Exemplo n.º 1
0
def generate_atlas_set(original_txt_path,atlas_path,l_atlas_path, output_path,phase='train',test_phase_path_list=None, test_phase_l_path_list=None):
    if phase!="test":
        source_path_list,target_path_list,l_source_path_list, l_target_path_list=loading_img_list_from_files(original_txt_path)
    else:
        source_path_list =test_phase_path_list
        l_source_path_list = test_phase_l_path_list
        target_path_list = []
        l_target_path_list = []
    source_path_list =source_path_list+target_path_list
    file_num = len(source_path_list)
    l_source_path_list = l_source_path_list+l_target_path_list
    target_path_list = [atlas_path for _ in range(file_num)]
    l_target_path_list = [l_atlas_path for _ in range(file_num)]
    if l_source_path_list is not None and l_target_path_list is not None:
        assert len(source_path_list) == len(l_source_path_list)
        file_list = [[source_path_list[i], target_path_list[i],l_source_path_list[i],l_target_path_list[i]] for i in range(file_num)]
    else:
        file_list = [[source_path_list[i], target_path_list[i]] for i in range(file_num)]
    output_phase_path = os.path.join(output_path,phase)
    os.makedirs(output_phase_path,exist_ok=True)
    pair_txt_path =  os.path.join(output_phase_path,'pair_path_list.txt')
    fn_txt_path =   os.path.join(output_phase_path,'pair_name_list.txt')
    fname_list = [generate_pair_name([file_list[i][0],file_list[i][1]]) for i in range(file_num)]
    write_list_into_txt(pair_txt_path,file_list)
    write_list_into_txt(fn_txt_path,fname_list)
Exemplo n.º 2
0
def generate_moving_target_dict(pair_path_list_txt, pair_name_list_txt=None):
    pair_path_list = read_img_label_into_list(pair_path_list_txt)
    if pair_name_list_txt is None:
        pair_name_detail_list = [
            generate_pair_name([pair_path[0], pair_path[1]], detail=True)
            for pair_path in pair_path_list
        ]
    else:
        pair_name_detail_list = read_fname_list_from_pair_fname_txt(
            pair_name_list_txt, detail=True)
    moving_name_list = [name_list[1] for name_list in pair_name_detail_list]
    moving_name_set = set(moving_name_list)
    moving_target_dict = {
        moving_name: {
            'm_pth': None,
            "t_pth": [],
            "name": [],
            "l_pth": None
        }
        for moving_name in moving_name_set
    }
    for i in range(len(moving_name_list)):
        has_label = len(pair_path_list[i]) == 4
        moving_name = moving_name_list[i]
        moving_target_dict[moving_name]['m_pth'] = pair_path_list[i][0]
        moving_target_dict[moving_name]["t_pth"].append(pair_path_list[i][1])
        moving_target_dict[moving_name]["name"].append(
            pair_name_detail_list[i])
        if has_label:
            moving_target_dict[
                moving_name_list[i]]["l_pth"] = pair_path_list[i][2]

