Exemplo n.º 1
0
    def __add__(
            self,
            other: "DynestySamples"
    ) -> "DynestySamples":
        """
        Samples can be added together, which combines their `sample_list` meaning that inferred parameters are
        computed via their joint PDF.

        For dynesty samples, the in-built dynesty function `merge_runs` can be used to combine results_internal in their native
        format and therefore retain visualization support.

        Parameters
        ----------
        other
            Another Samples class

        Returns
        -------
        A class that combined the samples of the two Samples objects.
        """

        self._check_addition(other=other)

        results_internal = dyfunc.merge_runs(res_list=[self.results_internal, other.results_internal])

        return DynestySamples(
            model=self.model,
            sample_list=self.sample_list + other.sample_list,
            number_live_points=self._number_live_points,
            unconverged_sample_size=self.unconverged_sample_size,
            time=self.time,
            results_internal=results_internal
        )
Exemplo n.º 2
0
def test_ravel_unravel():
    """ Here I test that ravel/unravel preserves things correctly """
    rstate = get_rstate()
    g = Gaussian()

    dsampler = dynesty.DynamicNestedSampler(g.loglikelihood,
                                            g.prior_transform,
                                            g.ndim,
                                            bound='single',
                                            sample='unif',
                                            rstate=rstate,
                                            nlive=nlive)
    maxiter = 1800
    dsampler.run_nested(maxiter=maxiter,
                        use_stop=False,
                        nlive_batch=100,
                        print_progress=printing)
    dres = dsampler.results

    dres_list = dyfunc.unravel_run(dres)
    dres_merge = dyfunc.merge_runs(dres_list)
    assert np.abs(dres.logz[-1] - dres_merge.logz[-1]) < 0.01
Exemplo n.º 3
0
def test_gaussian():
    sig = 5
    rstate = get_rstate()
    g = Gaussian()
    sampler = dynesty.NestedSampler(g.loglikelihood,
                                    g.prior_transform,
                                    g.ndim,
                                    nlive=nlive,
                                    rstate=rstate)
    sampler.run_nested(print_progress=printing)
    # check that jitter/resample work
    # for not dynamic sampler
    dyfunc.jitter_run(sampler.results, rstate=rstate)
    dyfunc.resample_run(sampler.results, rstate=rstate)

    # add samples
    # check continuation behavior
    sampler.run_nested(dlogz=0.1, print_progress=printing)

    # get errors
    nerr = 3
    result_list = []
    for i in range(nerr):
        sampler.reset()
        sampler.run_nested(print_progress=False)
        results = sampler.results
        result_list.append(results)
        pos = results.samples
        wts = np.exp(results.logwt - results.logz[-1])
        mean, cov = dyfunc.mean_and_cov(pos, wts)
        logz = results.logz[-1]
        assert (np.abs(logz - g.logz_truth) < sig * results.logzerr[-1])
    res_comb = dyfunc.merge_runs(result_list)
    assert (np.abs(res_comb.logz[-1] - g.logz_truth) <
            sig * results.logzerr[-1])
    # check summary
    res = sampler.results
    res.summary()
Exemplo n.º 4
0
 def run(self, nlive=1000, cores=None, filename=None, **kwargs):
     merge = "no"
     if filename is not None and os.path.isfile(filename):
         doit = input(f"There seems to be a file named {filename}. "
                      f"Would you like to run anyway? [y/n] ").lower()
         if doit in ["no", "n"]:
             with open(filename, "br") as file:
                 self.results = pickle.load(file)
             return
     if cores is None or cores > MAX_CORES:
         cores = MAX_CORES
     try:
         with Pool(cores) as pool:
             sampler = NestedSampler(
                 self.loglike,
                 self.sample,
                 self.N,
                 npdim=self.ndim,
                 nlive=nlive,
                 pool=pool,
                 queue_size=cores,
                 **kwargs,
             )
             sampler.run_nested()
     except KeyboardInterrupt:
         pass
     if filename is not None and os.path.isfile(filename):
         merge = input("Merge new run with previous data? [y/n] ").lower()
     if merge in ["no", "n"]:
         self.results = sampler.results
     else:
         with open(filename, "br") as file:
             res = pickle.load(file)
         self.results = merge_runs([sampler.results, res])
     if filename is not None:
         with open(filename, "bw") as file:
             pickle.dump(self.results, file)
Exemplo n.º 5
0
def test_gaussian():
    logz_tol = 1
    sampler = dynesty.NestedSampler(loglikelihood_gau,
                                    prior_transform_gau,
                                    ntotdim,
                                    nlive=nlive,
                                    ncdim=ndim_gau)
    sampler.run_nested(print_progress=printing)
    # check that jitter/resample/simulate_run work
    # for not dynamic sampler
    dyfunc.jitter_run(sampler.results)
    dyfunc.resample_run(sampler.results)
    dyfunc.simulate_run(sampler.results)

    # add samples
    # check continuation behavior
    sampler.run_nested(dlogz=0.1, print_progress=printing)

    # get errors
    nerr = 2
    result_list = []
    for i in range(nerr):
        sampler.reset()
        sampler.run_nested(print_progress=False)
        results = sampler.results
        result_list.append(results)
        pos = results.samples
        wts = np.exp(results.logwt - results.logz[-1])
        mean, cov = dyfunc.mean_and_cov(pos, wts)
        logz = results.logz[-1]
        assert (np.abs(logz - logz_truth_gau) < logz_tol)
    res_comb = dyfunc.merge_runs(result_list)
    assert (np.abs(res_comb.logz[-1] - logz_truth_gau) < logz_tol)
    # check summary
    res = sampler.results
    res.summary()
Exemplo n.º 6
0
def merge_run(res_list):
    return dyfunc.merge_runs(res_list)
Exemplo n.º 7
0
# "Static" nested sampling.
sampler = dynesty.NestedSampler(loglike, ptform, ndim)
sampler.run_nested()
sresults = sampler.results

# "Dynamic" nested sampling.
dsampler = dynesty.DynamicNestedSampler(loglike, ptform, ndim, nlive=500)
dsampler.run_nested()
dresults = dsampler.results


from dynesty import utils as dyfunc

# Combine results from "Static" and "Dynamic" runs.
results = dyfunc.merge_runs([sresults, dresults])


from dynesty import plotting as dyplot

# Plot a summary of the run.
rfig, raxes = dyplot.runplot(results)

# Plot traces and 1-D marginalized posteriors.
tfig, taxes = dyplot.traceplot(results)

# Plot the 2-D marginalized posteriors.
cfig, caxes = dyplot.cornerplot(results)


# we can post-process results