Exemplo n.º 1
0
 def _campaign(work_dir,
               campaign_name,
               app_name,
               params,
               encoder,
               decoder,
               sampler,
               actions,
               stats,
               vary,
               num_samples=0,
               replicas=1,
               db_type='sql',
               call_fn=None):
     my_campaign = uq.Campaign(name=campaign_name, work_dir=work_dir)
     db_location = my_campaign.db_location
     # Add the cannonsim app
     actions_ = Actions(CreateRunDirectory('/tmp'), Encode(encoder),
                        actions, Decode(decoder))
     my_campaign.add_app(name=app_name, params=params, actions=actions_)
     my_campaign.set_app(app_name)
     # Set the campaign to use this sampler
     my_campaign.set_sampler(sampler)
     my_campaign.execute(nsamples=num_samples, sequential=True).collate()
     my_campaign = None
     # Load state in new campaign object
     reloaded_campaign = uq.Campaign(name=campaign_name,
                                     db_location=db_location)
     reloaded_campaign.set_app(app_name)
     reloaded_campaign.execute(nsamples=num_samples).collate()
     # Draw 3 more samples, execute, and collate onto existing dataframe
     #reloaded_campaign.draw_samples(num_samples=num_samples, replicas=replicas)
     # reloaded_campaign.collate()
     if stats is not None:
         reloaded_campaign.apply_analysis(stats)
Exemplo n.º 2
0
def test_mcmc(tmp_path):
    campaign = uq.Campaign(name="mcmc", work_dir=tmp_path)
    params = {
        "x1": {"type": "float", "default": 0.0},
        "x2": {"type": "float", "default": 0.0},
        "out_file": {"type": "string", "default": "output.json"},
        "chain_id": {"type": "integer", "default": 0}
    }
    encoder = uq.encoders.GenericEncoder(template_fname=os.path.abspath(
        "tutorials/rosenbrock.template"), delimiter="$", target_filename="input.json")
    decoder = uq.decoders.JSONDecoder("output.json", ["value"])
    actions = Actions(ExecutePython(rosenbrock))
    campaign.add_app(name="mcmc", params=params, actions=actions)
    vary_init = {
        "x1": [-1.0, 0.0, 1.0, 0.5, 0.1],
        "x2": [1.0, 0.0, 0.5, 1.0, 0.2]
    }

    def q(x, b=1):
        return cp.J(cp.Normal(x['x1'], b), cp.Normal(x['x2'], b))
    np.random.seed(1969)
    sampler = uq.sampling.MCMCSampler(vary_init, q, 'value', 5)
    campaign.set_sampler(sampler)
    iterator = campaign.iterate()
    for _ in range(200):
        next(iterator).collate()
    df = campaign.get_collation_result()
    analysis = uq.analysis.MCMCAnalysis(sampler, 'value')
    result = analysis.analyse(df)
    result.plot_hist('x1')
    result.plot_hist('x2')
    result.plot_chains('x1')
    result.plot_chains('x2')
Exemplo n.º 3
0
def campaign():
    def model(params):
        return {'y': params['x'] + 1}

    actions = Actions(ExecutePython(model))
    sampler = RandomSampler({'x': cp.Uniform(0, 1)})
    campaign = Campaign('test', {'x': {'default': 0}}, actions)
    campaign.set_sampler(sampler)
    return campaign
Exemplo n.º 4
0
def test_gauss_vector_pce(tmpdir):
    # vector version of test_gauss
    # loads json output containing vector data from gauss test

    params = {
        "sigma": {
            "type": "float",
            "min": 0.0,
            "max": 100000.0,
            "default": 0.25
        },
        "mu": {
            "type": "float",
            "min": 0.0,
            "max": 100000.0,
            "default": 1
        },
        "num_steps": {
            "type": "integer",
            "min": 0,
            "max": 100000,
            "default": 10
        },
        "out_file": {
            "type": "string",
            "default": "output.csv"
        },
    }

    vary = {
        "mu": cp.Uniform(1.0, 100.0),
    }

    encoder = uq.encoders.GenericEncoder(
        template_fname='tests/gauss/gauss.template',
        target_filename='gauss_in.json')
    #decoder = JSONDecoder(target_filename='output.csv.json', output_columns=['numbers'])
    decoder = uq.decoders.SimpleCSV(target_filename="output.csv",
                                    output_columns=["numbers"])
    execute = uq.actions.ExecuteLocal(
        os.path.abspath("tests/gauss/gauss_json.py") + " gauss_in.json")
    actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder), execute,
                      Decode(decoder))
    sampler = uq.sampling.PCESampler(vary=vary, polynomial_order=4)
    my_campaign = uq.Campaign(name='gauss_vector', work_dir=tmpdir)
    my_campaign.add_app(name="gauss_vector", params=params, actions=actions)
    my_campaign.set_sampler(sampler)
    my_campaign.execute().collate()

