast', coast)

        coast.set_time_options(initial_bounds=(0.5, 20), duration_bounds=(.5, 10), duration_ref=10)
        coast.set_state_options('r', fix_initial=False, fix_final=False)
        coast.set_state_options('theta', fix_initial=False, fix_final=False)
        coast.set_state_options('vr', fix_initial=False, fix_final=False)
        coast.set_state_options('vt', fix_initial=False, fix_final=False)
        coast.set_state_options('accel', fix_initial=True, fix_final=False)
        coast.set_state_options('deltav', fix_initial=False, fix_final=False)
        coast.add_design_parameter('u1', opt=False, val=0.0)

        # Third Phase (burn)

        burn2 = Phase(ode_class=FiniteBurnODE,
                      transcription=GaussLobatto(num_segments=10, order=3, compressed=True))

        traj.add_phase('burn2', burn2)

        burn2.set_time_options(initial_bounds=(0.5, 20), duration_bounds=(.5, 10), initial_ref=10)
        burn2.set_state_options('r', fix_initial=False, fix_final=True)
        burn2.set_state_options('theta', fix_initial=False, fix_final=False)
        burn2.set_state_options('vr', fix_initial=False, fix_final=True)
        burn2.set_state_options('vt', fix_initial=False, fix_final=True)
        burn2.set_state_options('accel', fix_initial=False, fix_final=False, defect_scaler=1.0)
        burn2.set_state_options('deltav', fix_initial=False, fix_final=False, defect_scaler=1.0)
        burn2.add_control('u1', rate_continuity=True, rate2_continuity=True, units='deg',
                          scaler=0.01, lower=-30, upper=30)

        burn2.add_objective('deltav', loc='final', scaler=1.0)

        burn1.add_timeseries_output('pos_x', units='DU')
        coast.add_timeseries_output('pos_x', units='DU')
        burn2.add_timeseries_output('pos_x', units='DU')

        burn1.add_timeseries_output('pos_y', units='DU')
        coast.add_timeseries_output('pos_y', units='DU')
        burn2.add_timeseries_output('pos_y', units='DU')

        # Link Phases
        traj.link_phases(phases=['burn1', 'coast', 'burn2'],
                         vars=['time', 'r', 'theta', 'vr', 'vt', 'deltav'])
        traj.link_phases(phases=['burn1', 'burn2'], vars=['accel'])

        # Finish Problem Setup
        p.model.linear_solver = DirectSolver()

        p.setup(check=True, force_alloc_complex=True)

        # Set Initial Guesses
        p.set_val('traj.design_parameters:c', value=1.5)

        p.set_val('traj.burn1.t_initial', value=0.0)
        p.set_val('traj.burn1.t_duration', value=2.25)

        p.set_val('traj.burn1.states:r',
                  value=burn1.interpolate(ys=[1, 1.5], nodes='state_input'))
        p.set_val('traj.burn1.states:theta',
                  value=burn1.interpolate(ys=[0, 1.7], nodes='state_input'))
        p.set_val('traj.burn1.states:vr',
                  value=burn1.interpolate(ys=[0, 0], nodes='state_input'))
        p.set_val('traj.burn1.states:vt',
                  value=burn1.interpolate(ys=[1, 1], nodes='state_input'))
        p.set_val('traj.burn1.states:accel',
                  value=burn1.interpolate(ys=[0.1, 0], nodes='state_input'))
        p.set_val('traj.burn1.states:deltav',
                  value=burn1.interpolate(ys=[0, 0.1], nodes='state_input'), )
        p.set_val('traj.burn1.controls:u1',
                  value=burn1.interpolate(ys=[-3.5, 13.0], nodes='control_input'))

        p.set_val('traj.coast.t_initial', value=2.25)
        p.set_val('traj.coast.t_duration', value=3.0)

        p.set_val('traj.coast.states:r',
                  value=coast.interpolate(ys=[1.3, 1.5], nodes='state_input'))
        p.set_val('traj.coast.states:theta',
                  value=coast.interpolate(ys=[2.1767, 1.7], nodes='state_input'))
        p.set_val('traj.coast.states:vr',
                  value=coast.interpolate(ys=[0.3285, 0], nodes='state_input'))
        p.set_val('traj.coast.states:vt',
                  value=coast.interpolate(ys=[0.97, 1], nodes='state_input'))
        p.set_val('traj.coast.states:accel',
                  value=coast.interpolate(ys=[0, 0], nodes='state_input'))
        # p.set_val('traj.coast.controls:u1',
        #           value=coast.interpolate(ys=[0, 0], nodes='control_input'))

