def test_inf_prediction():
    '''Test for function which classifies images as with and
       without inflection'''
    file_name = (
        '../musical-robot/musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff')
    frames = edge_detection.input_file(file_name)
    crop_frame = []
    for frame in frames:
        crop_frame.append(frame[35:85, 40:120])
    n_samples = 9
    n_rows = 3
    n_columns = 3
    labeled_samples = edge_detection.edge_detection(crop_frame, n_samples)
    regprops = edge_detection.regprop(labeled_samples, crop_frame, n_rows,
                                      n_columns)
    sorted_regprops = edge_detection.sort_regprops(regprops, n_columns, n_rows)
    temp, plate_temp = edge_detection.sample_temp(sorted_regprops, crop_frame)
    data_encoding.noise_image(temp, plate_temp, 'musicalrobot/data/')
    file_path = 'musicalrobot/data/noise_images/'
    result_df, nonoise_index = data_encoding.noise_prediction(file_path)
    data_encoding.inf_images(temp, plate_temp, 2, nonoise_index,
                             'musicalrobot/data/')
    file_path = 'musicalrobot/data/inf_images/'
    inf_pred, inf_index = data_encoding.inf_prediction(file_path)
    assert isinstance(inf_pred, dict), 'Output is not a dictionary'
    assert isinstance(inf_index, list), 'Output is not a list'
    return
def test_plot_to_array():
    '''Test for function which generates a gray images
       of the temperature profile'''
    file_name = (
        '../musical-robot/musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff')
    frames = edge_detection.input_file(file_name)
    crop_frame = []
    for frame in frames:
        crop_frame.append(frame[35:85, 40:120])
    n_samples = 9
    n_rows = 3
    n_columns = 3
    labeled_samples = edge_detection.edge_detection(crop_frame, n_samples)
    regprops = edge_detection.regprop(labeled_samples, crop_frame, n_rows,
                                      n_columns)
    sorted_regprops = edge_detection.sort_regprops(regprops, n_columns, n_rows)
    temp, plate_temp = edge_detection.sample_temp(sorted_regprops, crop_frame)
    for i in range(len(temp)):
        x = plate_temp[i]
        y = temp[i]
        length = 2
        gray_image = data_encoding.plot_to_array(x, y, length)
        assert isinstance(gray_image, np.ndarray), 'Output is not an array'
        assert len(gray_image) == 200, 'Incorrectly sized output array'
    return
Exemplo n.º 3
0
def test_sample_peaks():
    ''' Test for function which obtains the peaks in the sample temperature profile'''
    file_name = (
        '../musical-robot/musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff')
    frames = edge_detection.input_file(file_name)
    crop_frame = []
    for frame in frames:
        crop_frame.append(frame[35:85, 40:120])
    # flip_frames = edge_detection.flip_frame(crop_frame)
    n_samples = 9
    n_rows = 3
    n_columns = 3
    labeled_samples = edge_detection.edge_detection(crop_frame, n_samples)
    regprops = edge_detection.regprop(labeled_samples, crop_frame, n_rows,
                                      n_columns)
    sorted_regprops = edge_detection.sort_regprops(regprops, n_columns, n_rows)
    temp, plate_temp = edge_detection.sample_temp(sorted_regprops, crop_frame)
    s_peaks, s_infl = edge_detection.peak_detection(temp, plate_temp, 'Sample')
    assert isinstance(s_peaks, list), 'Output is not a list'
    assert isinstance(s_infl, list), 'Output is not a list'
    assert len(s_peaks) == n_samples, 'Wrong number of peaks detected'
    assert len(
        s_infl
    ) == n_samples, 'Wrong number of inflection temperatures detected'
    return
Exemplo n.º 4
0
def test_sample_temp():
    '''Test for function which obtaines temperature of samples and plate temperature'''
    file_name = (
        '../musical-robot/musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff')
    frames = edge_detection.input_file(file_name)
    crop_frame = []
    for frame in frames:
        crop_frame.append(frame[35:85, 40:120])
    # flip_frames = edge_detection.flip_frame(crop_frame)
    n_samples = 9
    n_rows = 3
    n_columns = 3
    labeled_samples = edge_detection.edge_detection(crop_frame, n_samples)
    regprops = edge_detection.regprop(labeled_samples, crop_frame, n_rows,
                                      n_columns)
    sorted_regprops = edge_detection.sort_regprops(regprops, n_columns, n_rows)
    temp, plate_temp = edge_detection.sample_temp(sorted_regprops, crop_frame)
    assert isinstance(temp, list), 'Sample temperature output is not a list'
    assert isinstance(plate_temp,