    data = my_campaign.get_collation_result()
    analysis = uq.analysis.PCEAnalysis(sampler=sampler, qoi_cols=["numbers"])
    my_campaign.apply_analysis(analysis)
    results = my_campaign.get_last_analysis()
def test_gp(tmp_path):
    campaign = uq.Campaign(name='test', work_dir=tmp_path)
    params = {
        "temp_init": {
            "type": "float",
            "min": 0.0,
            "max": 100.0,
            "default": 95.0
        },
        "kappa": {
            "type": "float",
            "min": 0.0,
            "max": 0.1,
            "default": 0.025
        },
        "t_env": {
            "type": "float",
            "min": 0.0,
            "max": 40.0,
            "default": 15.0
        },
        "out_file": {
            "type": "string",
            "default": "output.csv"
        }
    }
    output_filename = params["out_file"]["default"]
    output_columns = ["te"]
    # Create an encoder and decoder for PCE test app
    encoder = uq.encoders.GenericEncoder(
        template_fname='tests/cooling/cooling.template',
        delimiter='$',
        target_filename='cooling_in.json')
    decoder = uq.decoders.SimpleCSV(target_filename=output_filename,
                                    output_columns=output_columns)
    execute = ExecuteLocal("{} cooling_in.json".format(
        os.path.abspath("tests/cooling/cooling_model.py")))
    actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder), execute,
                      Decode(decoder))
    vary = {"kappa": cp.Uniform(0.025, 0.075), "t_env": cp.Uniform(15, 25)}
    sampler = uq.sampling.quasirandom.LHCSampler(vary=vary)

    campaign.add_app(name='test_app', params=params, actions=actions)
    campaign.set_app('test_app')
    campaign.set_sampler(sampler)
    campaign.execute(nsamples=100).collate()
    df = campaign.get_collation_result()
    analysis = uq.analysis.gp_analyse.GaussianProcessSurrogate(
        ['kappa', 't_env'], ['te'])
    result = analysis.analyse(df)
Exemplo n.º 6
0
def test_qcgpj(settings):
    cooling_action = uq.actions.ExecuteLocal(
        os.path.abspath("tests/cooling/cooling_model.py") + " cooling_in.json")

    actions = Actions(CreateRunDirectory('/tmp'), Encode(settings['encoder']),
                      cooling_action, Decode(settings['decoder']))

    campaign = uq.Campaign(name='beam',
                           params=settings['params'],
                           actions=actions)
    campaign.set_sampler(settings['cooling_sampler'])

    with QCGPJPool() as qcgpj:
        campaign.execute(pool=qcgpj).collate()

    campaign.apply_analysis(settings['cooling_stats'])
Exemplo n.º 7
0
def test_draw(benchmark):
    params = {
        "S0": {
            "type": "float",
            "default": 997
        },
        "I0": {
            "type": "float",
            "default": 3
        },
        "beta": {
            "type": "float",
            "default": 0.2
        },
        "gamma": {
            "type": "float",
            "default": 0.04,
            "min": 0.0,
            "max": 1.0
        },
        "iterations": {
            "type": "integer",
            "default": 100
        },
        "outfile": {
            "type": "string",
            "default": "output.csv"
        }
    }
    encoder = uq.encoders.GenericEncoder(
        template_fname='tutorials/sir.template',
        delimiter='$',
        target_filename='input.json')
    decoder = uq.decoders.SimpleCSV(target_filename='output.csv',
                                    output_columns=['I'])
    execute = uq.actions.ExecuteLocal('test')
    actions = Actions(execute)
    campaign = uq.Campaign(name='sir_benchmark',
                           params=params,
                           actions=actions)
    pytest.shared = campaign
    vary = {
        "beta": cp.Uniform(0.15, 0.25),
        "gamma": cp.Normal(0.04, 0.001),
    }
    campaign.set_sampler(uq.sampling.RandomSampler(vary=vary))
    benchmark(campaign.draw_samples, 10000)
Exemplo n.º 8
0
def setup_cooling_app():
    params = {
        "temp_init": {
            "type": "float",
            "min": 0.0,
            "max": 100.0,
            "default": 95.0
        },
        "kappa": {
            "type": "float",
            "min": 0.0,
            "max": 0.1,
            "default": 0.025
        },
        "t_env": {
            "type": "float",
            "min": 0.0,
            "max": 40.0,
            "default": 15.0
        },
        "out_file": {
            "type": "string",
            "default": "output.csv"
        }
    }
    output_filename = params["out_file"]["default"]
    output_columns = ["te"]