        p.set_val('traj.burn2.t_initial', value=5.25)
        p.set_val('traj.burn2.t_duration', value=1.75)

        p.set_val('traj.burn2.states:r',
                  value=burn2.interpolate(ys=[1.8, 3], nodes='state_input'))
        p.set_val('traj.burn2.states:theta',
                  value=burn2.interpolate(ys=[3.2, 4.0], nodes='state_input'))
        p.set_val('traj.burn2.states:vr',
                  value=burn2.interpolate(ys=[.5, 0], nodes='state_input'))
        p.set_val('traj.burn2.states:vt',
                  value=burn2.interpolate(ys=[1, np.sqrt(1 / 3)], nodes='state_input'))
        p.set_val('traj.burn2.states:accel',
                  value=burn2.interpolate(ys=[0.1, 0], nodes='state_input'))
        p.set_val('traj.burn2.states:deltav',
                  value=burn2.interpolate(ys=[0.1, 0.2], nodes='state_input'))
        p.set_val('traj.burn2.controls:u1',
                  value=burn2.interpolate(ys=[1, 1], nodes='control_input'))

        p.run_driver()

        assert_rel_error(self,
                         p.get_val('traj.burn2.timeseries.states:deltav')[-1],
                         0.3995,
                         tolerance=2.0E-3)

        # Plot results
        exp_out = traj.simulate()

        fig = plt.figure(figsize=(8, 4))
        fig.suptitle('Two Burn Orbit Raise Solution')
        ax_u1 = plt.subplot2grid((2, 2), (0, 0))
        ax_deltav = plt.subplot2grid((2, 2), (1, 0))
        ax_xy = plt.subplot2grid((2, 2), (0, 1), rowspan=2)

        span = np.linspace(0, 2 * np.pi, 100)
        ax_xy.plot(np.cos(span), np.sin(span), 'k--', lw=1)
        ax_xy.plot(3 * np.cos(span), 3 * np.sin(span), 'k--', lw=1)
        ax_xy.set_xlim(-4.5, 4.5)
        ax_xy.set_ylim(-4.5, 4.5)

        ax_xy.set_xlabel('x ($R_e$)')
        ax_xy.set_ylabel('y ($R_e$)')

        ax_u1.set_xlabel('time ($TU$)')
        ax_u1.set_ylabel('$u_1$ ($deg$)')
        ax_u1.grid(True)

        ax_deltav.set_xlabel('time ($TU$)')
        ax_deltav.set_ylabel('${\Delta}v$ ($DU/TU$)')
        ax_deltav.grid(True)

        t_sol = dict((phs, p.get_val('traj.{0}.timeseries.time'.format(phs)))
                     for phs in ['burn1', 'coast', 'burn2'])
        x_sol = dict((phs, p.get_val('traj.{0}.timeseries.pos_x'.format(phs)))
                     for phs in ['burn1', 'coast', 'burn2'])
        y_sol = dict((phs, p.get_val('traj.{0}.timeseries.pos_y'.format(phs)))
                     for phs in ['burn1', 'coast', 'burn2'])
        dv_sol = dict((phs, p.get_val('traj.{0}.timeseries.states:deltav'.format(phs)))
                      for phs in ['burn1', 'coast', 'burn2'])
        u1_sol = dict((phs, p.get_val('traj.{0}.timeseries.controls:u1'.format(phs), units='deg'))
                      for phs in ['burn1', 'burn2'])

        t_exp = dict((phs, exp_out.get_val('traj.{0}.timeseries.time'.format(phs)))
                     for phs in ['burn1', 'coast', 'burn2'])
        x_exp = dict((phs, exp_out.get_val('traj.{0}.timeseries.pos_x'.format(phs)))
                     for phs in ['burn1', 'coast', 'burn2'])
        y_exp = dict((phs, exp_out.get_val('traj.{0}.timeseries.pos_y'.format(phs)))
                     for phs in ['burn1', 'coast', 'burn2'])
        dv_exp = dict((phs, exp_out.get_val('traj.{0}.timeseries.states:deltav'.format(phs)))
                      for phs in ['burn1', 'coast', 'burn2'])
        u1_exp = dict((phs, exp_out.get_val('traj.{0}.timeseries.controls:u1'.format(phs),
                                            units='deg'))
                      for phs in ['burn1', 'burn2'])

