def __init__(self, node_in_irreps, node_hidden_irreps, node_out_irreps, attr_irreps, update_pos=False, recurrent=True, infer_edges=False, edge_weight=False): super(SEGNN, self).__init__(node_dim=-2, aggr="add") self.update_pos = update_pos self.recurrent = recurrent self.infer_edges = infer_edges self.edge_weight = edge_weight # The message network layers irreps_message_in = (node_in_irreps + node_in_irreps + Irreps("1x0e")).simplify() self.message_layer_1 = O3TensorProductSwishGate(irreps_message_in, node_hidden_irreps, attr_irreps) self.message_layer_2 = O3TensorProductSwishGate(node_hidden_irreps, node_hidden_irreps, attr_irreps) # The node update layers irreps_update_in = (node_in_irreps + node_hidden_irreps).simplify() self.update_layer_1 = O3TensorProductSwishGate(irreps_update_in, node_hidden_irreps, attr_irreps) self.update_layer_2 = O3TensorProduct(node_hidden_irreps, node_out_irreps, attr_irreps) # Position update network if self.update_pos: # TODO: currently not updated... self.pos_update_layer_1 = None # O3TensorProductSwishGate self.pos_update_layer_2 = None # O3TensorProduct if self.infer_edges: self.inf_net_1 = O3TensorProduct(node_hidden_irreps, Irreps("1x0e"), attr_irreps) self.inf_net_2 = nn.Sigmoid()
def test_input_weights_python(): irreps_in1 = Irreps("1e + 2e + 3x3o") irreps_in2 = Irreps("1e + 2e + 3x3o") irreps_out = Irreps("1e + 2e + 3x3o") # - shared_weights = False - m = FullyConnectedTensorProduct(irreps_in1, irreps_in2, irreps_out, internal_weights=False, shared_weights=False) bdim = random.randint(1, 3) x1 = irreps_in1.randn(bdim, -1) x2 = irreps_in2.randn(bdim, -1) w = [ torch.randn((bdim, ) + ins.path_shape) for ins in m.instructions if ins.has_weight ] m(x1, x2, w) # - shared_weights = True - m = FullyConnectedTensorProduct(irreps_in1, irreps_in2, irreps_out, internal_weights=False, shared_weights=True) bdim = random.randint(1, 3) x1 = irreps_in1.randn(bdim, -1) x2 = irreps_in2.randn(bdim, -1) w = [ torch.randn(ins.path_shape) for ins in m.instructions if ins.has_weight ] m(x1, x2, w)
def test_equivariant(): # Confirm that a compiled tensorproduct is still equivariant irreps_in = Irreps("1e + 2e + 3x3o") irreps_out = Irreps("1e + 2e + 3x3o") mod = Linear(irreps_in, irreps_out) mod_script = compile(mod) assert_equivariant( mod_script, # we provide explicit irreps because infering on a script module is not reliable irreps_in=irreps_in, irreps_out=irreps_out )
def test_input_weights_jit(): irreps_in1 = Irreps("1e + 2e + 3x3o") irreps_in2 = Irreps("1e + 2e + 3x3o") irreps_out = Irreps("1e + 2e + 3x3o") # - shared_weights = False - m = FullyConnectedTensorProduct(irreps_in1, irreps_in2, irreps_out, internal_weights=False, shared_weights=False) traced = assert_auto_jitable(m) x1 = irreps_in1.randn(2, -1) x2 = irreps_in2.randn(2, -1) w = torch.randn(2, m.weight_numel) with pytest.raises((RuntimeError, torch.jit.Error)): m(x1, x2) # it should require weights with pytest.raises((RuntimeError, torch.jit.Error)): traced(x1, x2) # it should also require weights with pytest.raises((RuntimeError, torch.jit.Error)): traced(x1, x2, w[0]) # it should reject insufficient weights # Does the trace give right results? assert torch.allclose(m(x1, x2, w), traced(x1, x2, w)) # Confirm that weird batch dimensions give the same results for f in (m, traced): x1 = irreps_in1.randn(2, 1, 4, -1) x2 = irreps_in2.randn(2, 3, 1, -1) w = torch.randn(3, 4, f.weight_numel) assert torch.allclose( f(x1, x2, w).reshape(24, -1), f( x1.expand(2, 3, 4, -1).reshape(24, -1), x2.expand(2, 3, 4, -1).reshape(24, -1), w[None].expand(2, 3, 4, -1).reshape(24, -1))) assert torch.allclose( f.right(x2, w).reshape(24, -1), f.right( x2.expand(2, 3, 4, -1).reshape(24, -1), w[None].expand(2, 3, 4, -1).reshape(24, -1)).reshape(24, -1)) # - shared_weights = True - m = FullyConnectedTensorProduct(irreps_in1, irreps_in2, irreps_out, internal_weights=False, shared_weights=True) traced = assert_auto_jitable(m) w = torch.randn(m.weight_numel) with pytest.raises((RuntimeError, torch.jit.Error)): m(x1, x2) # it should require weights with pytest.raises((RuntimeError, torch.jit.Error)): traced(x1, x2) # it should also require weights with pytest.raises((RuntimeError, torch.jit.Error)): traced(x1, x2, torch.randn( 2, m.weight_numel)) # it should reject too many weights # Does the trace give right results? assert torch.allclose(m(x1, x2, w), traced(x1, x2, w))
def test_gate(): irreps_scalars, act_scalars, irreps_gates, act_gates, irreps_gated = Irreps( "16x0o"), [torch.tanh], Irreps("32x0o"), [torch.tanh ], Irreps("16x1e+16x1o") sc = _Sortcut(irreps_scalars, irreps_gates) assert_auto_jitable(sc) g = Gate(irreps_scalars, act_scalars, irreps_gates, act_gates, irreps_gated) assert_equivariant(g) assert_auto_jitable(g) assert_normalized(g)
def __init__(self, irreps_in, irreps_out, irreps_rel_pos, irreps_hidden, dim=3, update_pos=False, recurrent=False): super(SEGNN, self).__init__(node_dim=-2, aggr="mean") # <---- mean aggregation is important for node steering self.update_pos = update_pos self.dim = dim self.recurrent = recurrent self.irreps_rel_pos = irreps_rel_pos # Each layer within the message net is now steered via the rel_pos irreps_message_in = (irreps_in + irreps_in + Irreps("1x0e")).simplify() # xi + xj + dist # self.message_net = nn.Sequential(O3LinearSwishGate(irreps_message_in, irreps_hidden, irreps_rel_pos), # O3LinearSwishGate(irreps_hidden, irreps_hidden)) self.message_layer_1 = O3LinearSwishGate(irreps_message_in, irreps_hidden, irreps_rel_pos) self.message_layer_2 = O3LinearSwishGate(irreps_hidden, irreps_out, irreps_rel_pos) # Each layer within the update net is now also steered via a distribution on the sphere by taking the average # over all neighbor rel_pos of the to-be-updated node irreps_update_in = (irreps_in + irreps_hidden).simplify() # self.update_net = nn.Sequential(O3LinearSwishGate(irreps_update_in, irreps_hidden, irreps_rel_pos), # O3Linear(irreps_hidden, irreps_out)) self.update_layer_1 = O3LinearSwishGate(irreps_update_in, irreps_hidden, irreps_rel_pos) self.update_layer_2 = O3Linear(irreps_hidden, irreps_out, irreps_rel_pos) if self.update_pos: # TODO: currently not updated... hidden_features = 128 self.pos_net = nn.Sequential(nn.Linear(hidden_features, hidden_features), Swish(), nn.Linear(hidden_features, dim))