    encoder = uq.encoders.GenericEncoder(
        template_fname='tests/cooling/cooling.template',
        delimiter='$',
        target_filename='cooling_in.json')
    decoder = uq.decoders.SimpleCSV(target_filename=output_filename,
                                    output_columns=output_columns)

    vary = {"kappa": cp.Uniform(0.025, 0.075), "t_env": cp.Uniform(15, 25)}
    cooling_sampler = uq.sampling.PCESampler(vary=vary, polynomial_order=3)
    cooling_action = uq.actions.ExecuteLocal(
        os.path.abspath("tests/cooling/cooling_model.py") + " cooling_in.json")
    cooling_stats = uq.analysis.PCEAnalysis(sampler=cooling_sampler,
                                            qoi_cols=output_columns)
    actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder),
                      cooling_action, Decode(decoder))
    return params, cooling_sampler, actions, cooling_stats
Exemplo n.º 9
0
def test_surrogate_workflow(tmpdir):
    campaign = uq.Campaign(name='sc', work_dir=tmpdir)
    params = {
        "Pe": {
            "type": "float",
            "min": 1.0,
            "max": 2000.0,
            "default": 100.0
        },
        "f": {
            "type": "float",
            "min": 0.0,
            "max": 10.0,
            "default": 1.0
        },
        "out_file": {
            "type": "string",
            "default": "output.csv"
        }
    }

    output_filename = params["out_file"]["default"]
    output_columns = ["u"]
    encoder = uq.encoders.GenericEncoder(template_fname='tests/sc/sc.template',
                                         delimiter='$',
                                         target_filename='ade_in.json')
    decoder = uq.decoders.SimpleCSV(target_filename=output_filename,
                                    output_columns=output_columns)
    execute = ExecuteLocal("{} ade_in.json".format(
        os.path.abspath('tests/sc/sc_model.py')))
    actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder), execute,
                      Decode(decoder))
    campaign.add_app(name="sc", params=params, actions=actions)

    vary = {"Pe": cp.Uniform(100.0, 200.0), "f": cp.Uniform(0.95, 1.05)}
    sampler = uq.sampling.SCSampler(vary=vary,
                                    polynomial_order=[2, 5],
                                    quadrature_rule="G")
    campaign.set_sampler(sampler)

    campaign.execute().collate()

    results = campaign.analyse(qoi_cols=output_columns)
Exemplo n.º 10
0
def campaign(tmpdir):
    params = {
        "angle": {
            "type": "float",
            "min": 0.0,
            "max": 6.28,
            "default": 0.79
        },
        "air_resistance": {
            "type": "float",
            "min": 0.0,
            "max": 1.0,
            "default": 0.2
        },
        "height": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 1.0
        },
        "time_step": {
            "type": "float",
            "min": 0.0001,
            "max": 1.0,
            "default": 0.01
        },
        "gravity": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 9.8
        },
        "mass": {
            "type": "float",
            "min": 0.0001,
            "max": 1000.0,
            "default": 1.0
        },
        "velocity": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 10.0
        }
    }
    encoder = uq.encoders.GenericEncoder(
        template_fname=f'{TEST_PATH}/cannonsim/test_input/cannonsim.template',
        target_filename='in.cannon')
    decoder = uq.decoders.SimpleCSV(
        target_filename='output.csv',
        output_columns=['Dist', 'lastvx', 'lastvy'])
    execute = ExecuteLocal(
        f"{TEST_PATH}/cannonsim/bin/cannonsim in.cannon output.csv")
    campaign = uq.Campaign(name='test', work_dir=tmpdir)
    actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder), execute,
                      Decode(decoder))
    campaign.add_app(name='test', params=params, actions=actions)
    campaign.set_app('test')
    stats = uq.analysis.BasicStats(qoi_cols=['Dist', 'lastvx', 'lastvy'])
    # Make a random sampler
    vary = {
        "angle": cp.Uniform(0.0, 1.0),
        "height": cp.Uniform(2.0, 10.0),
        "velocity": cp.Normal(10.0, 1.0),
        "mass": cp.Uniform(1.0, 5.0)
    }
    sampler = uq.sampling.RandomSampler(vary=vary)
    campaign.set_sampler(sampler)
    campaign.execute(nsamples=100, sequential=True).collate()
    return campaign
Exemplo n.º 11
0
def test_surrogate_workflow(tmpdir, sampler):
    campaign = uq.Campaign(name='sc', work_dir=tmpdir)
    params = {
        "Pe": {
            "type": "float",
            "min": 1.0,
            "max": 2000.0,
            "default": 100.0
        },
        "f": {
            "type": "float",
            "min": 0.0,
            "max": 10.0,
            "default": 1.0
        },
        "out_file": {
            "type": "string",
            "default": "output.csv"
        },
        "chain_id": {
            "type": "integer",
            "default": 0
        }
    }
    output_filename = params["out_file"]["default"]
    output_columns = ["u"]
    encoder = uq.encoders.GenericEncoder(template_fname='tests/sc/sc.template',
                                         delimiter='$',
                                         target_filename='ade_in.json')
    decoder = uq.decoders.SimpleCSV(target_filename=output_filename,
                                    output_columns=output_columns)
    execute = ExecuteLocal("{} ade_in.json".format(
        os.path.abspath('tests/sc/sc_model.py')))
    actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder), execute,
                      Decode(decoder))
    campaign.add_app(name="sc", params=params, actions=actions)
    campaign.set_sampler(sampler)
    campaign.execute().collate()
    results = campaign.analyse(qoi_cols=output_columns)
    surrogate = results.surrogate()

