Exemplo n.º 1
0
def test_colorbar_height(basic_image):
    """Test that the colorbar ax height matches the image axis height."""
    f, ax = plt.subplots(figsize=(5, 5))
    im = ax.imshow(basic_image, cmap="RdYlGn")
    cb = ep.colorbar(im)
    assert cb.ax.get_position().height == im.axes.get_position().height
    plt.close(f)
Exemplo n.º 2
0
 def plot_continuous_raster(self, output_file, cmap, vmax=np.nan, vmin=np.nan, box=True):
     """Creates a figure of a continuous valued raster
     
     :param output_file: path, file path of the figure
     :param cmap: string, colormap to plot the raster
     :param vmax: float, optional, value maximum of the scale, this value is used in the normalization of the colormap
     :param vmin: float, optional, value minimum of the scale, this value is used in the normalization of the colormap
     :param box: boolean, if False it sets off the frame of the picture
     
     :returns: saves the figure of the raster
     """
     raster_np = read_raster(self.path)
     fig1, ax1 = plt.subplots(figsize=(6, 8), frameon=False)
     # norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N)
     if np.isfinite(vmax) and np.isfinite(vmin):
         im1 = ax1.imshow(raster_np, cmap=cmap, vmax=vmax, vmin=vmin)
     else:
         im1 = ax1.imshow(raster_np, cmap=cmap, vmax=raster_np.max(), vmin=raster_np.min())
     fig1.tight_layout()
     plt.setp(ax1)
     cbar = ep.colorbar(im1, pad=0.3, size='5%')
     cbar.ax.tick_params(labelsize=15)
     if not box:
         ax1.axis('off')
     fig1.savefig(output_file, dpi=200, bbox_inches='tight')
Exemplo n.º 3
0
def plot_algae_bloom(cha_sentinel_class,location):
    cha_cat_names = ["Pure",
                  "Light Concentration",
                  "Low Concentration",
                  "Moderate Concentration",
                  "High Concentration"]

    nbr_colors = ["g", "yellowgreen", "peachpuff", "coral", "maroon"]

    nbr_cmap = ListedColormap(nbr_colors)

    # Plot the data with a custom legend
    fig, ax = plt.subplots(figsize=(30, 20))
    im = ax.imshow(cha_sentinel_class.reshape(cha_sentinel_class.shape[1:3]), cmap=nbr_cmap)

    ax.set_title("chlorophyll a",
                fontsize=16)

    cbar = ep.colorbar(im)

    cbar.set_ticks(np.unique(cha_sentinel_class))
    cbar.set_ticklabels(cha_cat_names)

    # Turn off ticks
    ax.set_axis_off()
    #plt.show()
    path = 'static/img/algaeresult/algae_plot_' + location + '.png'
    plt.savefig(path)
Exemplo n.º 4
0
def plot_colormap(dnbr_sentinel_class,location):
    dnbr_cat_names = ["Enhanced Regrowth",
                        "Unburned",
                        "Low Severity",
                        "Moderate Severity",
                        "High Severity"]

    nbr_colors = ["g", "yellowgreen", "peachpuff", "coral", "maroon"]

    nbr_cmap = ListedColormap(nbr_colors)

    # Plot the data with a custom legend
    fig, ax = plt.subplots(figsize=(10, 10))
    im = ax.imshow(dnbr_sentinel_class.reshape(dnbr_sentinel_class.shape[:2]), cmap=nbr_cmap)

    ax.set_title("Sentinel dNBR",
                fontsize=16)

    cbar = ep.colorbar(im)

    cbar.set_ticks(np.unique(dnbr_sentinel_class))
    cbar.set_ticklabels(dnbr_cat_names)

    # Turn off ticks
    ax.set_axis_off()
    path = 'static/img/fireresult/fire_plot_' + location + '.png'
    plt.savefig(path)
Exemplo n.º 5
0
    def plot_continuous_w_window(self, output_file, xy, width, height, bounds, cmap=None, list_colors=None):
        """
        Create a figure of a raster with a zoomed window
        :param output_file: path, file path of the figure
        :param xy: tuple (x,y), origin of the zoomed window, the upper left corner
        :param width: integer, width (number of cells) of the zoomed window
        :param height: integer, height (number of cells) of the zoomed window
        :param bounds: list of float, limits for each color of the colormap
        :param cmap: string, optional, colormap to plot the raster
        :param list_colors: list of colors (str), optional, as alternative to using a colormap
        :returns: saves the figure of the raster
        """
        # xy: upper left corner from the lower left corner of the picture
        raster_np = read_raster(self.path)
        print('Raster has size: ', raster_np.shape)
        fig, ax = plt.subplots(1, 2, figsize=(10, 8))
        fig.tight_layout()

        # Creates a colormap based on the given list_colors, if the cmap is not given
        if cmap is None and list_colors is not None:
            cmap = matplotlib.colors.ListedColormap(list_colors)
        elif cmap is not None and list_colors is None:
            pass
        else:
            print('Error: Insuficient number of arguments')

        norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N)
        ax[0].imshow(raster_np, cmap=cmap, norm=norm)
        rectangle = patches.Rectangle(xy, width, height, fill=False)
        ax[0].add_patch(rectangle)
        plt.setp(ax, xticks=[], yticks=[])

        #  Plot Patch
        box_np = raster_np[xy[1]: xy[1] + height, xy[0]: xy[0] + width]
        im = ax[1].imshow(box_np, cmap=cmap, norm=norm)
        # ax[1].axis('off')
        cbar = ep.colorbar(im, pad=0.3, size='5%')
        cbar.ax.tick_params(labelsize=20)

        fig.savefig(output_file, dpi=600, bbox_inches='tight')
Exemplo n.º 6
0
def test_colorbar_raises_value_error():
    """Test that a non matbplotlib axis object raises an value error."""
    with pytest.raises(AttributeError, match="requires a matplotlib"):
        ep.colorbar(list())
    plt.close()
# -

# This is using a helper function from earthpy to create the mask so we can plot it
# You don't need to do this in your workflow as you can perform the mask in one step
# But we have it here for demonstration purposes
cl_mask = em._create_mask(landsat_qa, all_masked_values)
np.unique(cl_mask)

# Below is the plot of the reclassified raster mask created from the `_create_mask` helper function.

# + {"caption": "Landsat image in which the masked pixels (cloud) are rendered in light purple.", "tags": ["hide"]}
fig, ax = plt.subplots(figsize=(12, 8))

im = ax.imshow(cl_mask, cmap=plt.cm.get_cmap('tab20b', 2))

cbar = ep.colorbar(im)
cbar.set_ticks((0.25, .75))
cbar.ax.set_yticklabels(["Clear Pixels", "Cloud / Shadow Pixels"])

ax.set_title("Landsat Cloud Mask | Light Purple Pixels will be Masked")
ax.set_axis_off()

plt.show()
# -

# ## What Does the Metadata Tell You?
#
# You just explored two layers that potentially have information about cloud cover.
# However what do the values stored in those rasters mean? You can refer to the
# metadata provided by USGS to learn more about how
# each layer in your landsat dataset are both stored and calculated.