def BalancedIrreps(lmax, vec_dim, sh_type = True): irrep_spec = "0e" for l in range(1, lmax + 1): if sh_type: irrep_spec += " + {0}".format(l) + ('e' if ( l % 2) == 0 else 'o') else: irrep_spec += " + {0}e + {0}o".format(l) irrep_spec_split = irrep_spec.split(" + ") dims = [int(irrep[0]) * 2 + 1 for irrep in irrep_spec_split] # Compute ratios ratios = [1 / dim for dim in dims] # Determine how many copies per irrep irrep_copies = [int(vec_dim * r / len(ratios)) for r in ratios] # Determine the current effective irrep sizes irrep_dims = [n * dim for (n, dim) in zip(irrep_copies, dims)] # Add trivial irreps until the desired size is reached irrep_copies[0] += vec_dim - sum(irrep_dims) # Convert to string str_out = '' for (spec, dim) in zip(irrep_spec_split, irrep_copies): str_out += str(dim) + 'x' + spec str_out += ' + ' str_out = str_out[:-3] # Generate the irrep #print('Determined irrep type:', str_out) return Irreps(str_out)
def __init__(self, irreps_in1, irreps_out, irreps_in2 = None) -> None: # For the gate the output of the linear needs to have an extra number of scalar irreps equal to the amount of # non scalar irreps: # The first type is assumed to be scalar and passed through the activation irreps_g_scalars = Irreps(str(irreps_out[0])) # The remaining types are gated irreps_g_gate = Irreps("{}x0e".format(irreps_out.num_irreps - irreps_g_scalars.num_irreps)) irreps_g_gated = Irreps(str(irreps_out[1:])) # So the gate needs the following irrep as input, this is the output irrep of the tensor product irreps_g = (irreps_g_scalars + irreps_g_gate + irreps_g_gated).simplify() # Build the layers super(O3TensorProductSwishGate, self).__init__(irreps_in1, irreps_g, irreps_in2) if irreps_g_gated.num_irreps > 0: self.gate = Gate(irreps_g_scalars, [Swish()], irreps_g_gate, [torch.sigmoid], irreps_g_gated) else: self.gate = Swish()
def _get_io_irreps(func, irreps_in=None, irreps_out=None): """Preprocess or, if not given, try to infer the I/O irreps for ``func``.""" SPECIAL_VALS = ['cartesian_points', None] if (irreps_in is None or irreps_out is None) and isinstance(func, torch.jit.ScriptModule): warnings.warn( "Asking to infer irreps in/out of a compiled TorchScript module. This is unreliable, please provide `irreps_in` and `irreps_out` explicitly." ) if irreps_in is None: if hasattr(func, 'irreps_in'): irreps_in = func.irreps_in # gets checked for type later elif hasattr(func, 'irreps_in1'): irreps_in = [func.irreps_in1, func.irreps_in2] else: raise ValueError("Cannot infer irreps_in for %r; provide them explicitly" % func) if irreps_out is None: if hasattr(func, 'irreps_out'): irreps_out = func.irreps_out # gets checked for type later else: raise ValueError("Cannot infer irreps_out for %r; provide them explicitly" % func) if isinstance(irreps_in, Irreps) or irreps_in in SPECIAL_VALS: irreps_in = [irreps_in] elif isinstance(irreps_in, list): irreps_in = [i if i in SPECIAL_VALS else Irreps(i) for i in irreps_in] else: if isinstance(irreps_in, tuple) and not isinstance(irreps_in, Irreps): warnings.warn( f"Module {func} had irreps_in of type tuple but not Irreps; ambiguous whether the tuple should be interpreted as a tuple representing a single Irreps or a tuple of objects each to be converted to Irreps. Assuming the former. If the latter, use a list." ) irreps_in = [Irreps(irreps_in)] if isinstance(irreps_out, Irreps) or irreps_out in SPECIAL_VALS: irreps_out = [irreps_out] elif isinstance(irreps_out, list): irreps_out = [i if i in SPECIAL_VALS else Irreps(i) for i in irreps_out] else: if isinstance(irreps_in, tuple) and not isinstance(irreps_in, Irreps): warnings.warn( f"Module {func} had irreps_out of type tuple but not Irreps; ambiguous whether the tuple should be interpreted as a tuple representing a single Irreps or a tuple of objects each to be converted to Irreps. Assuming the former. If the latter, use a list." ) irreps_out = [Irreps(irreps_out)] return irreps_in, irreps_out
def WeightBalancedIrreps(irreps_in1_scalar, irreps_in2, sh = True): """ Determines an irreps_in1 type of order irreps_in2.lmax that when used in a tensor product irreps_in1 x irreps_in2 -> irreps_in1 would have the same number of weights as for a standard linear layer, e.g. a tensor product irreps_in1_scalar x "1x0e" -> irreps_in1_scaler """ n = 1 lmax = irreps_in2.lmax irreps_in1 = (Irreps.spherical_harmonics(lmax) * n).sort().irreps.simplify() if sh else BalancedIrreps(lmax, n) weight_numel1 = FullyConnectedTensorProduct(irreps_in1, irreps_in2, irreps_in1).weight_numel weight_numel_scalar = FullyConnectedTensorProduct(irreps_in1_scalar, Irreps("1x0e"), irreps_in1_scalar).weight_numel while weight_numel1 < weight_numel_scalar: # TODO: somewhat suboptimal implementation... n += 1 irreps_in1 = (Irreps.spherical_harmonics(lmax) * n).sort().irreps.simplify() if sh else BalancedIrreps(lmax, n) weight_numel1 = FullyConnectedTensorProduct(irreps_in1, irreps_in2, irreps_in1).weight_numel print('Determined irrep type:', irreps_in1) return Irreps(irreps_in1)
def test_equivariance(lmax, res_b, res_a): m = FromS2Grid((res_b, res_a), lmax) k = ToS2Grid(lmax, (res_b, res_a)) def f(x): y = k(x) y = y.exp() return m(y) f.irreps_in = f.irreps_out = Irreps.spherical_harmonics(lmax) assert_equivariant(f)
def test_specialized_code(normalization, mode, weighted, float_tolerance): irreps_in1 = Irreps('4x0e + 4x1e + 4x2e') irreps_in2 = Irreps('5x0e + 5x1e + 5x2e') irreps_out = Irreps('6x0e + 6x1e + 6x2e') if mode == 'uvu': irreps_out = irreps_in1 elif mode == 'uvv': irreps_out = irreps_in2 elif mode == 'uuu': irreps_in2 = irreps_in1 irreps_out = irreps_in1 elif mode == 'uuw': irreps_in2 = irreps_in1 # When unweighted, uuw is a plain sum over u and requires an output mul of 1 if not weighted: irreps_out = Irreps([(1, ir) for _, ir in irreps_out]) ins = [ (0, 0, 0, mode, weighted, 1.0), (0, 1, 1, mode, weighted, 1.0), (1, 0, 1, mode, weighted, 1.0), (1, 1, 0, mode, weighted, 1.0), (1, 1, 1, mode, weighted, 1.0), (0, 2, 2, mode, weighted, 1.0), (2, 0, 2, mode, weighted, 1.0), (2, 2, 0, mode, weighted, 1.0), (2, 1, 1, mode, weighted, 1.0), ] tp1 = TensorProduct(irreps_in1, irreps_in2, irreps_out, ins, normalization=normalization, _specialized_code=False) tp2 = TensorProduct(irreps_in1, irreps_in2, irreps_out, ins, normalization=normalization, _specialized_code=True) with torch.no_grad(): tp2.weight[:] = tp1.weight x = irreps_in1.randn(3, -1) y = irreps_in2.randn(3, -1) assert (tp1(x, y) - tp2(x, y)).abs().max() < float_tolerance assert (tp1.right(y) - tp2.right(y)).abs().max() < float_tolerance