    return moving_target_dict
Exemplo n.º 3
0
def gen_intra_pair_list(img_path_list,
                        fname_list,
                        label_path_list,
                        pair_num_limit=-1,
                        per_num_limit=-1):
    """
    :param img_path_list: NxK list
    :param label_path_list: NxK list
    :param pair_num_limit: max number of the random pair
    :param per_num_limit: max number of a image being the source image
    :return:
    """
    img_pair_list = []
    pair_name_list = []
    num_img = len(img_path_list)
    for i in range(num_img):
        img_pair_list_tmp = []
        pair_name_list_tmp = []
        for j in range(1, len(img_path_list[i])):
            if label_path_list[i][j] is not None:
                img_pair_list_tmp.append([
                    img_path_list[i][0], img_path_list[i][j],
                    label_path_list[i][0], label_path_list[i][j]
                ])
            else:
                img_pair_list_tmp.append(
                    [img_path_list[i][0], img_path_list[i][j]])
            if fname_list is not None:
                pair_name_list_tmp.append([
                    fname_list[i][0] + "_" + fname_list[i][j],
                    fname_list[i][0], fname_list[i][j]
                ])
            else:
                pair_name_list_tmp.append(
                    generate_pair_name(
                        [img_path_list[i][0], img_path_list[i][j]],
                        detail=True))
        if len(img_pair_list_tmp) > per_num_limit and per_num_limit > -1:
            ind = list(range(len(img_pair_list_tmp)))
            random.shuffle(ind)
            img_pair_list_tmp = [
                img_pair_list_tmp[ind[i]] for i in range(per_num_limit)
            ]
            pair_name_list_tmp = [
                pair_name_list_tmp[ind[i]] for i in range(per_num_limit)
            ]
        img_pair_list += img_pair_list_tmp
        pair_name_list += pair_name_list_tmp
    if len(img_pair_list) > pair_num_limit and pair_num_limit >= 0:
        ind = list(range(len(img_pair_list)))
        random.shuffle(ind)
        img_pair_list = [img_pair_list[ind[i]] for i in range(pair_num_limit)]
        pair_name_list = [
            pair_name_list[ind[i]] for i in range(pair_num_limit)
        ]
        return img_pair_list, pair_name_list
    else:
        return img_pair_list, pair_name_list
Exemplo n.º 4
0
def split_input(original_txt_path):
    source_path_list, target_path_list, l_source_path_list, l_target_path_list = loading_img_list_from_files(
        original_txt_path)
    file_num = len(source_path_list)
    if l_source_path_list is not None and l_target_path_list is not None:
        assert len(source_path_list) == len(l_source_path_list)
        file_list = [[
            source_path_list[i], target_path_list[i], l_source_path_list[i],
            l_target_path_list[i]
        ] for i in range(file_num)]
    else:
        file_list = [[source_path_list[i], target_path_list[i]]
                     for i in range(file_num)]
    fname_list = [
        generate_pair_name([file_list[i][0], file_list[i][1]])
        for i in range(file_num)
    ]
    return file_list, fname_list
Exemplo n.º 5
0
def init_env(output_path,
             source_path_list,
             target_path_list,
             l_source_path_list=None,
             l_target_path_list=None):
    """
    :param task_full_path:  the path of a completed task
    :param source_path: path of the source image
    :param target_path: path of the target image
    :param l_source: path of the label of the source image
    :param l_target: path of the label of the target image
    :return: None
    """
    file_num = len(source_path_list)
    assert len(source_path_list) == len(target_path_list)
    if l_source_path_list is not None and l_target_path_list is not None:
        assert len(source_path_list) == len(l_source_path_list)
        file_list = [[
            source_path_list[i], target_path_list[i], l_source_path_list[i],
            l_target_path_list[i]
        ] for i in range(file_num)]
    else:
        file_list = [[source_path_list[i], target_path_list[i]]
                     for i in range(file_num)]
    os.makedirs(os.path.join(output_path, 'reg/test'), exist_ok=True)
    os.makedirs(os.path.join(output_path, 'reg/res'), exist_ok=True)
    pair_txt_path = os.path.join(output_path, 'reg/test/pair_path_list.txt')
    fn_txt_path = os.path.join(output_path, 'reg/test/pair_name_list.txt')
    fname_list = [
        generate_pair_name([file_list[i][0], file_list[i][1]])
        for i in range(file_num)
    ]
    write_list_into_txt(pair_txt_path, file_list)
    write_list_into_txt(fn_txt_path, fname_list)
    root_path = output_path
    data_task_name = 'reg'
    cur_task_name = 'res'
    return root_path
Exemplo n.º 6
0
def init_test_env(setting_path,
                  output_path,
                  registration_pair_list,
                  pair_name_list=None):
    """
    create test environment, the pair list would be saved into output_path/reg/test/pair_path_list.txt,
     a corresponding auto-parsed filename list would also be saved in output/path/reg/test/pair_name_list.txt

    :param setting_path: the path to load 'cur_task_setting.json' and 'cur_data_setting.json' (optional if the related settings are in cur_task_setting)
    :param output_path: the output path of the task
    :param registration_pair_list: including source_path_list, target_path_list, l_source_path_list, l_target_path_list
    :return: tuple of ParameterDict,  datapro (optional) and tsk_set
    """
    source_path_list, target_path_list, l_source_path_list, l_target_path_list = registration_pair_list
    dm_json_path = os.path.join(setting_path, 'cur_data_setting.json')
    tsm_json_path = os.path.join(setting_path, 'cur_task_setting.json')
    assert os.path.isfile(tsm_json_path), "task setting {} not exists".format(
        tsm_json_path)
    dm = DataTask('task_reg',
                  dm_json_path) if os.path.isfile(dm_json_path) else None
    tsm = ModelTask('task_reg', tsm_json_path)
    file_num = len(source_path_list)
    if l_source_path_list is not None and l_target_path_list is not None:
        file_list = [[
            source_path_list[i], target_path_list[i], l_source_path_list[i],
            l_target_path_list[i]
        ] for i in range(file_num)]
    else:
        file_list = [[source_path_list[i], target_path_list[i]]
                     for i in range(file_num)]
    os.makedirs(os.path.join(output_path, 'reg/test'), exist_ok=True)
    os.makedirs(os.path.join(output_path, 'reg/res'), exist_ok=True)
    pair_txt_path = os.path.join(output_path, 'reg/test/pair_path_list.txt')
    fn_txt_path = os.path.join(output_path, 'reg/test/pair_name_list.txt')
    if pair_name_list is None:
        pair_name_list = [
            generate_pair_name([file_list[i][0], file_list[i][1]], detail=True)
            for i in range(file_num)
        ]
    write_list_into_txt(pair_txt_path, file_list)
    write_list_into_txt(fn_txt_path, pair_name_list)
    data_task_name = 'reg'
    cur_task_name = 'res'
    if dm is not None:
        dm.data_par['datapro']['dataset']['output_path'] = output_path
        dm.data_par['datapro']['dataset']['task_name'] = data_task_name
    tsm.task_par['tsk_set']['task_name'] = cur_task_name
    tsm.task_par['tsk_set']['output_root_path'] = os.path.join(
        output_path, data_task_name)
    if tsm.task_par['tsk_set']['model'] == 'reg_net':
        tsm.task_par['tsk_set']['reg']['mermaid_net'][
            'mermaid_net_json_pth'] = os.path.join(
                setting_path, 'mermaid_nonp_settings.json')
    if tsm.task_par['tsk_set']['model'] == 'mermaid_iter':
        tsm.task_par['tsk_set']['reg']['mermaid_iter'][
            'mermaid_affine_json'] = os.path.join(
                setting_path, 'mermaid_affine_settings.json')
        tsm.task_par['tsk_set']['reg']['mermaid_iter'][
            'mermaid_nonp_json'] = os.path.join(setting_path,
                                                'mermaid_nonp_settings.json')
    return dm, tsm
Exemplo n.º 7
0
def gen_post_aug_pair_list(test_img_path_list,
                           train_img_path_list,
                           test_fname_list=None,
                           train_fname_list=None,
                           test_label_path_list=None,
                           train_label_path_list=None,
                           pair_num_limit=-1,
                           per_num_limit=-1):
    """