    df = campaign.get_collation_result()
    for index, row in df.iterrows():
        surrogate_y = surrogate({'Pe': row['Pe'][0], 'f': row['f'][0]})['u']
        model_y = row['u'].values
        assert (pytest.approx(surrogate_y == model_y))

    # Attempt callibration with MCMC
    campaign.add_app(name='surrogate',
                     params=params,
                     actions=Actions(ExecutePython(surrogate)))
    db_location = campaign.db_location
    campaign = None
    reloaded_campaign = uq.Campaign('sc', db_location=db_location)
    assert (reloaded_campaign._active_app_name == 'surrogate')
    u = np.array([
        0., 0.00333333, 0.00666667, 0.01, 0.01333333, 0.01666667, 0.02,
        0.02333333, 0.02666667, 0.03, 0.03333333, 0.03666667, 0.04, 0.04333333,
        0.04666667, 0.05, 0.05333333, 0.05666667, 0.06, 0.06333333, 0.06666667,
        0.07, 0.07333333, 0.07666667, 0.08, 0.08333333, 0.08666667, 0.09,
        0.09333333, 0.09666667, 0.1, 0.10333333, 0.10666667, 0.11, 0.11333333,
        0.11666667, 0.12, 0.12333333, 0.12666667, 0.13, 0.13333333, 0.13666667,
        0.14, 0.14333333, 0.14666667, 0.15, 0.15333333, 0.15666667, 0.16,
        0.16333333, 0.16666667, 0.17, 0.17333333, 0.17666667, 0.18, 0.18333333,
        0.18666667, 0.19, 0.19333333, 0.19666667, 0.2, 0.20333333, 0.20666667,
        0.21, 0.21333333, 0.21666667, 0.22, 0.22333333, 0.22666667, 0.23,
        0.23333333, 0.23666667, 0.24, 0.24333333, 0.24666667, 0.25, 0.25333333,
        0.25666667, 0.26, 0.26333333, 0.26666667, 0.27, 0.27333333, 0.27666667,
        0.28, 0.28333333, 0.28666667, 0.29, 0.29333333, 0.29666667, 0.3,
        0.30333333, 0.30666667, 0.31, 0.31333333, 0.31666667, 0.32, 0.32333333,
        0.32666667, 0.33, 0.33333333, 0.33666667, 0.34, 0.34333333, 0.34666667,
        0.35, 0.35333333, 0.35666667, 0.36, 0.36333333, 0.36666667, 0.37,
        0.37333333, 0.37666667, 0.38, 0.38333333, 0.38666667, 0.39, 0.39333333,
        0.39666667, 0.4, 0.40333333, 0.40666667, 0.41, 0.41333333, 0.41666667,
        0.42, 0.42333333, 0.42666667, 0.43, 0.43333333, 0.43666667, 0.44,
        0.44333333, 0.44666667, 0.45, 0.45333333, 0.45666667, 0.46, 0.46333333,
        0.46666667, 0.47, 0.47333333, 0.47666667, 0.48, 0.48333333, 0.48666667,
        0.49, 0.49333333, 0.49666667, 0.5, 0.50333333, 0.50666667, 0.51,
        0.51333333, 0.51666667, 0.52, 0.52333333, 0.52666667, 0.53, 0.53333333,
        0.53666667, 0.54, 0.54333333, 0.54666667, 0.55, 0.55333333, 0.55666667,
        0.56, 0.56333333, 0.56666667, 0.57, 0.57333333, 0.57666667, 0.58,
        0.58333333, 0.58666667, 0.59, 0.59333333, 0.59666667, 0.6, 0.60333333,
        0.60666667, 0.61, 0.61333333, 0.61666667, 0.62, 0.62333333, 0.62666667,
        0.63, 0.63333333, 0.63666667, 0.64, 0.64333333, 0.64666667, 0.65,
        0.65333333, 0.65666667, 0.66, 0.66333333, 0.66666667, 0.67, 0.67333333,
        0.67666667, 0.68, 0.68333333, 0.68666667, 0.69, 0.69333333, 0.69666667,
        0.7, 0.70333333, 0.70666667, 0.71, 0.71333333, 0.71666667, 0.72,
        0.72333333, 0.72666667, 0.73, 0.73333333, 0.73666667, 0.74, 0.74333333,
        0.74666667, 0.75, 0.75333333, 0.75666667, 0.76, 0.76333333, 0.76666667,
        0.77, 0.77333333, 0.77666667, 0.78, 0.78333333, 0.78666667, 0.79,
        0.79333333, 0.79666667, 0.8, 0.80333333, 0.80666667, 0.81, 0.81333333,
        0.81666667, 0.82, 0.82333333, 0.82666667, 0.83, 0.83333333, 0.83666667,
        0.84, 0.84333333, 0.84666667, 0.85, 0.85333333, 0.85666667, 0.86,
        0.86333333, 0.86666667, 0.87, 0.87333333, 0.87666666, 0.87999999,
        0.88333332, 0.88666664, 0.88999995, 0.89333325, 0.89666653, 0.89999978,
        0.90333296, 0.90666605, 0.90999898, 0.91333163, 0.91666382, 0.91999526,
        0.92332544, 0.9266535, 0.92997806, 0.93329677, 0.93660573, 0.93989844,
        0.94316407, 0.94638456, 0.94952982, 0.95254969, 0.9553606, 0.95782322,
        0.95970536, 0.96062005, 0.9599223, 0.95653717, 0.94867307, 0.933344,
        0.90557333, 0.85706667, 0.774, 0.63333333, 0.39666667, 0.
    ])