def __init__(self, irreps_in1, irreps_out, irreps_in2=None, tp_rescale=True) -> None: super().__init__() self.irreps_in1 = irreps_in1 self.irreps_out = irreps_out # Init irreps_in2 if irreps_in2 == None: self.irreps_in2_provided = False self.irreps_in2 = Irreps("1x0e") else: self.irreps_in2_provided = True self.irreps_in2 = irreps_in2 self.tp_rescale = tp_rescale # Build the layers self.tp = FullyConnectedTensorProduct( irreps_in1=self.irreps_in1, irreps_in2=self.irreps_in2, irreps_out=self.irreps_out, shared_weights=True, normalization='component') # For each zeroth order output irrep we need a bias # So first determine the order for each output tensor and their dims self.irreps_out_orders = [int(irrep_str[-2]) for irrep_str in str(irreps_out).split('+')] self.irreps_out_dims = [int(irrep_str.split('x')[0]) for irrep_str in str(irreps_out).split('+')] self.irreps_out_slices = irreps_out.slices() # Store tuples of slices and corresponding biases in a list self.biases = [] self.biases_slices = [] self.biases_slice_idx = [] for slice_idx in range(len(self.irreps_out_orders)): if self.irreps_out_orders[slice_idx] == 0: out_slice = irreps_out.slices()[slice_idx] out_bias = torch.nn.Parameter( torch.zeros(self.irreps_out_dims[slice_idx], dtype=self.tp.weight.dtype)) self.biases += [out_bias] self.biases_slices += [out_slice] self.biases_slice_idx += [slice_idx] self.biases = torch.nn.ParameterList(self.biases) # Initialize the correction factors self.slices_sqrt_k = {} # Initialize similar to the torch.nn.Linear self.tensor_product_init()
def test_weight_view_for_instruction(): irreps_in1 = Irreps("1e + 2e + 3x3o") irreps_in2 = Irreps("1e + 2e + 3x3o") irreps_out = Irreps("1e + 2e + 3x3o") x1 = irreps_in1.randn(2, -1) x2 = irreps_in2.randn(2, -1) m = FullyConnectedTensorProduct(irreps_in1, irreps_in2, irreps_out) # Find all paths to the first output ins_idexes = [i for i, ins in enumerate(m.instructions) if ins.i_out == 0] with torch.no_grad(): for i in ins_idexes: m.weight_view_for_instruction(i).zero_() out = m(x1, x2) assert torch.all(out[:, :1] == 0.0) assert torch.any(out[:, 1:] > 0.0)
def test_weight_views(): irreps_in1 = Irreps("1e + 2e + 3x3o") irreps_in2 = Irreps("1e + 2e + 3x3o") irreps_out = Irreps("1e + 2e + 3x3o") batchdim = 3 x1 = irreps_in1.randn(batchdim, -1) x2 = irreps_in2.randn(batchdim, -1) # shared weights m = FullyConnectedTensorProduct(irreps_in1, irreps_in2, irreps_out) with torch.no_grad(): for w in m.weight_views(): w.zero_() assert torch.all(m(x1, x2) == 0.0) # unshared weights m = FullyConnectedTensorProduct(irreps_in1, irreps_in2, irreps_out, shared_weights=False) weights = torch.randn(batchdim, m.weight_numel) with torch.no_grad(): for w in m.weight_views(weights): w.zero_() assert torch.all(m(x1, x2, weights) == 0.0)
def __init__( self, num_atoms, # not used bond_feat_dim, # not used num_targets, # not used in_features=9, out_features=1, hidden_features=256, N=7, dim=3, lmax_h=2, lmax_pos=2, update_pos=False, recurrent=True, regress_forces=False, use_pbc=True, otf_graph=False ): super(SEGNNModel, self).__init__() self.in_features = in_features self.out_features = out_features self.hidden_features = hidden_features self.N = N self.regress_forces = regress_forces self.otf_graph = otf_graph self.use_pbc = use_pbc self.update_pos = update_pos self.recurrent = recurrent self.dim = dim self.lmax_h = lmax_h self.lmax_pos = lmax_pos # Irreps for the node features node_in_irreps_scalar = Irreps("{0}x0e".format(self.in_features)) # This is the type of the input #node_hidden_irreps = BalancedIrreps(self.lmax_h, self.hidden_features) # This is the type on the hidden reps node_hidden_irreps_scalar = Irreps("{0}x0e".format(self.hidden_features)) # For the output layers node_out_irreps_scalar = Irreps("{0}x0e".format(self.out_features)) # This is the type on the output # Irreps for the edge and node attributes attr_irreps = Irreps.spherical_harmonics(self.lmax_pos) self.attr_irreps = attr_irreps node_hidden_irreps = WeightBalancedIrreps(node_hidden_irreps_scalar, attr_irreps, False) # True: copies of sh # Network for computing the node attributes self.node_attribute_net = NodeAttributeNetwork() # The embedding layer (acts point-wise, no orientation information so only use trivial/scalar irreps) self.embedding_layer_1 = O3TensorProductSwishGate(node_in_irreps_scalar, # in node_hidden_irreps, # out attr_irreps) # steerable attribute self.embedding_layer_2 = O3TensorProductSwishGate(node_hidden_irreps, # in node_hidden_irreps, # out attr_irreps) # steerable attribute self.embedding_layer_3 = O3TensorProduct(node_hidden_irreps, # in node_hidden_irreps, # out attr_irreps) # steerable attribute # The main layers self.layers = [] for i in range(self.N): self.layers.append(SEGNN(node_hidden_irreps, # in node_hidden_irreps, # hidden node_hidden_irreps, # out attr_irreps, # steerable attribute update_pos=self.update_pos, recurrent=self.recurrent)) self.layers = nn.ModuleList(self.layers) # The output network (again via point-wise operation via scalar irreps) self.head_pre_pool_layer_1 = O3TensorProductSwishGate(node_hidden_irreps, # in node_hidden_irreps_scalar, # out attr_irreps) # steerable attribute self.head_pre_pool_layer_2 = O3TensorProduct(node_hidden_irreps_scalar, # in node_hidden_irreps_scalar) # out self.head_post_pool_layer_1 = O3TensorProductSwishGate(node_hidden_irreps_scalar, # in node_hidden_irreps_scalar) # out self.head_post_pool_layer_2 = O3TensorProduct(node_hidden_irreps_scalar, # in node_out_irreps_scalar) # out # read atom map atom_map = torch.zeros(101, 9) for i in range(101): atom_map[i] = torch.tensor(CONTINUOUS_EMBEDDINGS[i]) # normalize along each dimension atom_map[0] = np.nan atom_map_notnan = atom_map[atom_map[:, 0] == atom_map[:, 0]] atom_map_min = torch.min(atom_map_notnan, dim=0)[0] atom_map_max = torch.max(atom_map_notnan, dim=0)[0] atom_map_gap = atom_map_max - atom_map_min # squash to [0,1] atom_map = (atom_map - atom_map_min.view(1, -1)) / atom_map_gap.view(1, -1) self.atom_map = torch.nn.Parameter(atom_map, requires_grad=False) # read atom radii atom_radii = torch.zeros(101) for i in range(101): atom_radii[i] = ATOMIC_RADII[i] atom_radii = atom_radii / 100 self.atom_radii = nn.Parameter(atom_radii, requires_grad=False)
