Exemplo n.º 1
0
    def project(self, x: ep.Tensor, x0: ep.Tensor,
                epsilon: float) -> ep.Tensor:
        # based on https://github.com/ftramer/MultiRobustness/blob/ad41b63235d13b1b2a177c5f270ab9afa74eee69/pgd_attack.py#L110
        delta = flatten(x - x0)
        norms = delta.norms.l1(axis=-1)
        if (norms <= epsilon).all():
            return x

        n, d = delta.shape
        abs_delta = abs(delta)
        mu = -ep.sort(-abs_delta, axis=-1)
        cumsums = mu.cumsum(axis=-1)
        js = 1.0 / ep.arange(x, 1, d + 1).astype(x.dtype)
        temp = mu - js * (cumsums - epsilon)
        guarantee_first = ep.arange(x, d).astype(x.dtype) / d
        # guarantee_first are small values (< 1) that we add to the boolean
        # tensor (only 0 and 1) to break the ties and always return the first
        # argmin, i.e. the first value where the boolean tensor is 0
        # (otherwise, this is not guaranteed on GPUs, see e.g. PyTorch)
        rho = ep.argmin((temp > 0).astype(x.dtype) + guarantee_first, axis=-1)
        theta = 1.0 / (1 + rho.astype(x.dtype)) * (cumsums[range(n), rho] -
                                                   epsilon)
        delta = delta.sign() * ep.maximum(abs_delta - theta[..., ep.newaxis],
                                          0)
        delta = delta.reshape(x.shape)
        return x0 + delta
Exemplo n.º 2
0
def project_onto_l1_ball(x: ep.Tensor, eps: ep.Tensor) -> ep.Tensor:
    """Computes Euclidean projection onto the L1 ball for a batch. [#Duchi08]_

    Adapted from the pytorch version by Tony Duan:
    https://gist.github.com/tonyduan/1329998205d88c566588e57e3e2c0c55

    Args:
        x: Batch of arbitrary-size tensors to project, possibly on GPU
        eps: radius of l-1 ball to project onto

    References:
      ..[#Duchi08] Efficient Projections onto the l1-Ball for Learning in High Dimensions
         John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra.
         International Conference on Machine Learning (ICML 2008)
    """
    original_shape = x.shape
    x = flatten(x)
    mask = (ep.norms.l1(x, axis=1) <= eps).astype(x.dtype).expand_dims(1)
    mu = ep.flip(ep.sort(ep.abs(x)), axis=-1).astype(x.dtype)
    cumsum = ep.cumsum(mu, axis=-1)
    arange = ep.arange(x, 1, x.shape[1] + 1).astype(x.dtype)
    rho = (ep.max(
        ((mu * arange >
          (cumsum - eps.expand_dims(1)))).astype(x.dtype) * arange,
        axis=-1,
    ) - 1)
    # samples already under norm will have to select
    rho = ep.maximum(rho, 0)
    theta = (cumsum[ep.arange(x, x.shape[0]),
                    rho.astype(ep.arange(x, 1).dtype)] - eps) / (rho + 1.0)
    proj = (ep.abs(x) - theta.expand_dims(1)).clip(min_=0, max_=ep.inf)
    x = mask * x + (1 - mask) * proj * ep.sign(x)
    return x.reshape(original_shape)
Exemplo n.º 3
0
def l2_clipping_aware_rescaling(x,
                                delta,
                                eps: float,
                                a: float = 0.0,
                                b: float = 1.0):  # type: ignore
    """Calculates eta such that norm(clip(x + eta * delta, a, b) - x) == eps.

    Assumes x and delta have a batch dimension and eps, a, b, and p are
    scalars. If the equation cannot be solved because eps is too large, the
    left hand side is maximized.

    Args:
        x: A batch of inputs (PyTorch Tensor, TensorFlow Eager Tensor, NumPy
            Array, JAX Array, or EagerPy Tensor).
        delta: A batch of perturbation directions (same shape and type as x).
        eps: The target norm (non-negative float).
        a: The lower bound of the data domain (float).
        b: The upper bound of the data domain (float).

