Exemplo n.º 1
0
def data_gsm_unchecked(request):
    '''Get the unchecked GSM data.
    '''
    platform = int(request.matchdict['id'])
    
    if request.GET['format'] == 'geojson':
        # Query
        query = select([
            DataGsm.id.label('id'),
            DataGsm.lat,
            DataGsm.lon,
            DataGsm.date
        ]).where(DataGsm.platform_ == platform).where(DataGsm.checked == False
        ).order_by(desc(DataGsm.date)).limit(1000)
        # Create list of features from query result
        features = [
            {
                'type':'Feature',
                'properties':{'date':str(date)},
                'geometry':{'type':'Point', 'coordinates':[float(lon),float(lat)]},
                'id':id_
            }
        for id_, lat, lon, date in DBSession.execute(query).fetchall()]
        transaction.commit()
        result = {'type':'FeatureCollection', 'features':features}
        return result
        
    elif request.GET['format'] == 'json':
        # Query
        query = select([
            DataGsm.id.label('id'),
            DataGsm.lat.label('lat'),
            DataGsm.lon.label('lon'),
            DataGsm.ele.label('ele'),
            DataGsm.date.label('date')]
        ).where(DataGsm.platform_ == platform
        ).where(DataGsm.checked == False
        ).order_by(desc(DataGsm.date)).limit(1000)
        data = DBSession.execute(query).fetchall()
        # Load data from the DB then
        # compute the distance between 2 consecutive points.
        df = pd.DataFrame.from_records(data, columns=data[0].keys(), coerce_float=True)
        X1 = df.iloc[:-1][['lat', 'lon']].values
        X2 = df.iloc[1:][['lat', 'lon']].values
        df['dist'] = np.append(haversine(X1, X2), 0).round(3)
        # Compute the speed
        df['speed'] = (df['dist']/((df['date']-df['date'].shift(-1)).fillna(1)/np.timedelta64(1, 'h'))).round(3)
        # Values to import : the first per hour
        ids = df.set_index('date').resample('1H', how='first').dropna().id.values
        df['import'] = df.id.isin(ids)
        df['date'] = df['date'].apply(str) 
        # Fill NaN
        df.fillna(value={'ele':-999}, inplace=True)
        return df.to_dict('records')
Exemplo n.º 2
0
def argos_unchecked(request):
    """Returns list of unchecked locations for a given ptt."""
    # ptt is a mandatory parameter.
    try:
        ptt = int(request.GET['ptt'])
    except:
        raise HTTPBadRequest()

    # Get all unchecked data for this ptt and this individual
    # Type 0 = Argos data, type 1 = GPS data
    argos_data = select([
        Argos.pk.label('pk'), 
        Argos.date,
        Argos.lat,
        Argos.lon,
        Argos.lc,
        literal_column('0').label('type')
    ]).where(Argos.checked == False).where(Argos.ptt == ptt)
    gps_data = select([
        Gps.pk.label('pk'),
        Gps.date,
        Gps.lat,
        Gps.lon,
        literal_column('NULL').label('lc'),
        literal_column('1').label('type')
    ]).where(Gps.checked == False).where(Gps.ptt == ptt)
    unchecked = union(argos_data, gps_data).alias('unchecked')
    
    # ind_id is a facultative parameter
    try:
        ind_id = int(request.GET['ind_id'])
        all_data = select([
            unchecked.c.pk,
            unchecked.c.date,
            unchecked.c.lat,
            unchecked.c.lon,
            unchecked.c.lc,
            unchecked.c.type
        ]).select_from(unchecked
            .join(SatTrx, SatTrx.ptt == ptt)
            .join(ProtocolIndividualEquipment,
                and_(
                    SatTrx.id == ProtocolIndividualEquipment.sat_id,
                    unchecked.c.date >= ProtocolIndividualEquipment.begin_date,
                    or_(
                        unchecked.c.date < ProtocolIndividualEquipment.end_date,
                        ProtocolIndividualEquipment.end_date == None
                    )
                )
            )
        ).where(ProtocolIndividualEquipment.ind_id == ind_id)
    except KeyError or TypeError:
        all_data = select([
            unchecked.c.pk,
            unchecked.c.date,
            unchecked.c.lat,
            unchecked.c.lon,
            unchecked.c.lc,
            unchecked.c.type
        ])
        ind_id = None

    # Initialize json object
    result = {'ptt':{}, 'locations':[], 'indiv':{}}
   
    # Load data from the DB then
    # compute the distance between 2 consecutive points.
    data = DBSession.execute(all_data.order_by(desc(all_data.c.date))).fetchall()
    df = pd.DataFrame.from_records(data, columns=data[0].keys(), coerce_float=True)
    X1 = df.ix[:,['lat', 'lon']].values[:-1,:]
    X2 = df.ix[1:,['lat', 'lon']].values
    dist = pd.Series(np.append(haversine(X1, X2).round(3), 0), name='dist')
    df = pd.concat([df['pk'], df['date'].apply(lambda x: str(x)), df['lat'], df['lon'], df['lc'], df['type'], dist], axis=1)
    result['locations'] = df.to_dict('records')

    # Get informations for this ptt
    ptt_infos = select([SatTrx.ptt, SatTrx.manufacturer, SatTrx.model]).where(SatTrx.ptt == ptt)
    result['ptt']['ptt'], result['ptt']['manufacturer'], result['ptt']['model'] = DBSession.execute(ptt_infos).fetchone()

    # Get informations for the individual
    if ind_id is not None:
        query = select([
            Individual.id.label('id'),
            Individual.age.label('age'),
            Individual.sex.label('sex'),
            Individual.specie.label('specie'),
            Individual.monitoring_status.label('monitoring_status'), 
            Individual.origin.label('origin'),
            Individual.survey_type.label('survey_type')
        ]).where(Individual.id == ind_id)
        result['indiv'] = dict(DBSession.execute(query).fetchone())
        # Last known location
        c = V_Individuals_LatLonDate.c
        query = select([c.lat, c.lon, c.date]).where(c.ind_id == ind_id).order_by(desc(c.date)).limit(1)
        lat, lon, date = DBSession.execute(query).fetchone()
        result['indiv']['last_loc'] = {'date':str(date), 'lat':float(lat), 'lon':float(lon)}
    return result