def codegen_tensor_product( irreps_in1: o3.Irreps, in1_var: List[float], irreps_in2: o3.Irreps, in2_var: List[float], irreps_out: o3.Irreps, out_var: List[float], instructions: List[Instruction], normalization: str = 'component', shared_weights: bool = False, specialized_code: bool = True, optimize_einsums: bool = True, ) -> Tuple[fx.GraphModule, fx.GraphModule]: graph_out = fx.Graph() graph_right = fx.Graph() # = Function definitions = x1s_out = fx.Proxy(graph_out.placeholder('x1', torch.Tensor)) x2s_out = fx.Proxy(graph_out.placeholder('x2', torch.Tensor)) ws_out = fx.Proxy(graph_out.placeholder('w', torch.Tensor)) x2s_right = fx.Proxy(graph_right.placeholder('x2', torch.Tensor)) ws_right = fx.Proxy(graph_right.placeholder('w', torch.Tensor)) empty_out = fx.Proxy( graph_out.call_function(torch.empty, ((), ), dict(device='cpu'))) empty_right = fx.Proxy( graph_right.call_function(torch.empty, ((), ), dict(device='cpu'))) if shared_weights: size_out = torch.broadcast_tensors( empty_out.expand(x1s_out.shape[:-1]), empty_out.expand(x2s_out.shape[:-1]))[0].shape size_right = x2s_right.shape[:-1] else: size_out = torch.broadcast_tensors( empty_out.expand(x1s_out.shape[:-1]), empty_out.expand(x2s_out.shape[:-1]), empty_out.expand(ws_out.shape[:-1]))[0].shape size_right = torch.broadcast_tensors( empty_right.expand(x2s_right.shape[:-1]), empty_right.expand(ws_right.shape[:-1]))[0].shape # = Short-circut for zero dimensional = # We produce no code for empty instructions instructions = [ins for ins in instructions if 0 not in ins.path_shape] if len(instructions) == 0: out_out = x1s_out.new_zeros(size_out + (irreps_out.dim, )) out_right = x2s_right.new_zeros(size_right + ( irreps_in1.dim, irreps_out.dim, )) graph_out.output(out_out.node, torch.Tensor) graph_right.output(out_right.node, torch.Tensor) # Short circut return (fx.GraphModule({}, graph_out, "tp_forward"), fx.GraphModule({}, graph_right, "tp_right")) # = Broadcast inputs = if shared_weights: x1s_out, x2s_out = x1s_out.broadcast_to( size_out + (-1, )), x2s_out.broadcast_to(size_out + (-1, )) else: x1s_out, x2s_out, ws_out = x1s_out.broadcast_to( size_out + (-1, )), x2s_out.broadcast_to( size_out + (-1, )), ws_out.broadcast_to(size_out + (-1, )) x2s_right, ws_right = x2s_right.broadcast_to( size_right + (-1, )), ws_right.broadcast_to(size_right + (-1, )) outsize_out = size_out + (irreps_out.dim, ) outsize_right = size_right + ( irreps_in1.dim, irreps_out.dim, ) x1s_out = x1s_out.reshape(-1, irreps_in1.dim) x2s_out = x2s_out.reshape(-1, irreps_in2.dim) x2s_right = x2s_right.reshape(-1, irreps_in2.dim) batch_out = x1s_out.shape[0] batch_right = x2s_right.shape[0] # = Determine number of weights and reshape weights == weight_numel = sum( prod(ins.path_shape) for ins in instructions if ins.has_weight) if weight_numel > 0: ws_out = ws_out.reshape(-1, weight_numel) ws_right = ws_right.reshape(-1, weight_numel) del weight_numel # = book-keeping for wigners = w3j = [] w3j_dict_out = dict() w3j_dict_right = dict() # = extract individual input irreps = # If only one input irrep, can avoid creating a view if len(irreps_in1) == 1: x1_list_out = [ x1s_out.reshape(batch_out, irreps_in1[0].mul, irreps_in1[0].ir.dim) ] else: x1_list_out = [ x1s_out[:, i].reshape(batch_out, mul_ir.mul, mul_ir.ir.dim) for i, mul_ir in zip(irreps_in1.slices(), irreps_in1) ] x2_list_out = [] x2_list_right = [] # If only one input irrep, can avoid creating a view if len(irreps_in2) == 1: x2_list_out.append( x2s_out.reshape(batch_out, irreps_in2[0].mul, irreps_in2[0].ir.dim)) x2_list_right.append( x2s_right.reshape(batch_right, irreps_in2[0].mul, irreps_in2[0].ir.dim)) else: for i, mul_ir in zip(irreps_in2.slices(), irreps_in2): x2_list_out.append(x2s_out[:, i].reshape(batch_out, mul_ir.mul, mul_ir.ir.dim)) x2_list_right.append(x2s_right[:, i].reshape(batch_right, mul_ir.mul, mul_ir.ir.dim)) # The einsum string index to prepend to the weights if the weights are not shared and have a batch dimension z = '' if shared_weights else 'z' # Cache of input irrep pairs whose outer products (xx) have already been computed xx_dict = dict() # Current index in the flat weight tensor flat_weight_index = 0 out_list_out = [] out_list_right = [] for ins in instructions: mul_ir_in1 = irreps_in1[ins.i_in1] mul_ir_in2 = irreps_in2[ins.i_in2] mul_ir_out = irreps_out[ins.i_out] assert mul_ir_in1.ir.p * mul_ir_in2.ir.p == mul_ir_out.ir.p assert abs(mul_ir_in1.ir.l - mul_ir_in2.ir.l ) <= mul_ir_out.ir.l <= mul_ir_in1.ir.l + mul_ir_in2.ir.l if mul_ir_in1.dim == 0 or mul_ir_in2.dim == 0 or mul_ir_out.dim == 0: continue alpha = ins.path_weight * out_var[ins.i_out] / sum( in1_var[i.i_in1] * in2_var[i.i_in2] for i in instructions if i.i_out == ins.i_out) # Open the profiler block name = f"{mul_ir_in1} x {mul_ir_in2} = {mul_ir_out} {ins.connection_mode} {ins.has_weight}" handle_out = graph_out.call_function( torch.ops.profiler._record_function_enter, (name, )) handle_right = graph_right.call_function( torch.ops.profiler._record_function_enter, (name, )) x1_out = x1_list_out[ins.i_in1] x2_out = x2_list_out[ins.i_in2] x2_right = x2_list_right[ins.i_in2] e1_right = fx.Proxy( graph_right.call_function( torch.eye, (mul_ir_in1.mul, ), dict(dtype=x2s_right.dtype.node, device=x2s_right.device.node))) e2_right = fx.Proxy( graph_right.call_function( torch.eye, (mul_ir_in2.mul, ), dict(dtype=x2s_right.dtype.node, device=x2s_right.device.node))) i1_right = fx.Proxy( graph_right.call_function( torch.eye, (mul_ir_in1.ir.dim, ), dict(dtype=x2s_right.dtype.node, device=x2s_right.device.node))) assert ins.connection_mode in [ 'uvw', 'uvu', 'uvv', 'uuw', 'uuu', 'uvuv' ] alpha = sqrt( alpha / { 'uvw': (mul_ir_in1.mul * mul_ir_in2.mul), 'uvu': mul_ir_in2.mul, 'uvv': mul_ir_in1.mul, 'uuw': mul_ir_in1.mul, 'uuu': 1, 'uvuv': 1, }[ins.connection_mode]) if ins.has_weight: # Extract the weight from the flattened weight tensor w_out = ws_out[:, flat_weight_index:flat_weight_index + prod(ins.path_shape)].reshape(( () if shared_weights else (-1, )) + tuple(ins.path_shape)) w_right = ws_right[:, flat_weight_index:flat_weight_index + prod(ins.path_shape)].reshape( (() if shared_weights else (-1, )) + tuple(ins.path_shape)) flat_weight_index += prod(ins.path_shape) # Construct the general xx in case this instruction isn't specialized # If this isn't used, the dead code will get removed key = (ins.i_in1, ins.i_in2, ins.connection_mode[:2]) if key not in xx_dict: if ins.connection_mode[:2] == 'uv': xx_dict[key] = torch.einsum('zui,zvj->zuvij', x1_out, x2_out) if ins.connection_mode[:2] == 'uu': xx_dict[key] = torch.einsum('zui,zuj->zuij', x1_out, x2_out) xx = xx_dict[key] # Create a proxy & request for the relevant wigner w3j # If not used (because of specialized code), will get removed later. key = (mul_ir_in1.ir.l, mul_ir_in2.ir.l, mul_ir_out.ir.l) if key not in w3j: w3j_dict_out[key] = fx.Proxy( graph_out.get_attr(f"_w3j_{key[0]}_{key[1]}_{key[2]}")) w3j_dict_right[key] = fx.Proxy( graph_right.get_attr(f"_w3j_{key[0]}_{key[1]}_{key[2]}")) w3j.append(key) w3j_out = w3j_dict_out[key] w3j_right = w3j_dict_right[key] exp = {'component': 1, 'norm': -1}[normalization] if ins.connection_mode == 'uvw': assert ins.has_weight if specialized_code and key == (0, 