    Returns:
        eta: A batch of scales with the same number of dimensions as x but all
            axis == 1 except for the batch dimension.
    """
    (x, delta), restore_fn = ep.astensors_(x, delta)
    N = x.shape[0]
    assert delta.shape[0] == N
    rows = ep.arange(x, N)

    delta2 = delta.square().reshape((N, -1))
    space = ep.where(delta >= 0, b - x, x - a).reshape((N, -1))
    f2 = space.square() / ep.maximum(delta2, 1e-20)
    ks = ep.argsort(f2, axis=-1)
    f2_sorted = f2[rows[:, ep.newaxis], ks]
    m = ep.cumsum(delta2[rows[:, ep.newaxis],
                         ks.flip(axis=1)], axis=-1).flip(axis=1)
    dx = f2_sorted[:, 1:] - f2_sorted[:, :-1]
    dx = ep.concatenate((f2_sorted[:, :1], dx), axis=-1)
    dy = m * dx
    y = ep.cumsum(dy, axis=-1)
    c = y >= eps**2

    # work-around to get first nonzero element in each row
    f = ep.arange(x, c.shape[-1], 0, -1)
    j = ep.argmax(c.astype(f.dtype) * f, axis=-1)

    eta2 = f2_sorted[rows, j] - (y[rows, j] - eps**2) / m[rows, j]
    # it can happen that for certain rows even the largest j is not large enough
    # (i.e. c[:, -1] is False), then we will just use it (without any correction) as it's
    # the best we can do (this should also be the only cases where m[j] can be
    # 0 and they are thus not a problem)
    eta2 = ep.where(c[:, -1], eta2, f2_sorted[:, -1])
    eta = ep.sqrt(eta2)
    eta = eta.reshape((-1, ) + (1, ) * (x.ndim - 1))

    # xp = ep.clip(x + eta * delta, a, b)
    # l2 = (xp - x).reshape((N, -1)).square().sum(axis=-1).sqrt()
    return restore_fn(eta)
Exemplo n.º 4
0
def make_uv(t):
    '''
  Generates UV coordinates
  Returns tensors of x coords and y coords each with shape matching t
  '''
    uvx = ep.expand_dims(ep.arange(t, 0.0, t.shape[1], 1),
                         axis=0).tile([t.shape[0], 1])
    uvy = ep.expand_dims(ep.arange(t, 0.0, t.shape[0], 1),
                         axis=0).tile([t.shape[1], 1]).transpose()
    return uvx, uvy
Exemplo n.º 5
0
def test_crossentropy_raises(dummy: Tensor) -> None:
    t = ep.arange(dummy, 50).reshape((10, 5)).float32()
    t = t / t.max()
    ep.crossentropy(t, t.argmax(axis=-1))

    t = ep.arange(dummy, 150).reshape((10, 5, 3)).float32()
    t = t / t.max()
    with pytest.raises(ValueError):
        ep.crossentropy(t, t.argmax(axis=-1))

    t = ep.arange(dummy, 50).reshape((10, 5)).float32()
    t = t / t.max()
    with pytest.raises(ValueError):
        ep.crossentropy(t, t.argmax(axis=-1)[:8])
Exemplo n.º 6
0
def test_matmul_raise(dummy: Tensor) -> None:
    t = ep.arange(dummy, 8).float32().reshape((2, 4))
    ep.matmul(t, t.T)
    with pytest.raises(ValueError):
        ep.matmul(t, t[0])
    with pytest.raises(ValueError):
        ep.matmul(t[0], t)
    with pytest.raises(ValueError):
        ep.matmul(t[0], t[0])
Exemplo n.º 7
0
def project_onto_l1_ball(x: ep.Tensor, eps: ep.Tensor):
    """
    Compute Euclidean projection onto the L1 ball for a batch.

      min ||x - u||_2 s.t. ||u||_1 <= eps

    Inspired by the corresponding numpy version by Adrien Gaidon.
    Adapted from the pytorch version by Tony Duan: https://gist.github.com/tonyduan/1329998205d88c566588e57e3e2c0c55

    Parameters
    ----------
    x: (batch_size, *) torch array
      batch of arbitrary-size tensors to project, possibly on GPU

    eps: float
      radius of l-1 ball to project onto

    Returns
    -------
    u: (batch_size, *) torch array
      batch of projected tensors, reshaped to match the original

    Notes
    -----
    The complexity of this algorithm is in O(dlogd) as it involves sorting x.

    References
    ----------
    [1] Efficient Projections onto the l1-Ball for Learning in High Dimensions
        John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra.
        International Conference on Machine Learning (ICML 2008)
    """
    original_shape = x.shape
    x = flatten(x)
    mask = (ep.norms.l1(x, axis=1) < eps).astype(x.dtype).expand_dims(1)
    mu = ep.flip(ep.sort(ep.abs(x)), axis=-1)
    cumsum = ep.cumsum(mu, axis=-1)
    arange = ep.arange(x, 1, x.shape[1] + 1)
    rho = ep.max(
        (mu * arange > (cumsum - eps.expand_dims(1))) * arange, axis=-1) - 1
    theta = (cumsum[ep.arange(x, x.shape[0]), rho] - eps) / (rho + 1.0)
    proj = (ep.abs(x) - theta.expand_dims(1)).clip(min_=0, max_=ep.inf)
    x = mask * x + (1 - mask) * proj * ep.sign(x)
    return x.reshape(original_shape)
Exemplo n.º 8
0
def test_value_and_grad_multiple_args(dummy: Tensor) -> None:
    if isinstance(dummy, ep.NumPyTensor):
        pytest.skip()

