def __init__(self, num_classes=80, compound_coef=0, load_weights=False, **kwargs):
        super(EfficientDetBackbone, self).__init__()
        self.compound_coef = compound_coef

        self.backbone_compound_coef = [0, 1, 2, 3, 4, 5, 6, 6]
        self.fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384]
        self.fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8]
        self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536]
        self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5]
        self.anchor_scale = [4., 4., 4., 4., 4., 4., 4., 5.]
        self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)])
        self.num_scales = len(kwargs.get('scales', [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]))
        conv_channel_coef = {
            # the channels of P3/P4/P5.
            0: [40, 112, 320],
            1: [40, 112, 320],
            2: [48, 120, 352],
            3: [48, 136, 384],
            4: [56, 160, 448],
            5: [64, 176, 512],
            6: [72, 200, 576],
            7: [72, 200, 576],
        }
        self.num_classes = num_classes
        # num_anchors = len(self.aspect_ratios) * self.num_scales
        self.backbone_net = EfficientNet(self.backbone_compound_coef[compound_coef], load_weights)
        self.bifpn = nn.Sequential(
            *[BiFPN(self.fpn_num_filters[self.compound_coef],
                    conv_channel_coef[compound_coef],
                    True if _ == 0 else False,
                    attention=True if compound_coef < 6 else False)
              for _ in range(self.fpn_cell_repeats[compound_coef])])

        self.head = DetHead(self.num_classes, self.fpn_num_filters[compound_coef])
Exemplo n.º 2
0
    def __init__(self,
                 num_anchors=9,
                 num_classes=80,
                 compound_coef=0,
                 load_weights=False,
                 **kwargs):
        super(EfficientDetBackbone, self).__init__()
        self.compound_coef = compound_coef

        self.fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384]
        self.fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8]
        self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536]
        self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5]
        self.anchor_scale = [4., 4., 4., 4., 4., 4., 4., 5.]
        self.aspect_ratios = [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]
        self.num_scales = 3
        conv_channel_coef = {
            # the channels of P3/P4/P5.
            0: [40, 112, 320],
            1: [40, 112, 320],
            2: [48, 120, 352],
            3: [48, 136, 384],
            4: [56, 160, 448],
            5: [64, 176, 512],
            6: [72, 200, 576],
        }

        num_anchors = len(self.aspect_ratios) * self.num_scales

        self.bifpn = nn.Sequential(*[
            BiFPN(self.fpn_num_filters[self.compound_coef],
                  conv_channel_coef[compound_coef],
                  True if _ == 0 else False,
                  attention=True if compound_coef < 6 else False)
            for _ in range(self.fpn_cell_repeats[compound_coef])
        ])

        self.num_classes = num_classes
        self.regressor = Regressor(
            in_channels=self.fpn_num_filters[self.compound_coef],
            num_anchors=num_anchors,
            num_layers=self.box_class_repeats[self.compound_coef])
        self.classifier = Classifier(
            in_channels=self.fpn_num_filters[self.compound_coef],
            num_anchors=num_anchors,
            num_classes=num_classes,
            num_layers=self.box_class_repeats[self.compound_coef])

        self.anchors = Anchors(anchor_scale=self.anchor_scale[compound_coef],
                               **kwargs)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

        self.backbone_net = EfficientNet(compound_coef, load_weights)
    def __init__(self,
                 num_classes=80,
                 compound_coef=0,
                 load_weights=False,
                 **kwargs):
        super(EfficientDetBackbone, self).__init__()
        self.compound_coef = compound_coef

        self.backbone_compound_coef = [0, 1, 2, 3, 4, 5, 6, 6, 7]
        self.fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384, 384]
        self.fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8, 8]
        self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536, 1536]
        self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5, 5]
        self.pyramid_levels = [5, 5, 5, 5, 5, 5, 5, 5, 6]
        # self.anchor_scale不同Stride级别的金字塔尺度,都是两倍两倍缩放
        self.anchor_scale = [4., 4., 4., 4., 4., 4., 4., 5., 4.]
        self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7),
                                                   (0.7, 1.4)])
        # 同一个金字塔尺度上再分3个小尺度3个小比例
        self.num_scales = len(
            kwargs.get('scales', [2**0, 2**(1.0 / 3.0), 2**(2.0 / 3.0)]))
        conv_channel_coef = {
            # the channels of P3/P4/P5.
            0: [40, 112, 320],
            1: [40, 112, 320],
            2: [48, 120, 352],
            3: [48, 136, 384],
            4: [56, 160, 448],
            5: [64, 176, 512],
            6: [72, 200, 576],
            7: [72, 200, 576],
            8: [80, 224, 640],
        }