0, 0): ein_out = torch.einsum( f"{z}uvw,zu,zv->zw", w_out, x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out.reshape(batch_out, mul_ir_in2.dim)) ein_right = torch.einsum( f"{z}uvw,zv->zuw", w_right, x2_right.reshape(batch_right, mul_ir_in2.dim)) elif specialized_code and mul_ir_in1.ir.l == 0: ein_out = torch.einsum( f"{z}uvw,zu,zvj->zwj", w_out, x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out) ein_right = torch.einsum(f"{z}uvw,zvi->zuwi", w_right, x2_right) elif specialized_code and mul_ir_in2.ir.l == 0: ein_out = torch.einsum( f"{z}uvw,zui,zv->zwi", w_out, x1_out, x2_out.reshape(batch_out, mul_ir_in2.dim)) ein_right = torch.einsum( f"{z}uvw,ij,zv->zuiwj", w_right, i1_right, x2_right.reshape(batch_right, mul_ir_in2.dim)) elif specialized_code and mul_ir_out.ir.l == 0: ein_out = torch.einsum(f"{z}uvw,zui,zvi->zw", w_out, x1_out, x2_out) / sqrt(mul_ir_in1.ir.dim)**exp ein_right = torch.einsum(f"{z}uvw,zvi->zuiw", w_right, x2_right) / sqrt( mul_ir_in1.ir.dim)**exp else: ein_out = torch.einsum(f"{z}uvw,ijk,zuvij->zwk", w_out, w3j_out, xx) ein_right = torch.einsum(f"{z}uvw,ijk,zvj->zuiwk", w_right, w3j_right, x2_right) if ins.connection_mode == 'uvu': assert mul_ir_in1.mul == mul_ir_out.mul if ins.has_weight: if specialized_code and key == (0, 0, 0): ein_out = torch.einsum( f"{z}uv,zu,zv->zu", w_out, x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out.reshape(batch_out, mul_ir_in2.dim)) ein_right = torch.einsum( f"{z}uv,uw,zv->zuw", w_right, e1_right, x2_right.reshape(batch_right, mul_ir_in2.dim)) elif specialized_code and mul_ir_in1.ir.l == 0: ein_out = torch.einsum( f"{z}uv,zu,zvj->zuj", w_out, x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out) ein_right = torch.einsum(f"{z}uv,uw,zvi->zuwi", w_right, e1_right, x2_right) elif specialized_code and mul_ir_in2.ir.l == 0: ein_out = torch.einsum( f"{z}uv,zui,zv->zui", w_out, x1_out, x2_out.reshape(batch_out, mul_ir_in2.dim)) ein_right = torch.einsum( f"{z}uv,ij,uw,zv->zuiwj", w_right, i1_right, e1_right, x2_right.reshape(batch_right, mul_ir_in2.dim)) elif specialized_code and mul_ir_out.ir.l == 0: ein_out = torch.einsum(f"{z}uv,zui,zvi->zu", w_out, x1_out, x2_out) / sqrt( mul_ir_in1.ir.dim)**exp ein_right = torch.einsum(f"{z}uv,uw,zvi->zuiw", w_right, e1_right, x2_right) / sqrt( mul_ir_in1.ir.dim)**exp else: ein_out = torch.einsum(f"{z}uv,ijk,zuvij->zuk", w_out, w3j_out, xx) ein_right = torch.einsum(f"{z}uv,ijk,uw,zvj->zuiwk", w_right, w3j_right, e1_right, x2_right) else: # not so useful operation because v is summed ein_out = torch.einsum("ijk,zuvij->zuk", w3j_out, xx) ein_right = torch.einsum("ijk,uw,zvj->zuiwk", w3j_right, e1_right, x2_right) if ins.connection_mode == 'uvv': assert mul_ir_in2.mul == mul_ir_out.mul if ins.has_weight: if specialized_code and key == (0, 0, 0): ein_out = torch.einsum( f"{z}uv,zu,zv->zv", w_out, x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out.reshape(batch_out, mul_ir_in2.dim)) ein_right = torch.einsum( f"{z}uv,vw,zv->zuw", w_right, e2_right, x2_right.reshape(batch_right, mul_ir_in2.dim)) elif specialized_code and mul_ir_in1.ir.l == 0: ein_out = torch.einsum( f"{z}uv,zu,zvj->zvj", w_out, x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out) ein_right = torch.einsum(f"{z}uv,vw,zvi->zuwi", w_right, e2_right, x2_right) elif specialized_code and mul_ir_in2.ir.l == 0: ein_out = torch.einsum( f"{z}uv,zui,zv->zvi", w_out, x1_out, x2_out.reshape(batch_out, mul_ir_in2.dim)) ein_right = torch.einsum( f"{z}uv,ij,vw,zv->zuiwj", w_right, i1_right, e2_right, x2_right.reshape(batch_right, mul_ir_in2.dim)) elif specialized_code and mul_ir_out.ir.l == 0: ein_out = torch.einsum(f"{z}uv,zui,zvi->zv", w_out, x1_out, x2_out) / sqrt( mul_ir_in1.ir.dim)**exp ein_right = torch.einsum(f"{z}uv,vw,zvi->zuiw", w_right, e2_right, x2_right) / sqrt( mul_ir_in1.ir.dim)**exp else: ein_out = torch.einsum(f"{z}uv,ijk,zuvij->zvk", w_out, w3j_out, xx) ein_right = torch.einsum(f"{z}uv,ijk,zvj->zuivk", w_right, w3j_right, x2_right) else: # not so useful operation because u is summed # only specialize out for this path if specialized_code and key == (0, 0, 0): ein_out = torch.einsum( "zu,zv->zv", x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out.reshape(batch_out, mul_ir_in2.dim)) elif specialized_code and mul_ir_in1.ir.l == 0: ein_out = torch.einsum( "zu,zvj->zvj", x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out) elif specialized_code and mul_ir_in2.ir.l == 0: ein_out = torch.einsum( "zui,zv->zvi", x1_out, x2_out.reshape(batch_out, mul_ir_in2.dim)) elif specialized_code and mul_ir_out.ir.l == 0: ein_out = torch.einsum("zui,zvi->zv", x1_out, x2_out) / sqrt( mul_ir_in1.ir.dim)**exp else: ein_out = torch.einsum("ijk,zuvij->zvk", w3j_out, xx) s2ones = fx.Proxy( graph_right.call_function( torch.ones, (mul_ir_in1.mul, ), dict(device=x2_right.device.node, dtype=x2_right.dtype.node))) ein_right = torch.einsum("u,ijk,zvj->zuivk", s2ones, w3j_right, x2_right) if ins.connection_mode == 'uuw': assert mul_ir_in1.mul == mul_ir_in2.mul if ins.has_weight: if specialized_code and key == (0, 0, 0): ein_out = torch.einsum( f"{z}uw,zu,zu->zw", w_out, x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out.reshape(batch_out, mul_ir_in2.dim)) elif specialized_code and mul_ir_in1.ir.l == 0: ein_out = torch.einsum( f"{z}uw,zu,zuj->zwj", w_out, x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out) elif specialized_code and mul_ir_in2.ir.l == 0: ein_out = torch.einsum( f"{z}uw,zui,zu->zwi", w_out, x1_out, x2_out.reshape(batch_out, mul_ir_in2.dim)) elif specialized_code and mul_ir_out.ir.l == 0: ein_out = torch.einsum(f"{z}uw,zui,zui->zw", w_out, x1_out, x2_out) / sqrt( mul_ir_in1.ir.dim)**exp else: ein_out = torch.einsum(f"{z}uw,ijk,zuij->zwk", w_out, w3j_out, xx) # TODO: specialize right() ein_right = torch.einsum(f"{z}uw,ijk,zuj->zuiwk", w_right, w3j_right, x2_right) else: # equivalent to tp(x, y, 'uuu').sum('u') assert mul_ir_out.mul == 1 ein_out = torch.einsum("ijk,zuij->zk", w3j_out, xx) ein_right = torch.einsum("ijk,zuj->zuik", w3j_right, x2_right) if ins.connection_mode == 'uuu': assert mul_ir_in1.mul == mul_ir_in2.mul == mul_ir_out.mul if ins.has_weight: if specialized_code and key == (0, 0, 0): ein_out = torch.einsum( f"{z}u,zu,zu->zu", w_out, x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out.reshape(batch_out, mul_ir_in2.dim)) ein_right = torch.einsum( f"{z}u,uw,zu->zuw", w_right, e2_right, x2_right.reshape(batch_right, mul_ir_in2.dim)) elif specialized_code and key == ( 1, 1, 1) and normalization == "component": ein_out = torch.einsum(f"{z}u,zui->zui", w_out, torch.cross(x1_out, x2_out, dim=2)) / sqrt(2) # For