    def f(x: Tensor, y: Tensor) -> Tensor:
        return (x * y).sum()

    t = ep.arange(dummy, 8).float32().reshape((2, 4))
    v, g = ep.value_and_grad(f, t, t)
    assert v.item() == 140
    assert (g == t).all()
Exemplo n.º 9
0
def test_pad_raises(dummy: Tensor) -> None:
    t = ep.arange(dummy, 120).reshape((2, 3, 4, 5)).float32()
    ep.pad(t, ((0, 0), (0, 0), (2, 3), (1, 2)), mode="constant")
    with pytest.raises(ValueError):
        ep.pad(t, ((0, 0), (2, 3), (1, 2)), mode="constant")
    with pytest.raises(ValueError):
        ep.pad(
            t, ((0, 0), (0, 0, 1, 2), (2, 3), (1, 2)), mode="constant"  # type: ignore
        )
    with pytest.raises(ValueError):
        ep.pad(t, ((0, 0), (0, 0), (2, 3), (1, 2)), mode="foo")
Exemplo n.º 10
0
def test_value_and_grad_fn(dummy: Tensor) -> None:
    if isinstance(dummy, ep.NumPyTensor):
        pytest.skip()

    def f(x: ep.Tensor) -> ep.Tensor:
        return x.square().sum()

    vgf = ep.value_and_grad_fn(dummy, f)
    t = ep.arange(dummy, 8).float32().reshape((2, 4))
    v, g = vgf(t)
    assert v.item() == 140
    assert (g == 2 * t).all()
Exemplo n.º 11
0
 def project(self, x: ep.Tensor, x0: ep.Tensor,
             epsilon: ep.Tensor) -> ep.Tensor:
     flatten_delta = flatten(x - x0)
     n, d = flatten_delta.shape
     abs_delta = abs(flatten_delta)
     epsilon = epsilon.astype(ep.arange(x, 1).dtype)
     rows = range(n)
     idx_sorted = ep.flip(ep.argsort(abs_delta, axis=1), -1)[rows, epsilon]
     thresholds = (ep.ones_like(flatten_delta).T *
                   abs_delta[rows, idx_sorted]).T
     clipped = ep.where(abs_delta >= thresholds, flatten_delta, 0)
     return x0 + clipped.reshape(x0.shape).astype(x0.dtype)
Exemplo n.º 12
0
def test_value_aux_and_grad(dummy: Tensor) -> None:
    if isinstance(dummy, ep.NumPyTensor):
        pytest.skip()

    def f(x: Tensor) -> Tuple[Tensor, Tensor]:
        x = x.square()
        return x.sum(), x

    t = ep.arange(dummy, 8).float32().reshape((2, 4))
    v, aux, g = ep.value_aux_and_grad(f, t)
    assert v.item() == 140
    assert (aux == t.square()).all()
    assert (g == 2 * t).all()
Exemplo n.º 13
0
def test_tensorboard(logdir: Union[Literal[False], None, str], tmp_path: Any,
                     dummy: ep.Tensor) -> None:
    if logdir == "temp":
        logdir = tmp_path

    if logdir:
        before = len(list(tmp_path.iterdir()))

    tb = fbn.tensorboard.TensorBoard(logdir)

    tb.scalar("a_scalar", 5, step=1)

    x = ep.ones(dummy, 10)
    tb.mean("a_mean", x, step=2)

    x = ep.ones(dummy, 10) == ep.arange(dummy, 10)
    tb.probability("a_probability", x, step=2)

    x = ep.arange(dummy, 10).float32()
    cond = ep.ones(dummy, 10) == (ep.arange(dummy, 10) % 2)
    tb.conditional_mean("a_conditional_mean", x, cond, step=2)

    x = ep.arange(dummy, 10).float32()
    cond = ep.ones(dummy, 10) == ep.zeros(dummy, 10)
    tb.conditional_mean("a_conditional_mean_false", x, cond, step=2)

    x = ep.ones(dummy, 10) == ep.arange(dummy, 10)
    y = ep.ones(dummy, 10) == (ep.arange(dummy, 10) % 2)
    tb.probability_ratio("a_probability_ratio", x, y, step=5)

    x = ep.ones(dummy, 10) == (ep.arange(dummy, 10) % 2)
    y = ep.ones(dummy, 10) == ep.zeros(dummy, 10)
    tb.probability_ratio("a_probability_ratio_y_zero", x, y, step=5)

    x = ep.arange(dummy, 10).float32()
    tb.histogram("a_histogram", x, step=9, first=False)
    tb.histogram("a_histogram", x, step=10, first=True)

    tb.close()