        for phs in ['burn1', 'coast', 'burn2']:
            try:
                ax_u1.plot(t_sol[phs], u1_sol[phs], 'ro', ms=3)
                ax_u1.plot(t_exp[phs], u1_exp[phs], 'b-')
            except KeyError:
                pass

            ax_deltav.plot(t_sol[phs], dv_sol[phs], 'ro', ms=3)
            ax_deltav.plot(t_exp[phs], dv_exp[phs], 'b-')

            ax_xy.plot(x_sol[phs], y_sol[phs], 'ro', ms=3, label='implicit')
            ax_xy.plot(x_exp[phs], y_exp[phs], 'b-', label='explicit')

        plt.show()
Exemplo n.º 2
0
    def test_dynamic_input_params(self):
        prob = Problem(model=Group())

        traj = prob.model.add_subsystem('traj', Trajectory())

        # First phase: normal operation.
        # NOTE: using RK4 integration here

        P_DEMAND = 2.0

        phase0 = Phase(ode_class=BatteryODE, transcription=RungeKutta(num_segments=200))
        phase0.set_time_options(fix_initial=True, fix_duration=True)
        phase0.set_state_options('state_of_charge', fix_initial=True, fix_final=False)
        phase0.add_timeseries_output('battery.V_oc', output_name='V_oc', units='V')
        phase0.add_timeseries_output('battery.V_pack', output_name='V_pack', units='V')
        phase0.add_timeseries_output('pwr_balance.I_Li', output_name='I_Li', units='A')
        phase0.add_input_parameter('P_demand', val=P_DEMAND, units='W')
        traj.add_phase('phase0', phase0)

        # Second phase: normal operation.

        transcription = Radau(num_segments=5, order=5, compressed=True)
        phase1 = Phase(ode_class=BatteryODE, transcription=transcription)
        phase1.set_time_options(fix_initial=False, fix_duration=True)
        phase1.set_state_options('state_of_charge', fix_initial=False, fix_final=False, solve_segments=True)
        phase1.add_timeseries_output('battery.V_oc', output_name='V_oc', units='V')
        phase1.add_timeseries_output('battery.V_pack', output_name='V_pack', units='V')
        phase1.add_timeseries_output('pwr_balance.I_Li', output_name='I_Li', units='A')
        phase1.add_input_parameter('P_demand', val=P_DEMAND, units='W')
        traj.add_phase('phase1', phase1)

        # Second phase, but with battery failure.

        phase1_bfail = Phase(ode_class=BatteryODE, ode_init_kwargs={'num_battery': 2},
                             transcription=transcription)
        phase1_bfail.set_time_options(fix_initial=False, fix_duration=True)
        phase1_bfail.set_state_options('state_of_charge', fix_initial=False, fix_final=False, solve_segments=True)
        phase1_bfail.add_timeseries_output('battery.V_oc', output_name='V_oc', units='V')
        phase1_bfail.add_timeseries_output('battery.V_pack', output_name='V_pack', units='V')
        phase1_bfail.add_timeseries_output('pwr_balance.I_Li', output_name='I_Li', units='A')
        phase1_bfail.add_input_parameter('P_demand', val=P_DEMAND, units='W')
        traj.add_phase('phase1_bfail', phase1_bfail)

        # Second phase, but with motor failure.

        phase1_mfail = Phase(ode_class=BatteryODE, ode_init_kwargs={'num_motor': 2},
                             transcription=transcription)
        phase1_mfail.set_time_options(fix_initial=False, fix_duration=True)
        phase1_mfail.set_state_options('state_of_charge', fix_initial=False, fix_final=False, solve_segments=True)
        phase1_mfail.add_timeseries_output('battery.V_oc', output_name='V_oc', units='V')
        phase1_mfail.add_timeseries_output('battery.V_pack', output_name='V_pack', units='V')
        phase1_mfail.add_timeseries_output('pwr_balance.I_Li', output_name='I_Li', units='A')
        phase1_mfail.add_input_parameter('P_demand', val=P_DEMAND, units='W')
        traj.add_phase('phase1_mfail', phase1_mfail)

        traj.link_phases(phases=['phase0', 'phase1'], vars=['state_of_charge', 'time'], connected=True)
        traj.link_phases(phases=['phase0', 'phase1_bfail'], vars=['state_of_charge', 'time'], connected=True)
        traj.link_phases(phases=['phase0', 'phase1_mfail'], vars=['state_of_charge', 'time'], connected=True)