    :param test_img_path_list:
    :param train_img_path_list:
    :param test_fname_list:
    :param train_fname_list:
    :param test_label_path_list:
    :param train_label_path_list:
    :param pair_num_limit:
    :param per_num_limit:
    :return:
    """
    img_pair_list = []
    pair_name_list = []
    num_test_img = len(test_img_path_list)
    num_train_img = len(train_img_path_list)
    if test_label_path_list is None:
        test_label_path_list = ["None"] * num_test_img
    if train_label_path_list is None:
        train_label_path_list = ["None"] * num_train_img

    for i in range(num_test_img):
        img_pair_list_tmp = []
        pair_name_list_tmp = []
        for j in range(num_train_img):
            img_pair_list_tmp.append([
                test_img_path_list[i], train_img_path_list[j],
                test_label_path_list[i], train_label_path_list[j]
            ])
            if train_fname_list is not None and test_fname_list is not None:
                pair_name_list_tmp.append([
                    test_fname_list[i] + "_" + train_fname_list[j],
                    test_fname_list[i], train_fname_list[j]
                ])
            else:
                pair_name_list_tmp.append(
                    generate_pair_name(
                        [test_img_path_list[i], train_img_path_list[j]],
                        detail=True))
        if len(img_pair_list_tmp) > per_num_limit and per_num_limit > -1:
            ind = list(range(len(img_pair_list_tmp)))
            random.shuffle(ind)
            img_pair_list_tmp = [
                img_pair_list_tmp[ind[i]] for i in range(per_num_limit)
            ]
            pair_name_list_tmp = [
                pair_name_list_tmp[ind[i]] for i in range(per_num_limit)
            ]
        img_pair_list += img_pair_list_tmp
        pair_name_list += pair_name_list_tmp
    if len(img_pair_list) > pair_num_limit and pair_num_limit >= 0:
        ind = list(range(len(img_pair_list)))
        random.shuffle(ind)
        img_pair_list = [img_pair_list[ind[i]] for i in range(pair_num_limit)]
        pair_name_list = [
            pair_name_list[ind[i]] for i in range(pair_num_limit)
        ]
        return img_pair_list, pair_name_list
    else:
        return img_pair_list, pair_name_list
Exemplo n.º 8
0
            output_path=out_path_list,
            fixed_sz=desired_sz)
indexes = list(range(len(raw_path_list)))

number_of_workers = 8
boundary_list = []
config = dict()
index_partitions = np.array_split(indexes, number_of_workers)
if process_img:
    with Pool(processes=number_of_workers) as pool:
        pool.map(f, index_partitions)
if generate_txt:
    source_list = [f['source'] for f in out_path_list]
    target_list = [f['target'] for f in out_path_list]
    lsource_list = [f['lsource'] for f in out_path_list]
    ltarget_list = [f['ltarget'] for f in out_path_list]
    file_num = len(source_list)
    file_list = [[
        source_list[i], target_list[i], lsource_list[i], ltarget_list[i]
    ] for i in range(file_num)]
    os.makedirs(os.path.join(output_txt_path, 'reg/test'), exist_ok=True)
    os.makedirs(os.path.join(output_txt_path, 'reg/res'), exist_ok=True)
    pair_txt_path = os.path.join(output_txt_path,
                                 'reg/test/pair_path_list.txt')
    fn_txt_path = os.path.join(output_txt_path, 'reg/test/pair_name_list.txt')
    fname_list = [
        generate_pair_name([file_list[i][0], file_list[i][1]])
        for i in range(file_num)
    ]
    write_list_into_txt(pair_txt_path, file_list)
    write_list_into_txt(fn_txt_path, fname_list)