                      list), 'Plate temperature output is not a list'
    assert len(
        temp) == n_samples, 'Temperature obtained for wrong number of samples'
    assert len(
        plate_temp
    ) == n_samples, 'Temperature obtained for wrong number of plate locations'
    return
def test_final_result():
    '''Test for the wrappung function'''
    file_name = (
        '../musical-robot/musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff')
    frames = edge_detection.input_file(file_name)
    crop_frame = []
    for frame in frames:
        crop_frame.append(frame[35:85, 40:120])
    n_samples = 9
    n_rows = 3
    n_columns = 3
    labeled_samples = edge_detection.edge_detection(crop_frame, n_samples)
    regprops = edge_detection.regprop(labeled_samples, crop_frame, n_rows,
                                      n_columns)
    sorted_regprops = edge_detection.sort_regprops(regprops, n_columns, n_rows)
    temp, plate_temp = edge_detection.sample_temp(sorted_regprops, crop_frame)
    path = 'musicalrobot/data/'
    result_df = data_encoding.final_result(temp, plate_temp, path)
    assert isinstance(result_df, pd.DataFrame), 'Output is not a dataframe'
    assert len(result_df) == len(temp), 'Incorrect number of samples classfied'
    return
def test_derivative():
    '''Test for function which calculates the derivative
       of the temperature profile for neural network input'''
    file_name = (
        '../musical-robot/musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff')
    frames = edge_detection.input_file(file_name)
    crop_frame = []
    for frame in frames:
        crop_frame.append(frame[35:85, 40:120])
    n_samples = 9
    n_rows = 3
    n_columns = 3
    labeled_samples = edge_detection.edge_detection(crop_frame, n_samples)
    regprops = edge_detection.regprop(labeled_samples, crop_frame, n_rows,
                                      n_columns)
    sorted_regprops = edge_detection.sort_regprops(regprops, n_columns, n_rows)
    temp, plate_temp = edge_detection.sample_temp(sorted_regprops, crop_frame)
    derivative_list = data_encoding.derivative(temp, plate_temp)
    assert isinstance(derivative_list, list), 'Output is not a list'
    assert len(derivative_list) == len(temp), 'Incorrect number of derivatives'
    return
def test_noise_prediction():
    '''Test for function which classifies images as noisy or
       not noisy'''
    file_name = (
        '../musical-robot/musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff')
    frames = edge_detection.input_file(file_name)
    crop_frame = []
    for frame in frames:
        crop_frame.append(frame[35:85, 40:120])
    n_samples = 9
    n_rows = 3
    n_columns = 3
    labeled_samples = edge_detection.edge_detection(crop_frame, n_samples)
    regprops = edge_detection.regprop(labeled_samples, crop_frame, n_rows,
                                      n_columns)
    sorted_regprops = edge_detection.sort_regprops(regprops, n_columns, n_rows)
    temp, plate_temp = edge_detection.sample_temp(sorted_regprops, crop_frame)
    data_encoding.noise_image(temp, plate_temp, 'musicalrobot/data/')
    file_path = 'musicalrobot/data/noise_images/'
    result_df, nonoise_index = data_encoding.noise_prediction(file_path)
    assert isinstance(result_df, pd.DataFrame), 'Output is not a dataframe'
    assert len(result_df) == len(
        temp), 'Incorrect number of samples in the dataframe'
    assert isinstance(nonoise_index, list), 'Output is not a list'
Exemplo n.º 8
0
def test_sort_regprops():
    '''Test for function which sorts the dataframes in the dictionary regprops'''
    file_name = (
        '../musical-robot/musicalrobot/data/10_17_19_PPA_Shallow_plate.tiff')
    frames = edge_detection.input_file(file_name)
    crop_frame = []
    for frame in frames:
        crop_frame.append(frame[35:85, 40:120])
    # flip_frames = edge_detection.flip_frame(crop_frame)
    n_samples = 9
    n_rows = 3
    n_columns = 3
    labeled_samples = edge_detection.edge_detection(crop_frame, n_samples)
    regprops = edge_detection.regprop(labeled_samples, crop_frame, n_rows,
                                      n_columns)
    sorted_regprops = edge_detection.sort_regprops(regprops, n_columns, n_rows)
    assert isinstance(sorted_regprops, dict), 'Output is not a dictionary'
    assert len(sorted_regprops) == len(
        crop_frame
    ), 'The number of dataframes in the dictionary is not equal to number of frames input.'
    for i in range(len(crop_frame)):
        assert len(sorted_regprops[i]
                   ) == n_samples, 'Wrong number of samples detected'
    return