        # prob.model.linear_solver = DirectSolver(assemble_jac=True)

        prob.setup()
        prob.final_setup()

        prob['traj.phases.phase0.time_extents.t_initial'] = 0
        prob['traj.phases.phase0.time_extents.t_duration'] = 1.0*3600

        # prob['traj.phases.phase1.time_extents.t_initial'] = 1.0*3600
        prob['traj.phases.phase1.time_extents.t_duration'] = 1.0*3600

        # prob['traj.phases.phase1_bfail.time_extents.t_initial'] = 1.0*3600
        prob['traj.phases.phase1_bfail.time_extents.t_duration'] = 1.0*3600

        # prob['traj.phases.phase1_mfail.time_extents.t_initial'] = 1.0*3600
        prob['traj.phases.phase1_mfail.time_extents.t_duration'] = 1.0*3600

        prob.set_solver_print(level=0)
        prob.run_model()

        plot = True
        if plot:
            import matplotlib
            matplotlib.use('Agg')
            import matplotlib.pyplot as plt

            t0 = prob['traj.phase0.timeseries.time']
            t1 = prob['traj.phase1.timeseries.time']
            t1b = prob['traj.phase1_bfail.timeseries.time']
            t1m = prob['traj.phase1_mfail.timeseries.time']
            soc0 = prob['traj.phase0.timeseries.states:state_of_charge']
            soc1 = prob['traj.phase1.timeseries.states:state_of_charge']
            soc1b = prob['traj.phase1_bfail.timeseries.states:state_of_charge']
            soc1m = prob['traj.phase1_mfail.timeseries.states:state_of_charge']

            plt.subplot(2, 2, 1)
            plt.plot(t0, soc0, 'b')
            plt.plot(t1, soc1, 'b')
            plt.plot(t1b, soc1b, 'r')
            plt.plot(t1m, soc1m, 'c')
            plt.xlabel('Time (hour)')
            plt.ylabel('State of Charge (percent)')

            V_oc0 = prob['traj.phase0.timeseries.V_oc']
            V_oc1 = prob['traj.phase1.timeseries.V_oc']
            V_oc1b = prob['traj.phase1_bfail.timeseries.V_oc']
            V_oc1m = prob['traj.phase1_mfail.timeseries.V_oc']

            plt.subplot(2, 2, 2)
            plt.plot(t0, V_oc0, 'b')
            plt.plot(t1, V_oc1, 'b')
            plt.plot(t1b, V_oc1b, 'r')
            plt.plot(t1m, V_oc1m, 'c')
            plt.xlabel('Time (hour)')
            plt.ylabel('Open Circuit Voltage (V)')

            V_pack0 = prob['traj.phase0.timeseries.V_pack']
            V_pack1 = prob['traj.phase1.timeseries.V_pack']
            V_pack1b = prob['traj.phase1_bfail.timeseries.V_pack']
            V_pack1m = prob['traj.phase1_mfail.timeseries.V_pack']

            plt.subplot(2, 2, 3)
            plt.plot(t0, V_pack0, 'b')
            plt.plot(t1, V_pack1, 'b')
            plt.plot(t1b, V_pack1b, 'r')
            plt.plot(t1m, V_pack1m, 'c')
            plt.xlabel('Time (hour)')
            plt.ylabel('Terminal Voltage (V)')