    def proposal(x):
        return cp.J(cp.Normal(x['Pe'], 1.0), cp.Normal(x['f'], 0.001))

    def loglikelihood(x):
        return -((u - x)**2).sum()

    init = {'Pe': [110.0], 'f': [2.0]}
    reloaded_campaign.set_sampler(
        uq.sampling.MCMCSampler(init, proposal, 'u', 1, loglikelihood))
    iterator = reloaded_campaign.iterate(mark_invalid=True)
    for _ in range(100):
        next(iterator).collate()
    df = reloaded_campaign.get_collation_result()
    assert (len(df) > 0)
    assert (len(df) <= 100)
    results = reloaded_campaign.analyse()
Exemplo n.º 12
0
        "default": 200000
    },
    "outfile": {
        "type": "string",
        "default": "output.json"
    }
}

encoder = uq.encoders.GenericEncoder(template_fname='beam.template',
                                     delimiter='$',
                                     target_filename='input.json')
decoder = uq.decoders.JSONDecoder(target_filename='output.json',
                                  output_columns=['g1'])
execute = ExecuteLocal('{}/beam input.json'.format(os.getcwd()))

actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder), execute,
                  Decode(decoder))

campaign = uq.Campaign(name='beam', params=params, actions=actions)

vary = {
    "F": cp.Normal(1, 0.1),
    "L": cp.Normal(1.5, 0.01),
    "a": cp.Uniform(0.7, 1.2),
    "D": cp.Triangle(0.75, 0.8, 0.85)
}

campaign.set_sampler(uq.sampling.PCESampler(vary=vary, polynomial_order=1))

with QCGPJPool(
        template_params={'venv': '/home/bartek/.virtualenv/qcgpj7'}) as qcgpj:
    #with QCGPJPool() as qcgpj:
def adaptive_campaign():

    d = 3
    number_of_adaptations = 3
    campaign = uq.Campaign(name='sc', work_dir='/tmp')
    params = {}
    for i in range(d):
        params["x%d" % (i + 1)] = {"type": "float",
                                   "min": 0.0,
                                   "max": 1.0,
                                   "default": 0.5}
    params["out_file"] = {"type": "string", "default": "output.csv"}

    output_filename = params["out_file"]["default"]
    output_columns = ["f"]

    # Create an encoder, decoder and collation element
    encoder = uq.encoders.GenericEncoder(
        template_fname='tests/sc/poly_model_anisotropic.template',
        # template_fname='./sc/poly_model_anisotropic.template',
        delimiter='$',
        target_filename='poly_in.json')
    decoder = uq.decoders.SimpleCSV(target_filename=output_filename,
                                    output_columns=output_columns)
    execute = ExecuteLocal(os.path.abspath("tests/sc/poly_model_anisotropic.py") + " poly_in.json")
    actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder), execute, Decode(decoder))

    # Add the SC app (automatically set as current app)
    campaign.add_app(name="sc",
                     params=params,
                     actions=actions)