cross product, use the general case right() ein_right = torch.einsum(f"{z}u,ijk,uw,zuj->zuiwk", w_right, w3j_right, e1_right, x2_right) elif specialized_code and mul_ir_in1.ir.l == 0: ein_out = torch.einsum( f"{z}u,zu,zuj->zuj", w_out, x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out) ein_right = torch.einsum(f"{z}u,uw,zui->zuwi", w_right, e2_right, x2_right) elif specialized_code and mul_ir_in2.ir.l == 0: ein_out = torch.einsum( f"{z}u,zui,zu->zui", w_out, x1_out, x2_out.reshape(batch_out, mul_ir_in2.dim)) ein_right = torch.einsum( f"{z}u,ij,uw,zu->zuiwj", w_right, i1_right, e2_right, x2_right.reshape(batch_right, mul_ir_in2.dim)) elif specialized_code and mul_ir_out.ir.l == 0: ein_out = torch.einsum(f"{z}u,zui,zui->zu", w_out, x1_out, x2_out) / sqrt( mul_ir_in1.ir.dim)**exp ein_right = torch.einsum(f"{z}u,uw,zui->zuiw", w_right, e2_right, x2_right) / sqrt( mul_ir_in1.ir.dim)**exp else: ein_out = torch.einsum(f"{z}u,ijk,zuij->zuk", w_out, w3j_out, xx) ein_right = torch.einsum(f"{z}u,ijk,uw,zuj->zuiwk", w_right, w3j_right, e1_right, x2_right) else: if specialized_code and key == (0, 0, 0): ein_out = torch.einsum( "zu,zu->zu", x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out.reshape(batch_out, mul_ir_in2.dim)) ein_right = torch.einsum( "uw,zu->zuw", e2_right, x2_right.reshape(batch_right, mul_ir_in2.dim)) elif specialized_code and key == ( 1, 1, 1) and normalization == "component": ein_out = torch.cross(x1_out, x2_out, dim=2) * (1.0 / sqrt(2)) # For cross product, use the general case right() ein_right = torch.einsum("ijk,uw,zuj->zuiwk", w3j_right, e1_right, x2_right) elif specialized_code and mul_ir_in1.ir.l == 0: ein_out = torch.einsum( "zu,zuj->zuj", x1_out.reshape(batch_out, mul_ir_in1.dim), x2_out) ein_right = torch.einsum("uw,zui->zuwi", e2_right, x2_right) elif specialized_code and mul_ir_in2.ir.l == 0: ein_out = torch.einsum( "zui,zu->zui", x1_out, x2_out.reshape(batch_out, mul_ir_in2.dim)) ein_right = torch.einsum( "ij,uw,zu->zuiwj", i1_right, e2_right, x2_right.reshape(batch_right, mul_ir_in2.dim)) elif specialized_code and mul_ir_out.ir.l == 0: ein_out = torch.einsum("zui,zui->zu", x1_out, x2_out) / sqrt( mul_ir_in1.ir.dim)**exp ein_right = torch.einsum("uw,zui->zuiw", e2_right, x2_right) / sqrt( mul_ir_in1.ir.dim)**exp else: ein_out = torch.einsum("ijk,zuij->zuk", w3j_out, xx) ein_right = torch.einsum("ijk,uw,zuj->zuiwk", w3j_right, e1_right, x2_right) if ins.connection_mode == 'uvuv': assert mul_ir_in1.mul * mul_ir_in2.mul == mul_ir_out.mul if ins.has_weight: # TODO implement specialized code ein_out = torch.einsum(f"{z}uv,ijk,zuvij->zuvk", w_out, w3j_out, xx) ein_right = torch.einsum(f"{z}uv,ijk,uw,zvj->zuiwvk", w_right, w3j_right, e1_right, x2_right) else: # TODO implement specialized code ein_out = torch.einsum("ijk,zuvij->zuvk", w3j_out, xx) ein_right = torch.einsum("ijk,uw,zvj->zuiwvk", w3j_right, e1_right, x2_right) ein_out = alpha * ein_out ein_right = alpha * ein_right out_list_out += [ein_out.reshape(batch_out, mul_ir_out.dim)] out_list_right += [ ein_right.reshape(batch_right, mul_ir_in1.dim, mul_ir_out.dim) ] # Close the profiler block graph_out.call_function(torch.ops.profiler._record_function_exit, (handle_out, )) graph_right.call_function(torch.ops.profiler._record_function_exit, (handle_right, )) # Remove unused w3js: if len(w3j_out.node.users) == 0 and len(w3j_right.node.users) == 0: del w3j[-1] # The w3j nodes are reshapes, so we have to remove them from the graph # Although they are dead code, they try to reshape to dimensions that don't exist # (since the corresponding w3js are not in w3j) # so they screw up the shape propagation, even though they would be removed later as dead code by TorchScript. graph_out.erase_node(w3j_dict_out.pop(key).node) graph_right.erase_node(w3j_dict_right.pop(key).node) # = Return the result = out_out = [ _sum_tensors([ out for ins, out in zip(instructions, out_list_out) if ins.i_out == i_out ], shape=(batch_out, mul_ir_out.dim), like=x1s_out) for i_out, mul_ir_out in enumerate(irreps_out) if mul_ir_out.mul > 0 ] if len(out_out) > 1: out_out = torch.cat(out_out, dim=1) else: # Avoid an unnecessary copy in a size one torch.cat out_out = out_out[0] out_right = [ torch.cat([ _sum_tensors([ out for ins, out in zip(instructions, out_list_right) if (ins.i_in1, ins.i_out) == (i_in1, i_out) ], shape=(batch_right, mul_ir_in1.dim, mul_ir_out.dim), like=x2s_right) for i_out, mul_ir_out in enumerate(irreps_out) if mul_ir_out.mul > 0 ], dim=2) for i_in1, mul_ir_in1 in enumerate(irreps_in1) if mul_ir_in1.mul > 0 ] if len(out_right) > 1: out_right = torch.cat(out_right, dim=1) else: out_right = out_right[0] out_out = out_out.reshape(outsize_out) out_right = out_right.reshape(outsize_right) graph_out.output(out_out.node, torch.Tensor) graph_right.output(out_right.node, torch.Tensor) # check graphs graph_out.lint() graph_right.lint() # Make GraphModules wigner_mats = {} for l_1, l_2, l_out in w3j: wig = o3.wigner_3j(l_1, l_2, l_out) if normalization == 'component': wig *= (2 * l_out + 1)**0.5 if normalization == 'norm': wig *= (2 * l_1 + 1)**0.5 * (2 * l_2 + 1)**0.5 wigner_mats[f"_w3j_{l_1}_{l_2}_{l_out}"] = wig # By putting the constants in a Module rather than a dict, # we force FX to copy them as buffers instead of as attributes. # # FX seems to have resolved this issue for dicts in 1.9, but we support all the way back to 1.8.0. constants_root = torch.nn.Module() for wkey, wmat in wigner_mats.items(): constants_root.register_buffer(wkey, wmat) graphmod_out = fx.GraphModule(constants_root, graph_out, class_name="tp_forward") graphmod_right = fx.GraphModule(constants_root, graph_right, class_name="tp_right") # == Optimize == # TODO: when eliminate_dead_code() is in PyTorch stable, use that if optimize_einsums: # Note that for our einsums, we can optimize _once_ for _any_ batch dimension # and still get the right path for _all_ batch dimensions. # This is because our einsums are essentially of the form: # zuvw,ijk,zuvij->zwk OR uvw,ijk,zuvij->zwk # In the first case, all but one operands have the batch dimension # => The first contraction gains the batch dimension # => All following contractions have batch dimension # => All possible contraction paths have cost that scales linearly in batch size # => The optimal path is the same for all batch sizes # For the second case, this logic follows as long as the first contraction is not between the first two operands. Since those two operands do not share any indexes, contracting them first is a rare pathological case. See # https://github.com/dgasmith/opt_einsum/issues/158 # for more details. # # TODO: consider the impact maximum intermediate result size on this logic # \- this is the `memory_limit` option in opt_einsum # TODO: allow user to choose opt_einsum parameters? # # We use float32 and zeros to save memory and time, since opt_einsum_fx looks only at traced shapes, not values or dtypes. batchdim = 4 example_inputs = ( torch.zeros((batchdim, irreps_in1.dim)), torch.zeros((batchdim, irreps_in2.dim)), torch.zeros( 1 if shared_weights else batchdim, flat_weight_index, ), ) graphmod_out = jitable( optimize_einsums_full(graphmod_out, example_inputs)) graphmod_right = jitable( optimize_einsums_full(graphmod_right, example_inputs[1:])) return graphmod_out, graphmod_right