            I_Li0 = prob['traj.phase0.timeseries.I_Li']
            I_Li1 = prob['traj.phase1.timeseries.I_Li']
            I_Li1b = prob['traj.phase1_bfail.timeseries.I_Li']
            I_Li1m = prob['traj.phase1_mfail.timeseries.I_Li']

            plt.subplot(2, 2, 4)
            plt.plot(t0, I_Li0, 'b')
            plt.plot(t1, I_Li1, 'b')
            plt.plot(t1b, I_Li1b, 'r')
            plt.plot(t1m, I_Li1m, 'c')
            plt.xlabel('Time (hour)')
            plt.ylabel('Line Current (A)')

            plt.show()
Exemplo n.º 3
0
    def test_battery_power(self):
        """
            for battery explicit integration testings
        """
        _, local_opt = set_pyoptsparse_opt('SNOPT')
        if local_opt != 'SNOPT':
            raise unittest.SkipTest("pyoptsparse is not providing SNOPT")

        p = om.Problem()

        p.driver = om.pyOptSparseDriver()
        p.driver.options['optimizer'] = 'SNOPT'
        p.driver.opt_settings['Major iterations limit'] = 100
        p.driver.opt_settings['Major optimality tolerance'] = 5.0E-3
        p.driver.opt_settings['Major feasibility tolerance'] = 1e-6
        p.driver.opt_settings['iSumm'] = 6

        transcription = Radau(num_segments=15, order=3, compressed=True)

        phase0 = Phase(transcription=transcription, ode_class=BatteryGroup)

        phase0.set_time_options(fix_initial=True, duration_bounds=(30, 30))

        p.model.add_subsystem(name='phase0', subsys=phase0)

        phase0.add_state('SOC',
                         fix_initial=True,
                         rate_source='dXdt:SOC',
                         lower=0.0,
                         upper=1.)
        phase0.add_state('U_Th',
                         units='V',
                         fix_initial=False,
                         rate_source='dXdt:V_{thev}',
                         lower=0.0,
                         upper=5.0)

        # phase0.add_parameter('P_out', units='W', opt=False)

        # phase0.add_boundary_constraint('U_pack', units='V', loc='initial', equals=5100)

        phase0.add_objective('time', loc='final', ref=1)

        p.model.linear_solver = om.DirectSolver(assemble_jac=True)

        phase0.add_timeseries_output('Q_{batt}',
                                     output_name='Q_{batt}',
                                     units='W')
        # phase0.add_timeseries_output('U_pack', output_name='V', units='V')

        p.setup()

        # p.check_partials()

        T0 = 10 + 273

        p['phase0.t_initial'] = 0.0
        p['phase0.t_duration'] = 30

        p['phase0.states:SOC'] = phase0.interpolate(ys=[1.0, 0.0],
                                                    nodes='state_input')
        p['phase0.states:U_Th'] = phase0.interpolate(ys=[0.1, 0.1],
                                                     nodes='state_input')
        # p['phase0.parameters:P_out'][:] = 72000.

        p.run_driver()

        fig, ax = plt.subplots(3, 1, sharex=True)
        fig.suptitle('Temperature Plots')

        t_opt = p.get_val('phase0.timeseries.time')
        SOC_opt = p.get_val('phase0.timeseries.states:SOC', units=None)

        Q_batt_opt = p.get_val('phase0.timeseries.Q_{batt}', units='kW')

        ax[1].plot(t_opt, Q_batt_opt * 128 * 40, 'r', label='$Q_{cell}$')

        ax[2].plot(t_opt, SOC_opt, 'r', label='$SOC$')

        #spot check final values
        # assert_rel_error(self, T_batt_opt[-1], 1.25934406, tolerance=1.0E-6)

        # ax[3].plot(t_opt, V_opt, 'r', label='$Voltage$')

        # axarr = fig.add_subplot(1, 2, 2)
        # axarr.plot(sim_out.get_values('time'),sim_out.get_values('electric.battery.I_Li'), 'b')
        # # # axarr.plot(p['phase0.state_interp.state_col:r'],
        # # #            p['phase0.controls:h'], 'bo', ms=4)
        # axarr.set_ylabel('I_Li, amps')
        # axarr.set_xlabel('time, s')
        # axarr.axes.get_xaxis().set_visible(True)

