Exemplo n.º 1
0
    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export).

        Args:
            memory_efficient (bool): Whether to use memory-efficient version of swish.

        """
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
        for block in self.layers:
            block.set_swish(memory_efficient)
Exemplo n.º 2
0
    def __init__(self, layer=[1, 2, 2, 3, 3, 4]):
        super().__init__()
        blocks_args, global_params = get_model_params('efficientnet-b6', None)

        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args

        # Batch norm parameters
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Get stem static or dynamic convolution depending on image size
        image_size = global_params.image_size
        Conv2d = get_same_padding_conv2d(image_size=image_size)

        # Stem
        in_channels = 3  # rgb
        out_channels = round_filters(
            32, self._global_params)  # number of output channels
        self._conv_stem = Conv2d(in_channels,
                                 out_channels,
                                 kernel_size=3,
                                 stride=2,
                                 bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels,
                                   momentum=bn_mom,
                                   eps=bn_eps)
        image_size = calculate_output_image_size(image_size, 2)

        # Build blocks
        self.channels = []
        self.layers = nn.ModuleList([])
        for block_args in self._blocks_args:

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters,
                                            self._global_params),
                output_filters=round_filters(block_args.output_filters,
                                             self._global_params),
                num_repeat=round_repeats(block_args.num_repeat,
                                         self._global_params))
            self.channels += [block_args.output_filters
                              ] * block_args.num_repeat
            # The first block needs to take care of stride and filter size increase.
            self.layers.append(
                MBConvBlock(block_args,
                            self._global_params,
                            image_size=image_size))
            image_size = calculate_output_image_size(image_size,
                                                     block_args.stride)
            if block_args.num_repeat > 1:  # modify block_args to keep same output size
                block_args = block_args._replace(
                    input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                self.layers.append(
                    MBConvBlock(block_args,
                                self._global_params,
                                image_size=image_size))
                # image_size = calculate_output_image_size(image_size, block_args.stride)  # stride = 1

        self._swish = MemoryEfficientSwish()
        self.backbone_modules = [
            m for m in self.modules() if isinstance(m, nn.Conv2d)
        ]
Exemplo n.º 3
0
    def __init__(self, block_args, global_params, image_size=None):
        super().__init__()

        self._block_args = block_args
        self._bn_mom = 1 - global_params.batch_norm_momentum  # pytorch's difference from tensorflow
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio
                       is not None) and (0 < self._block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip  # whether to use skip connection and drop connect

        # Expansion phase (Inverted Bottleneck)
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            Conv2d = get_same_padding_conv2d(image_size=image_size)
            self._expand_conv = Conv2d(in_channels=inp,
                                       out_channels=oup,
                                       kernel_size=1,
                                       bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup,
                                       momentum=self._bn_mom,
                                       eps=self._bn_eps)
            # image_size = calculate_output_image_size(image_size, 1) <-- this wouldn't modify image_size

        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._depthwise_conv = Conv2d(
            in_channels=oup,
            out_channels=oup,
            groups=oup,  # groups makes it depthwise
            kernel_size=k,
            stride=s,
            bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup,
                                   momentum=self._bn_mom,
                                   eps=self._bn_eps)
        image_size = calculate_output_image_size(image_size, s)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            Conv2d = get_same_padding_conv2d(image_size=(1, 1))
            num_squeezed_channels = max(
                1,
                int(self._block_args.input_filters *
                    self._block_args.se_ratio))
            self._se_reduce = Conv2d(in_channels=oup,
                                     out_channels=num_squeezed_channels,
                                     kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels,
                                     out_channels=oup,
                                     kernel_size=1)

        # Pointwise convolution phase
        final_oup = self._block_args.output_filters
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._project_conv = Conv2d(in_channels=oup,
                                    out_channels=final_oup,
                                    kernel_size=1,
                                    bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup,
                                   momentum=self._bn_mom,
                                   eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()