def main(): parser = argparse.ArgumentParser(prog="tensor_product_benchmark") parser.add_argument("--jit", type=t_or_f, default=True) parser.add_argument("--irreps", type=str, default="8x0e + 8x1e + 8x2e + 8x3o") parser.add_argument("--irreps-in1", type=str, default=None) parser.add_argument("--irreps-in2", type=str, default=None) parser.add_argument("--irreps-out", type=str, default=None) parser.add_argument("--cuda", type=t_or_f, default=True) parser.add_argument("--backward", type=t_or_f, default=True) parser.add_argument("--opt-ein", type=t_or_f, default=True) parser.add_argument("--specialized-code", type=t_or_f, default=True) parser.add_argument("--elementwise", action='store_true') parser.add_argument("-n", type=int, default=1000) parser.add_argument("--batch", type=int, default=10) args = parser.parse_args() device = 'cuda' if (torch.cuda.is_available() and args.cuda) else 'cpu' args.cuda = device == 'cuda' print("======= Benchmark with settings: ======") for key, val in vars(args).items(): print(f"{key:>18} : {val}") print("=" * 40) irreps_in1 = Irreps(args.irreps_in1 if args.irreps_in1 else args.irreps) irreps_in2 = Irreps(args.irreps_in2 if args.irreps_in2 else args.irreps) irreps_out = Irreps(args.irreps_out if args.irreps_out else args.irreps) if args.elementwise: tp = ElementwiseTensorProduct(irreps_in1, irreps_in2, _specialized_code=args.specialized_code, _optimize_einsums=args.opt_ein) if args.backward: print( "Elementwise TP has no weights, cannot backward. Setting --backward False." ) args.backward = False else: tp = FullyConnectedTensorProduct( irreps_in1, irreps_in2, irreps_out, _specialized_code=args.specialized_code, _optimize_einsums=args.opt_ein) tp = tp.to(device=device) assert len(tp.instructions) > 0, "Bad irreps, no instructions" print(f"Tensor product: {tp}") print("Instructions:") for ins in tp.instructions: print(f" {ins}") # from https://pytorch.org/docs/master/_modules/torch/utils/benchmark/utils/timer.html#Timer.timeit warmup = max(int(args.n // 100), 1) inputs = iter([(irreps_in1.randn(args.batch, -1).to(device=device), irreps_in2.randn(args.batch, -1).to(device=device)) for _ in range(args.n + warmup)]) # compile if args.jit: tp = compile(tp) print("starting...") # tanh() forces it to realize the grad as a full size matrix rather than expanded (stride 0) ones t = Timer( stmt=("tp.zero_grad()\n" "out = tp(*next(inputs))\n" + ("out.tanh().sum().backward()\n" if args.backward else '')), globals={ 'tp': tp, 'inputs': inputs }) perloop = t.timeit(args.n) print() print(perloop)
def test_empty_irreps(): tp = FullyConnectedTensorProduct('0e + 1e', Irreps([]), '0e + 1e') out = tp(torch.randn(1, 2, 4), torch.randn(2, 1, 0)) assert out.shape == (2, 2, 4)
def __init__( self, num_atoms, # not used bond_feat_dim, # not used num_targets, # not used in_features=9, out_features=1, hidden_features=256, N=7, dim=3, lmax_h=2, lmax_pos=2, update_pos=False, recurrent=True, regress_forces=False, use_pbc=True, otf_graph=False ): super(SEGNNModel, self).__init__() self.in_features = in_features self.out_features = out_features self.hidden_features = hidden_features self.N = N self.regress_forces = regress_forces self.otf_graph = otf_graph self.use_pbc = use_pbc self.update_pos = update_pos self.recurrent = recurrent self.dim = dim self.lmax_h = lmax_h self.lmax_pos = lmax_pos # The representations used in the model self.irreps_in = Irreps("{0}x0e".format(self.in_features)) self.irreps_hidden = BalancedIrreps(self.lmax_h, self.hidden_features) self.irreps_hidden_scalar = Irreps("{0}x0e".format(self.hidden_features)) self.irreps_out = Irreps("{0}x0e".format(self.out_features)) self.irreps_rel_pos = Irreps.spherical_harmonics(self.lmax_pos) # The embedding layer (acts point-wise, no orientation information so only use trivial/scalar irreps) self.embedding = nn.Sequential(O3LinearSwishGate(self.irreps_in, self.irreps_hidden_scalar), O3Linear(self.irreps_hidden_scalar, self.irreps_hidden_scalar)) # The intermediate layers self.layers = [] # The first layer changes from scalar irreps to irreps of some max order (lmax_h) self.layers.append(SEGNN(self.irreps_hidden_scalar, self.irreps_hidden, self.irreps_rel_pos, self.irreps_hidden, update_pos=self.update_pos, recurrent=False)) # Subsequent layers act on the irreps of some max order (lmax_h) for i in range(self.N - 2): self.layers.append(SEGNN(self.irreps_hidden, self.irreps_hidden, self.irreps_rel_pos, self.irreps_hidden, update_pos=self.update_pos, recurrent=self.recurrent)) # The last layer of the SEGNN block converts back to scalar irreps self.layers.append( SEGNN(self.irreps_hidden, self.irreps_hidden_scalar, self.irreps_rel_pos, self.irreps_hidden_scalar, update_pos=self.update_pos, recurrent=False)) # To ModuleList self.layers = nn.ModuleList(self.layers) # The output network (again via point-wise operation via scalar irreps) self.head_pre_pool = nn.Sequential(O3LinearSwishGate(self.irreps_hidden_scalar, self.irreps_hidden_scalar), O3Linear(self.irreps_hidden_scalar, self.irreps_hidden_scalar)) self.head_post_pool = nn.Sequential(O3LinearSwishGate(self.irreps_hidden_scalar, self.irreps_hidden_scalar), O3Linear(self.irreps_hidden_scalar, self.irreps_out)) # read atom map atom_map = torch.zeros(101, 9) for i in range(101): atom_map[i] = torch.tensor(CONTINUOUS_EMBEDDINGS[i]) # normalize along each dimension atom_map[0] = np.nan atom_map_notnan = atom_map[atom_map[:, 0] == atom_map[:, 0]] atom_map_min = torch.min(atom_map_notnan, dim=0)[0] atom_map_max = torch.max(atom_map_notnan, dim=0)[0] atom_map_gap = atom_map_max - atom_map_min # squash to [0,1] atom_map = (atom_map - atom_map_min.view(1, -1)) / atom_map_gap.view(1, -1) self.atom_map = torch.nn.Parameter(atom_map, requires_grad=False)