        import matplotlib
        matplotlib.use(
            'agg')  # <--- comment out if you want to show this plot.
        plt.show()
Exemplo n.º 4
0
    def test_cruise_results_gl(self):
        p = Problem(model=Group())
        if optimizer == 'SNOPT':
            p.driver = pyOptSparseDriver()
            p.driver.options['optimizer'] = optimizer
            p.driver.options['dynamic_simul_derivs'] = True
            p.driver.opt_settings['Major iterations limit'] = 100
            p.driver.opt_settings['Major step limit'] = 0.05
            p.driver.opt_settings['Major feasibility tolerance'] = 1.0E-6
            p.driver.opt_settings['Major optimality tolerance'] = 1.0E-6
            p.driver.opt_settings["Linesearch tolerance"] = 0.10
            p.driver.opt_settings['iSumm'] = 6
            p.driver.opt_settings['Verify level'] = 3
        else:
            p.driver = ScipyOptimizeDriver()
            p.driver.options['dynamic_simul_derivs'] = True

        transcription = GaussLobatto(num_segments=1,
                                     order=13,
                                     compressed=False)
        phase = Phase(ode_class=AircraftODE, transcription=transcription)
        p.model.add_subsystem('phase0', phase)

        # Pass Reference Area from an external source
        assumptions = p.model.add_subsystem('assumptions', IndepVarComp())
        assumptions.add_output('S', val=427.8, units='m**2')
        assumptions.add_output('mass_empty', val=1.0, units='kg')
        assumptions.add_output('mass_payload', val=1.0, units='kg')

        phase.set_time_options(initial_bounds=(0, 0),
                               duration_bounds=(3600, 3600),
                               duration_ref=3600)

        phase.set_state_options('range',
                                units='km',
                                fix_initial=True,
                                fix_final=False,
                                scaler=0.01,
                                defect_scaler=0.01)
        phase.set_state_options('mass_fuel',
                                fix_final=True,
                                upper=20000.0,
                                lower=0.0,
                                scaler=1.0E-4,
                                defect_scaler=1.0E-2)
        phase.set_state_options('alt', units='km', fix_initial=True)

        phase.add_control('mach', units=None, opt=False)
        phase.add_control('climb_rate', units='m/s', opt=False)

        phase.add_input_parameter('S', units='m**2')
        phase.add_input_parameter('mass_empty', units='kg')
        phase.add_input_parameter('mass_payload', units='kg')

        phase.add_path_constraint('propulsion.tau',
                                  lower=0.01,
                                  upper=1.0,
                                  shape=(1, ))

        phase.add_timeseries_output('tas_comp.TAS', units='m/s')

        p.model.connect('assumptions.S', 'phase0.input_parameters:S')
        p.model.connect('assumptions.mass_empty',
                        'phase0.input_parameters:mass_empty')
        p.model.connect('assumptions.mass_payload',
                        'phase0.input_parameters:mass_payload')

        phase.add_objective('time', loc='final', ref=3600)

        p.model.linear_solver = DirectSolver()

        p.setup()

        p['phase0.t_initial'] = 0.0
        p['phase0.t_duration'] = 1.515132 * 3600.0
        p['phase0.states:range'] = phase.interpolate(ys=(0, 1296.4),
                                                     nodes='state_input')
        p['phase0.states:mass_fuel'] = phase.interpolate(ys=(12236.594555, 0),
                                                         nodes='state_input')
        p['phase0.states:alt'] = 5.0
        p['phase0.controls:mach'] = 0.8
        p['phase0.controls:climb_rate'] = 0.0

        p['assumptions.S'] = 427.8
        p['assumptions.mass_empty'] = 0.15E6
        p['assumptions.mass_payload'] = 84.02869 * 400

        p.run_driver()

        time = p.get_val('phase0.timeseries.time')
        tas = p.get_val('phase0.timeseries.TAS', units='km/s')
        range = p.get_val('phase0.timeseries.states:range')

        assert_rel_error(self, range, tas * time, tolerance=1.0E-4)
    def test_brachistochrone_vector_ode_path_constraints_rk_partial_indices(
            self):

        p = Problem(model=Group())

        p.driver = ScipyOptimizeDriver()
        p.driver.options['dynamic_simul_derivs'] = True

        phase = Phase(ode_class=BrachistochroneVectorStatesODE,
                      transcription=RungeKutta(num_segments=20))

        p.model.add_subsystem('phase0', phase)

        phase.set_time_options(fix_initial=True, duration_bounds=(.5, 10))

        phase.set_state_options('pos', fix_initial=True, fix_final=False)
        phase.set_state_options('v', fix_initial=True, fix_final=False)

        phase.add_control('theta',
                          continuity=True,
                          rate_continuity=True,
                          units='deg',
                          lower=0.01,
                          upper=179.9)

        phase.add_design_parameter('g', units='m/s**2', opt=False, val=9.80665)

        phase.add_boundary_constraint('pos', loc='final', equals=[10, 5])

        phase.add_path_constraint('pos_dot',
                                  shape=(2, ),
                                  units='m/s',
                                  indices=[1],
                                  lower=-4,
                                  upper=4)

        phase.add_timeseries_output('pos_dot', shape=(2, ), units='m/s')