    # Create the sampler
    vary = {}
    for i in range(d):
        vary["x%d" % (i + 1)] = cp.Uniform(0, 1)

    sampler = uq.sampling.SCSampler(vary=vary, polynomial_order=1,
                                    quadrature_rule="C",
                                    sparse=True, growth=True,
                                    midpoint_level1=True,
                                    dimension_adaptive=True)
    campaign.set_sampler(sampler)
    campaign.execute().collate()
    data_frame = campaign.get_collation_result()
    analysis = uq.analysis.SCAnalysis(sampler=sampler, qoi_cols=output_columns)

    campaign.apply_analysis(analysis)

    for i in range(number_of_adaptations):
        sampler.look_ahead(analysis.l_norm)

        campaign.execute().collate()
        data_frame = campaign.get_collation_result()
        analysis.adapt_dimension('f', data_frame)

        campaign.apply_analysis(analysis)
    logging.debug(analysis.l_norm)
    logging.debug(sampler.admissible_idx)

    results = campaign.get_last_analysis()

    return sampler, analysis, results
Exemplo n.º 14
0
def sparse_campaign():
    # Set up a fresh campaign called "sc"
    campaign = uq.Campaign(name='sc', work_dir='/tmp')

    # Define parameter space
    params = {
        "x1": {
            "type": "float",
            "min": 0.0,
            "max": 1.0,
            "default": 0.5
        },
        "x2": {
            "type": "float",
            "min": 0.0,
            "max": 1.0,
            "default": 0.5
        },
        "out_file": {
            "type": "string",
            "default": "output.csv"
        }
    }

    output_filename = params["out_file"]["default"]
    output_columns = ["f"]

    # Create an encoder, decoder and collation element
    encoder = uq.encoders.GenericEncoder(template_fname=HOME +
                                         '/sc/sobol.template',
                                         delimiter='$',
                                         target_filename='poly_in.json')
    decoder = uq.decoders.SimpleCSV(target_filename=output_filename,
                                    output_columns=output_columns)
    execute = ExecuteLocal(
        os.path.abspath("tests/sc/sobol_model.py") + " poly_in.json")
    actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder), execute,
                      Decode(decoder))

    # Add the SC app (automatically set as current app)
    campaign.add_app(name="sc", params=params, actions=actions)

    # Create the sampler
    vary = {"x1": cp.Uniform(0.0, 1.0), "x2": cp.Uniform(0.0, 1.0)}

    # To use 'next_level_sparse_grid' below, we must select a nested
    # sparse grid here
    sampler = uq.sampling.SCSampler(vary=vary,
                                    polynomial_order=5,
                                    quadrature_rule="C",
                                    sparse=True,
                                    growth=True)

    # Associate the sampler with the campaign
    campaign.set_sampler(sampler)

    logging.debug('Number of samples:', sampler.n_samples)

    campaign.execute().collate()

    # Post-processing analysis
    analysis = uq.analysis.SCAnalysis(sampler=sampler, qoi_cols=output_columns)
    campaign.apply_analysis(analysis)
    results = campaign.get_last_analysis()

    n_adaptations = 1

    for i in range(n_adaptations):
        # update the sparse grid to the next level
        sampler.next_level_sparse_grid()
        campaign.execute().collate()

    campaign.apply_analysis(analysis)
    results = campaign.get_last_analysis()

    return sampler, analysis, results
Exemplo n.º 15
0
    params["a%d" % (i + 1)] = {
        "type": "float",
        "min": 0.0,
        "max": 100.0,
        "default": a[i]
    }

# create encoder, decoder, and execute locally
encoder = uq.encoders.GenericEncoder(template_fname=HOME +
                                     '/model/func.template',
                                     delimiter='$',
                                     target_filename='in.json')
decoder = uq.decoders.SimpleCSV(target_filename=output_filename,
                                output_columns=output_columns)
execute = ExecuteLocal('{}/model/func.py in.json'.format(os.getcwd()))
actions = Actions(CreateRunDirectory(root=WORK_DIR), Encode(encoder), execute,
                  Decode(decoder))

# uncertain variables
vary = {}
for i in range(D):
    vary["x%d" % (i + 1)] = cp.Uniform(0, 1)

# Latin Hypercube sampler
my_sampler = uq.sampling.quasirandom.LHCSampler(vary=vary, max_num=1000)

# EasyVVUQ Campaign
campaign = uq.Campaign(name='func',
                       params=params,
                       actions=actions,
                       work_dir=WORK_DIR,
                       db_location=DB_LOCATION)
Exemplo n.º 16
0
def test_multiencoder(tmpdir):