def _codegen_linear( irreps_in: o3.Irreps, irreps_out: o3.Irreps, instructions: List[Instruction], biases: List[bool], f_in: Optional[int] = None, f_out: Optional[int] = None, shared_weights: bool = False, optimize_einsums: bool = True, ) -> Tuple[fx.GraphModule, int, int]: graph_out = fx.Graph() # = Function definitions = x = fx.Proxy(graph_out.placeholder('x', torch.Tensor)) ws = fx.Proxy(graph_out.placeholder('w', torch.Tensor)) bs = fx.Proxy(graph_out.placeholder('b', torch.Tensor)) if f_in is None: size = x.shape[:-1] outsize = size + (irreps_out.dim, ) else: size = x.shape[:-2] outsize = size + ( f_out, irreps_out.dim, ) bias_numel = sum(mul_ir.dim for bias, mul_ir in zip(biases, irreps_out) if bias) if bias_numel > 0: if f_out is None: bs = bs.reshape(-1, bias_numel) else: bs = bs.reshape(-1, f_out, bias_numel) # = Short-circut for nothing to do = # We produce no code for empty instructions instructions = [ins for ins in instructions if 0 not in ins.path_shape] if len(instructions) == 0 and bias_numel == 0: out = x.new_zeros(outsize) graph_out.output(out.node, torch.Tensor) # Short circut # 0 is weight_numel return fx.GraphModule({}, graph_out, "linear_forward"), 0, 0 if f_in is None: x = x.reshape(-1, irreps_in.dim) else: x = x.reshape(-1, f_in, irreps_in.dim) batch_out = x.shape[0] out_bias_list = [] bias_index = 0 for bias, mul_ir_out in zip(biases, irreps_out): if bias: if sum(biases) == 1: b = bs else: b = bs.narrow(-1, bias_index, mul_ir_out.dim) bias_index += mul_ir_out.dim out_bias_list += [[ b.expand(batch_out, -1) if f_out is None else b.expand( batch_out, f_out, -1) ]] else: out_bias_list += [[]] weight_numel = sum(prod(ins.path_shape) for ins in instructions) if weight_numel > 0: ws = ws.reshape(-1, weight_numel) if f_in is None else ws.reshape( -1, f_in, f_out, weight_numel) # = extract individual input irreps = if len(irreps_in) == 1: x_list = [ x.reshape(batch_out, *(() if f_in is None else (f_in, )), irreps_in[0].mul, irreps_in[0].ir.dim) ] else: x_list = [ x.narrow(-1, i.start, mul_ir.dim).reshape(batch_out, *(() if f_in is None else (f_in, )), mul_ir.mul, mul_ir.ir.dim) for i, mul_ir in zip(irreps_in.slices(), irreps_in) ] z = '' if shared_weights else 'z' flat_weight_index = 0 out_list = [] for ins in instructions: mul_ir_in = irreps_in[ins.i_in] mul_ir_out = irreps_out[ins.i_out] # Short-circut for empty irreps if mul_ir_in.dim == 0 or mul_ir_out.dim == 0: continue # Extract the weight from the flattened weight tensor path_nweight = prod(ins.path_shape) if len(instructions) == 1: # Avoid unnecessary view when there is only one weight w = ws else: w = ws.narrow(-1, flat_weight_index, path_nweight) w = w.reshape((() if shared_weights else (-1, )) + (() if f_in is None else (f_in, f_out)) + ins.path_shape) flat_weight_index += path_nweight if f_in is None: ein_out = torch.einsum(f"{z}uw,zui->zwi", w, x_list[ins.i_in]) else: ein_out = torch.einsum(f"{z}xyuw,zxui->zywi", w, x_list[ins.i_in]) alpha = 1.0 / math.sqrt((f_in or 1) * mul_ir_in.mul * sum(1 if other_ins.i_out == ins.i_out else 0 for other_ins in instructions)) ein_out = alpha * ein_out out_list += [ ein_out.reshape(batch_out, *(() if f_out is None else (f_out, )), mul_ir_out.dim) ] # = Return the result = out = [ _sum_tensors([ out for ins, out in zip(instructions, out_list) if ins.i_out == i_out ] + out_bias_list[i_out], shape=(batch_out, *(() if f_out is None else (f_out, )), mul_ir_out.dim), like=x) for i_out, mul_ir_out in enumerate(irreps_out) if mul_ir_out.mul > 0 ] if len(out) > 1: out = torch.cat(out, dim=-1) else: out = out[0] out = out.reshape(outsize) graph_out.output(out.node, torch.Tensor) # check graphs graph_out.lint() graphmod_out = fx.GraphModule({}, graph_out, "linear_forward") # TODO: when eliminate_dead_code() is in PyTorch stable, use that if optimize_einsums: # See _tensor_product/_codegen.py for notes batchdim = 4 example_inputs = ( torch.zeros((batchdim, *(() if f_in is None else (f_in, )), irreps_in.dim)), torch.zeros( 1 if shared_weights else batchdim, f_in or 1, f_out or 1, weight_numel, ), torch.zeros( 1 if shared_weights else batchdim, f_out or 1, bias_numel, ), ) graphmod_out = jitable( optimize_einsums_full(graphmod_out, example_inputs)) return graphmod_out, weight_numel, bias_numel
def main(): parser = argparse.ArgumentParser(prog="tensor_product_benchmark") parser.add_argument("--jit", type=t_or_f, default=True) parser.add_argument("--irreps-in1", type=str, default="8x0e + 8x1e + 8x2e + 8x3e") parser.add_argument("--irreps-in2", type=str, default="8x0e + 8x1e + 8x2e + 8x3e") parser.add_argument("--irreps-out", type=str, default="8x0e + 8x1e + 8x2e + 8x3e") parser.add_argument("--cuda", type=t_or_f, default=True) parser.add_argument("--backward", type=t_or_f, default=True) parser.add_argument("--opt-ein", type=t_or_f, default=True) parser.add_argument("--specialized-code", type=t_or_f, default=True) parser.add_argument("-w", type=int, default=10) parser.add_argument("-n", type=int, default=3) parser.add_argument("--batch", type=int, default=10) args = parser.parse_args() device = 'cuda' if (torch.cuda.is_available() and args.cuda) else 'cpu' args.cuda = device == 'cuda' if args.cuda: # Workaround for CUDA driver issues # See https://github.com/pytorch/pytorch/issues/60158#issuecomment-866294291 with torch.profiler.profile() as _: pass print("======= Benchmark with settings: ======") for key, val in vars(args).items(): print(f"{key:>18} : {val}") print("=" * 40) irreps_in1 = Irreps(args.irreps_in1) irreps_in2 = Irreps(args.irreps_in2) irreps_out = Irreps(args.irreps_out) tp = FullyConnectedTensorProduct(irreps_in1, irreps_in2, irreps_out, _specialized_code=args.specialized_code, _optimize_einsums=args.opt_ein) tp = tp.to(device=device) inputs = [(irreps_in1.randn(args.batch, -1).to(device=device), irreps_in2.randn(args.batch, -1).to(device=device)) for _ in range(1 + args.w + args.n)] if args.backward: for tmp in inputs: for t in tmp: t.requires_grad_(True) inputs = iter(inputs) # compile if args.jit: print("JITing...") tp = compile(tp) print("starting...") called_num = [0] def trace_handler(p): print(p.key_averages().table(sort_by="self_cuda_time_total", row_limit=-1)) p.export_chrome_trace("test_trace_" + str(called_num[0]) + ".json") called_num[0] += 1 with torch.profiler.profile(activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA ], schedule=torch.profiler.schedule( wait=1, warmup=args.w, active=args.n), on_trace_ready=trace_handler) as p: for _ in range(1 + args.w + args.n): out = tp(*next(inputs)) if args.backward: # tanh() forces it to realize the grad as a full size matrix rather than expanded (stride 0) ones out.tanh().sum().backward() p.step()