        # Minimize time at the end of the phase
        phase.add_objective('time', loc='final', scaler=10)

        p.model.linear_solver = DirectSolver()
        p.setup(check=True, force_alloc_complex=True)

        p['phase0.t_initial'] = 0.0
        p['phase0.t_duration'] = 2.0

        pos0 = [0, 10]
        posf = [10, 5]

        p['phase0.states:pos'] = phase.interpolate(ys=[pos0, posf],
                                                   nodes='state_input')
        p['phase0.states:v'] = phase.interpolate(ys=[0, 9.9],
                                                 nodes='state_input')
        p['phase0.controls:theta'] = phase.interpolate(ys=[5, 100],
                                                       nodes='control_input')
        p['phase0.design_parameters:g'] = 9.80665

        p.run_driver()

        assert_rel_error(self,
                         np.min(p.get_val('phase0.timeseries.pos_dot')[:, -1]),
                         -4,
                         tolerance=1.0E-2)

        # Plot results
        if SHOW_PLOTS:
            exp_out = phase.simulate(times_per_seg=20)

            fig, ax = plt.subplots()
            fig.suptitle('Brachistochrone Solution')

            x_imp = p.get_val('phase0.timeseries.states:pos')[:, 0]
            y_imp = p.get_val('phase0.timeseries.states:pos')[:, 1]

            x_exp = exp_out.get_val('phase0.timeseries.states:pos')[:, 0]
            y_exp = exp_out.get_val('phase0.timeseries.states:pos')[:, 1]

            ax.plot(x_imp, y_imp, 'ro', label='implicit')
            ax.plot(x_exp, y_exp, 'b-', label='explicit')

            ax.set_xlabel('x (m)')
            ax.set_ylabel('y (m)')
            ax.grid(True)
            ax.legend(loc='upper right')

            fig, ax = plt.subplots()
            fig.suptitle('Brachistochrone Solution\nVelocity')

            t_imp = p.get_val('phase0.timeseries.time')
            t_exp = exp_out.get_val('phase0.timeseries.time')

            xdot_imp = p.get_val('phase0.timeseries.pos_dot')[:, 0]
            ydot_imp = p.get_val('phase0.timeseries.pos_dot')[:, 1]

            xdot_exp = exp_out.get_val('phase0.timeseries.pos_dot')[:, 0]
            ydot_exp = exp_out.get_val('phase0.timeseries.pos_dot')[:, 1]

            ax.plot(t_imp, xdot_imp, 'bo', label='implicit')
            ax.plot(t_exp, xdot_exp, 'b-', label='explicit')

            ax.plot(t_imp, ydot_imp, 'ro', label='implicit')
            ax.plot(t_exp, ydot_exp, 'r-', label='explicit')

            ax.set_xlabel('t (s)')
            ax.set_ylabel('v (m/s)')
            ax.grid(True)
            ax.legend(loc='upper right')

            fig, ax = plt.subplots()
            fig.suptitle('Brachistochrone Solution')

            x_imp = p.get_val('phase0.timeseries.time')
            y_imp = p.get_val('phase0.timeseries.control_rates:theta_rate2')

            x_exp = exp_out.get_val('phase0.timeseries.time')
            y_exp = exp_out.get_val(
                'phase0.timeseries.control_rates:theta_rate2')

            ax.plot(x_imp, y_imp, 'ro', label='implicit')
            ax.plot(x_exp, y_exp, 'b-', label='explicit')

            ax.set_xlabel('time (s)')
            ax.set_ylabel('theta rate2 (rad/s**2)')
            ax.grid(True)
            ax.legend(loc='lower right')

            plt.show()

        return p