    # Set up a fresh campaign called "cannon"
    my_campaign = uq.Campaign(name='cannon', work_dir=tmpdir)

    # Define parameter space for the cannonsim app
    params = {
        "angle": {
            "type": "float",
            "min": 0.0,
            "max": 6.28,
            "default": 0.79
        },
        "air_resistance": {
            "type": "float",
            "min": 0.0,
            "max": 1.0,
            "default": 0.2
        },
        "height": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 1.0
        },
        "time_step": {
            "type": "float",
            "min": 0.0001,
            "max": 1.0,
            "default": 0.01
        },
        "gravity": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 9.8
        },
        "mass": {
            "type": "float",
            "min": 0.0001,
            "max": 1000.0,
            "default": 1.0
        },
        "velocity": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 10.0
        }
    }

    # Specify a complicated directory hierarchy to test the DirectoryBuilder encoder
    directory_tree = {
        'dir1': {
            'dir2': {
                'dir3': None,
                'dir4': None
            }
        },
        'dir5': {
            'dir6': None
        }
    }

    # Create a multiencoder combining a directory build, and two template encodes
    multiencoder = uq.encoders.MultiEncoder(
        uq.encoders.DirectoryBuilder(tree=directory_tree),
        uq.encoders.GenericEncoder(
            template_fname='tests/cannonsim/test_input/cannonsim.template',
            delimiter='#',
            target_filename='dir1/dir2/dir3/in.cannon'),
        uq.encoders.GenericEncoder(
            template_fname='tests/cannonsim/test_input/cannonsim.template',
            delimiter='#',
            target_filename='dir5/dir6/in.cannon.2'))

    # Create decoder and collater for the cannonsim app
    decoder = uq.decoders.SimpleCSV(
        target_filename='output.csv',
        output_columns=['Dist', 'lastvx', 'lastvy'])
    actions = Actions(
        CreateRunDirectory('/tmp'), Encode(multiencoder),
        uq.actions.ExecuteLocal(
            os.path.abspath(
                "tests/cannonsim/bin/cannonsim dir5/dir6/in.cannon.2") +
            " output.csv"), Decode(decoder))
    # Add the cannonsim app
    my_campaign.add_app(name="cannonsim", params=params, actions=actions)

    # Set the active app to be cannonsim (this is redundant when only one app
    # has been added)
    my_campaign.set_app("cannonsim")

    # Set up sampler
    sweep1 = {
        "angle": [0.1, 0.2, 0.3],
        "height": [2.0, 10.0],
        "velocity": [10.0, 10.1, 10.2]
    }
    sampler = uq.sampling.BasicSweep(sweep=sweep1)

    # Set the campaign to use this sampler
    my_campaign.set_sampler(sampler)

    reloaded_campaign = uq.Campaign('cannon',
                                    db_location=my_campaign.db_location)

    my_campaign.execute(sequential=True).collate()

    # Create a BasicStats analysis element and apply it to the campaign
    stats = uq.analysis.BasicStats(qoi_cols=['Dist', 'lastvx', 'lastvy'])
    my_campaign.apply_analysis(stats)
Exemplo n.º 17
0
def test_anisotropic_order(tmpdir):

    # Set up a fresh campaign called "sc"
    my_campaign = uq.Campaign(name='sc',
                              work_dir=tmpdir,
                              db_location='sqlite:///')

    # Define parameter space
    params = {
        "Pe": {
            "type": "float",
            "min": 1.0,
            "max": 2000.0,
            "default": 100.0
        },
        "f": {
            "type": "float",
            "min": 0.0,
            "max": 10.0,
            "default": 1.0
        },
        "out_file": {
            "type": "string",
            "default": "output.csv"
        }
    }

    output_filename = params["out_file"]["default"]
    output_columns = ["u"]

    # Create an encoder, decoder and collation element
    encoder = uq.encoders.GenericEncoder(template_fname='tests/sc/sc.template',
                                         delimiter='$',
                                         target_filename='ade_in.json')
    decoder = uq.decoders.SimpleCSV(target_filename=output_filename,
                                    output_columns=output_columns)
    execute = ExecuteLocal("{} ade_in.json".format(
        os.path.abspath('tests/sc/sc_model.py')))
    actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder), execute,
                      Decode(decoder))

    # Add the SC app (automatically set as current app)
    my_campaign.add_app(name="sc", params=params, actions=actions)

    # Create the sampler
    vary = {"Pe": cp.Uniform(100.0, 200.0), "f": cp.Uniform(0.95, 1.05)}

    # different orders for the 2 parameters
    sampler = uq.sampling.SCSampler(vary=vary,
                                    polynomial_order=[2, 5],
                                    quadrature_rule="G")

    # Associate the sampler with the campaign
    my_campaign.set_sampler(sampler)

    my_campaign.execute().collate()