    if logdir:
        after = len(list(tmp_path.iterdir()))
        assert after > before  # make sure something has been written
Exemplo n.º 14
0
def test_onehot_like_raises(dummy: Tensor) -> None:
    t = ep.arange(dummy, 18).float32().reshape((6, 3))
    indices = ep.arange(t, 6) // 2
    ep.onehot_like(t, indices)

    t = ep.arange(dummy, 90).float32().reshape((6, 3, 5))
    indices = ep.arange(t, 6) // 2
    with pytest.raises(ValueError):
        ep.onehot_like(t, indices)

    t = ep.arange(dummy, 18).float32().reshape((6, 3))
    indices = ep.arange(t, 6).reshape((6, 1)) // 2
    with pytest.raises(ValueError):
        ep.onehot_like(t, indices)

    t = ep.arange(dummy, 18).float32().reshape((6, 3))
    indices = ep.arange(t, 5) // 2
    with pytest.raises(ValueError):
        ep.onehot_like(t, indices)
Exemplo n.º 15
0
def test_getitem_slice_slice(dummy: Tensor) -> Tensor:
    t = ep.arange(dummy, 32).float32().reshape((4, 8))
    return t[:, :3]
Exemplo n.º 16
0
def test_getitem_tuple_list_tensor(dummy: Tensor) -> Tensor:
    t = ep.arange(dummy, 32).float32().reshape((8, 4))
    rows = list(range(len(t)))
    indices = ep.arange(t, len(t)) % t.shape[1]
    return t[rows, indices]
Exemplo n.º 17
0
def test_getitem_tuple_range_range(dummy: Tensor) -> Tensor:
    t = ep.arange(dummy, 36).float32().reshape((6, 6))
    rows = cols = range(len(t))
    return t[rows, cols]
Exemplo n.º 18
0
def test_getitem_ndarray(dummy: Tensor) -> Tensor:
    t = ep.arange(dummy, 32).float32()
    indices = np.arange(3, 10, 2)
    return t[indices]
Exemplo n.º 19
0
def test_getitem_list(dummy: Tensor) -> Tensor:
    t = ep.arange(dummy, 32).float32()
    indices = list(range(3, 10, 2))
    return t[indices]
Exemplo n.º 20
0
def test_getitem_tensor(dummy: Tensor) -> Tensor:
    t = ep.arange(dummy, 32).float32()
    indices = ep.arange(t, 3, 10, 2)
    return t[indices]
Exemplo n.º 21
0
def test_getitem_ellipsis_newaxis(dummy: Tensor) -> Tensor:
    t = ep.arange(dummy, 8).float32()
    return t[..., ep.newaxis]
Exemplo n.º 22
0
def test_getitem_boolean_tensor(dummy: Tensor) -> Tensor:
    t = ep.arange(dummy, 32).float32().reshape((4, 8))
    indices = ep.arange(t, 4) <= 2
    return t[indices]
Exemplo n.º 23
0
def test_prod_int(t: Tensor) -> Tensor:
    return ep.prod(ep.arange(t, 5))
Exemplo n.º 24
0
def test_take_along_axis_3d(dummy: Tensor) -> Tensor:
    t = ep.arange(dummy, 64).float32().reshape((2, 8, 4))
    indices = ep.arange(t, 2 * 8).reshape((2, 8, 1)) % t.shape[-1]
    return ep.take_along_axis(t, indices, axis=-1)
Exemplo n.º 25
0
def test_take_along_axis_2d(dummy: Tensor) -> Tensor:
    t = ep.arange(dummy, 32).float32().reshape((8, 4))
    indices = ep.arange(t, len(t)) % t.shape[-1]
    return ep.take_along_axis(t, indices[..., ep.newaxis], axis=-1)
Exemplo n.º 26
0
def test_getitem_tuple(dummy: Tensor) -> Tensor:
    t = ep.arange(dummy, 8).float32().reshape((2, 4))
    return t[1, 3]
Exemplo n.º 27
0
def test_sum_int(t: Tensor) -> Tensor:
    return ep.sum(ep.arange(t, 5))
Exemplo n.º 28
0
def test_take_along_axis_2d_first_raises(dummy: Tensor) -> None:
    t = ep.arange(dummy, 32).float32().reshape((8, 4))
    indices = ep.arange(t, t.shape[-1]) % t.shape[0]
    with pytest.raises(NotImplementedError):
        ep.take_along_axis(t, indices[ep.newaxis], axis=0)
Exemplo n.º 29
0
def test_any_axes(dummy: Tensor) -> Tensor:
    t = ep.arange(dummy, 30).float32().reshape((3, 5, 2))
    return ep.any(t > 3, axis=(0, 1))
Exemplo n.º 30
0
def test_format(dummy: Tensor) -> bool:
    t = ep.arange(dummy, 5).sum()
    return f"{t:.1f}" == "10.0"