Exemplo n.º 1
0
def load_xydataset_from_file(path,
                             dtype=torch.float32,
                             batch_size=None,
                             shuffle=False):
    dataset = XYDataset.from_file(path=path, dtype=dtype)
    dataloader = DataLoader(dataset,
                            batch_size=batch_size or len(dataset),
                            shuffle=shuffle)
    return dataset, dataloader
Exemplo n.º 2
0
x = pd.read_csv(data_path.joinpath('x.csv'))
y = pd.read_csv(data_path.joinpath('y.csv'))

# %% Split data to training and test subsets

x_train, x_test, y_train, y_test = train_test_split(x,
                                                    y,
                                                    test_size=0.33,
                                                    random_state=5000,
                                                    stratify=y)

# %% Create training dataset

training_dataset = XYDataset(
    torch.from_numpy(x_train.to_numpy(dtype=torch_to_np_types[dtype])),
    torch.from_numpy(y_train.to_numpy(dtype=torch_to_np_types[dtype])))

training_dataset.x = \
    (training_dataset.x - torch.mean(training_dataset.x, dim=0, keepdim=True))/ \
    torch.std(training_dataset.x, dim=0, keepdim=True, unbiased=False)

# %% Create test dataset

test_dataset = XYDataset(
    torch.from_numpy(x_test.to_numpy(dtype=torch_to_np_types[dtype])),
    torch.from_numpy(y_test.to_numpy(dtype=torch_to_np_types[dtype])))

test_dataset.x = \
    (test_dataset.x - torch.mean(test_dataset.x, dim=0, keepdim=True))/ \
    torch.std(test_dataset.x, dim=0, keepdim=True, unbiased=False)
Exemplo n.º 3
0
import unittest

from torch.autograd import grad
from torch.distributions import Normal
from torch.utils.data import DataLoader

from eeyore.constants import loss_functions
from eeyore.datasets import XYDataset
from eeyore.models.mlp import Hyperparameters, MLP
from eeyore.stats import binary_cross_entropy

# %% Compute MLP log-target using eeyore API version

# Load XOR data

xor = XYDataset.from_eeyore('xor', dtype=torch.float64)

data = xor.x
labels = xor.y

dataloader = DataLoader(xor, batch_size=4, shuffle=False)

# Setup MLP model

hparams = Hyperparameters([2, 2, 1])
model = MLP(loss=loss_functions['binary_classification'],
            hparams=hparams,
            dtype=torch.float64)
model.prior = Normal(torch.zeros(9, dtype=torch.float64),
                     100 * torch.ones(9, dtype=torch.float64))
Exemplo n.º 4
0
from datetime import timedelta
from timeit import default_timer as timer
from torch.distributions import Normal
from torch.utils.data import DataLoader

import kanga.plots as ps

from eeyore.datasets import XYDataset
from eeyore.models import logistic_regression
from eeyore.samplers import RAM
from eeyore.stats import binary_cross_entropy

# %% Load and standardize Swiwss banknote data

banknotes = XYDataset.from_eeyore('banknotes', dtype=torch.float32)
banknotes.x = banknotes.x[:, :4]
banknotes.x = \
    (banknotes.x - torch.mean(banknotes.x, dim=0, keepdim=True))/ \
    torch.std(banknotes.x, dim=0, keepdim=True, unbiased=False)

dataloader = DataLoader(banknotes, batch_size=len(banknotes))

# %% Setup logistic regression model

hparams = logistic_regression.Hyperparameters(input_size=4, bias=False)
model = logistic_regression.LogisticRegression(
    loss=lambda x, y: binary_cross_entropy(x, y, reduction='sum'),
    hparams=hparams,
    dtype=torch.float32)
model.prior = Normal(torch.zeros(model.num_params(), dtype=model.dtype),
Exemplo n.º 5
0
import kanga.plots as ps

from eeyore.constants import loss_functions
from eeyore.datasets import XYDataset
from eeyore.models import mlp
from eeyore.samplers import MALA

# %% Avoid issuing memory warning due to number of plots

plt.rcParams.update({'figure.max_open_warning': 0})

# %% Load Iris data

iris = XYDataset.from_eeyore('iris',
                             yndmin=1,
                             dtype=torch.float32,
                             yonehot=True)
dataloader = DataLoader(iris, batch_size=len(iris), shuffle=True)

# %% Setup MLP model

hparams = mlp.Hyperparameters(dims=[4, 3, 3],
                              activations=[torch.sigmoid, None])
model = mlp.MLP(loss=loss_functions['multiclass_classification'],
                hparams=hparams,
                dtype=torch.float32)
model.prior = Normal(
    torch.zeros(model.num_params(), dtype=model.dtype),
    (3 * torch.ones(model.num_params(), dtype=model.dtype)).sqrt())

# %% Setup MALA sampler
Exemplo n.º 6
0
# %% Import packages

from torch.utils.data import DataLoader

from eeyore.datasets import XYDataset

from bnn_mcmc_examples.examples.mlp.exact_xor.constants import dtype

# %% Load dataloader

dataset = XYDataset.from_eeyore('xor', dtype=dtype)

dataloader = DataLoader(dataset, batch_size=len(dataset))
Exemplo n.º 7
0
x_train, x_test, y_train, y_test = train_test_split(x,
                                                    y,
                                                    test_size=0.33,
                                                    random_state=7000,
                                                    stratify=y)

# %% Drop covariate 'year'

x_train = x_train.drop(['year'], axis=1)
x_test = x_test.drop(['year'], axis=1)

# %% Create training dataset

training_dataset = XYDataset(
    torch.from_numpy(x_train.to_numpy(dtype=torch_to_np_types[dtype])),
    torch.from_numpy(y_train.to_numpy(dtype=torch_to_np_types[dtype])))

training_dataset.x = \
    (training_dataset.x - torch.mean(training_dataset.x, dim=0, keepdim=True))/ \
    torch.std(training_dataset.x, dim=0, keepdim=True, unbiased=False)

training_dataset.y = one_hot(training_dataset.y.squeeze(-1).long()).to(
    training_dataset.y.dtype)

# %% Create test dataset

test_dataset = XYDataset(
    torch.from_numpy(x_test.to_numpy(dtype=torch_to_np_types[dtype])),
    torch.from_numpy(y_test.to_numpy(dtype=torch_to_np_types[dtype])))
Exemplo n.º 8
0
# https://discuss.pytorch.org/t/mnist-normalization/49080/2
# https://gist.github.com/kdubovikov/eb2a4c3ecadd5295f68c126542e59f0a

training_dataset = datasets.MNIST(root=data_root,
                                  train=True,
                                  download=False,
                                  transform=None)

# print("Mean = ", training_dataset.data.float().mean() / 255)
# print("Std = ", training_dataset.data.float().std() / 255)
# Mean =  tensor(0.1307)
# Std =  tensor(0.3081)

training_dataset = XYDataset(
    training_dataset.data.to(dtype).reshape(
        training_dataset.data.shape[0],
        training_dataset.data.shape[1] * training_dataset.data.shape[2]),
    training_dataset.targets.to(dtype)[:, None])

training_dataset.x = (training_dataset.x -
                      training_dataset.x.mean()) / training_dataset.x.std()

training_dataset.y = one_hot(training_dataset.y.squeeze(-1).long()).to(
    training_dataset.y.dtype)

# %% Create test dataset

test_dataset = datasets.MNIST(root=data_root, train=False, download=False)

test_dataset = XYDataset(
    test_dataset.data.to(dtype).reshape(