    # Post-processing analysis
    analysis = uq.analysis.SCAnalysis(sampler=sampler, qoi_cols=output_columns)

    my_campaign.apply_analysis(analysis)

    results = my_campaign.get_last_analysis()

    return results, sampler, analysis
Exemplo n.º 18
0
def setup_cannonsim_app():
    params = {
        "angle": {
            "type": "float",
            "min": 0.0,
            "max": 6.28,
            "default": 0.79
        },
        "air_resistance": {
            "type": "float",
            "min": 0.0,
            "max": 1.0,
            "default": 0.2
        },
        "height": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 1.0
        },
        "time_step": {
            "type": "float",
            "min": 0.0001,
            "max": 1.0,
            "default": 0.01
        },
        "gravity": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 9.8
        },
        "mass": {
            "type": "float",
            "min": 0.0001,
            "max": 1000.0,
            "default": 1.0
        },
        "velocity": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 10.0
        }
    }

    encoder = uq.encoders.GenericEncoder(
        template_fname='tests/cannonsim/test_input/cannonsim.template',
        delimiter='#',
        target_filename='in.cannon')
    decoder = uq.decoders.SimpleCSV(
        target_filename='output.csv',
        output_columns=['Dist', 'lastvx', 'lastvy'])

    vary = {
        "gravity": cp.Uniform(1.0, 9.8),
        "mass": cp.Uniform(2.0, 10.0),
    }
    cannon_sampler = uq.sampling.RandomSampler(vary=vary, max_num=5)
    cannon_action = uq.actions.ExecuteLocal(
        os.path.abspath("tests/cannonsim/bin/cannonsim") +
        " in.cannon output.csv")
    cannon_stats = uq.analysis.BasicStats(
        qoi_cols=['Dist', 'lastvx', 'lastvy'])
    actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder),
                      cannon_action, Decode(decoder))
    return params, cannon_sampler, actions, cannon_stats
Exemplo n.º 19
0
def test_multisampler(tmpdir):

    # Set up a fresh campaign called "cannon"
    my_campaign = uq.Campaign(name='cannon', work_dir=tmpdir)

    # Define parameter space for the cannonsim app
    params = {
        "angle": {
            "type": "float",
            "min": 0.0,
            "max": 6.28,
            "default": 0.79
        },
        "air_resistance": {
            "type": "float",
            "min": 0.0,
            "max": 1.0,
            "default": 0.2
        },
        "height": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 1.0
        },
        "time_step": {
            "type": "float",
            "min": 0.0001,
            "max": 1.0,
            "default": 0.01
        },
        "gravity": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 9.8
        },
        "mass": {
            "type": "float",
            "min": 0.0001,
            "max": 1000.0,
            "default": 1.0
        },
        "velocity": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 10.0
        }
    }

    # Create an encoder, decoder and collater for the cannonsim app
    encoder = uq.encoders.GenericEncoder(
        template_fname='tests/cannonsim/test_input/cannonsim.template',
        delimiter='#',
        target_filename='in.cannon')
    decoder = uq.decoders.SimpleCSV(
        target_filename='output.csv',
        output_columns=['Dist', 'lastvx', 'lastvy'])
    execute = uq.actions.ExecuteLocal(
        os.path.abspath("tests/cannonsim/bin/cannonsim") +
        " in.cannon output.csv")
    actions = Actions(CreateRunDirectory('/tmp'), Encode(encoder), execute,
                      Decode(decoder))
    # Add the cannonsim app
    my_campaign.add_app(name="cannonsim", params=params, actions=actions)

    # Set the active app to be cannonsim (this is redundant when only one app
    # has been added)
    my_campaign.set_app("cannonsim")

    # Set up samplers
    sweep1 = {
        "angle": [0.1, 0.2, 0.3],
        "height": [2.0, 10.0],
        "velocity": [10.0, 10.1, 10.2]
    }
    sampler1 = uq.sampling.BasicSweep(sweep=sweep1)

    sweep2 = {"air_resistance": [0.2, 0.3, 0.4]}
    sampler2 = uq.sampling.BasicSweep(sweep=sweep2)

    vary = {
        "gravity": cp.Uniform(1.0, 9.8),
        "mass": cp.Uniform(2.0, 10.0),
    }
    sampler3 = uq.sampling.RandomSampler(vary=vary, max_num=5)

    # Make a multisampler
    multisampler = uq.sampling.MultiSampler(sampler1, sampler2, sampler3)

    # Set the campaign to use this sampler
    my_campaign.set_sampler(multisampler)

    # Test reloading
    reloaded_campaign = uq.Campaign('cannon',
                                    db_location=my_campaign.db_location)

    my_campaign.execute(sequential=True).collate()

    # Create a BasicStats analysis element and apply it to the campaign
    stats = uq.analysis.BasicStats(qoi_cols=['Dist', 'lastvx', 'lastvy'])
    my_campaign.apply_analysis(stats)