        num_anchors = len(self.aspect_ratios) * self.num_scales
        # print(len(self.aspect_ratios))
        # print(self.num_scales)
        # exit()
        self.bifpn = nn.Sequential(*[
            BiFPN(self.fpn_num_filters[self.compound_coef],
                  conv_channel_coef[compound_coef],
                  True if _ == 0 else False,
                  attention=True if compound_coef < 6 else False,
                  use_p8=compound_coef > 7)
            for _ in range(self.fpn_cell_repeats[compound_coef])
        ])

        self.num_classes = num_classes
        self.regressor = Regressor(
            in_channels=self.fpn_num_filters[self.compound_coef],
            num_anchors=num_anchors,
            num_layers=self.box_class_repeats[self.compound_coef],
            pyramid_levels=self.pyramid_levels[self.compound_coef])
        self.classifier = Classifier(
            in_channels=self.fpn_num_filters[self.compound_coef],
            num_anchors=num_anchors,
            num_classes=num_classes,
            num_layers=self.box_class_repeats[self.compound_coef],
            pyramid_levels=self.pyramid_levels[self.compound_coef])

        self.anchors = Anchors(
            anchor_scale=self.anchor_scale[compound_coef],
            pyramid_levels=(
                torch.arange(self.pyramid_levels[self.compound_coef]) +
                3).tolist(),
            **kwargs)

        self.backbone_net = EfficientNet(
            self.backbone_compound_coef[compound_coef], load_weights)
    def __init__(self,
                 num_classes=80,
                 compound_coef=0,
                 load_weights=False,
                 onnx_export=False,
                 train_mode=False,
                 batch_size=1,
                 **kwargs):
        super(EfficientDetBackbone, self).__init__()
        self.compound_coef = compound_coef

        self.backbone_compound_coef = [0, 1, 2, 3, 4, 5, 6, 6]
        self.fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384]
        self.fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8]
        self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536]
        self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5]
        self.anchor_scale = [4., 4., 4., 4., 4., 4., 4., 5.]
        self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7),
                                                   (0.7, 1.4)])
        self.num_scales = len(
            kwargs.get('scales', [2**0, 2**(1.0 / 3.0), 2**(2.0 / 3.0)]))
        conv_channel_coef = {
            # the channels of P3/P4/P5.
            0: [40, 112, 320],
            1: [40, 112, 320],
            2: [48, 120, 352],
            3: [48, 136, 384],
            4: [56, 160, 448],
            5: [64, 176, 512],
            6: [72, 200, 576],
            7: [72, 200, 576],
        }

        num_anchors = len(self.aspect_ratios) * self.num_scales
        head_image_size = calculate_output_image_size(
            self.input_sizes[compound_coef], 8)

        if train_mode:
            self.bifpn = nn.Sequential(*[
                BiFPN(self.fpn_num_filters[self.compound_coef],
                      conv_channel_coef[compound_coef],
                      True if _ == 0 else False,
                      onnx_export=onnx_export,
                      attention=True if compound_coef < 6 else False,
                      image_size=head_image_size)
                for _ in range(self.fpn_cell_repeats[compound_coef])
            ])
        else:
            self.bifpn = nn.Sequential(*[
                BiFPN_infer(self.fpn_num_filters[self.compound_coef],
                            conv_channel_coef[compound_coef],
                            True if _ == 0 else False,
                            index=idx,
                            onnx_export=onnx_export,
                            attention=True if compound_coef < 6 else False,
                            image_size=head_image_size)
                for idx, _ in enumerate(
                    range(self.fpn_cell_repeats[compound_coef]))
            ])

        self.num_classes = num_classes
        self.regressor = Regressor(
            in_channels=self.fpn_num_filters[self.compound_coef],
            num_anchors=num_anchors,
            num_layers=self.box_class_repeats[self.compound_coef],
            onnx_export=onnx_export,
            image_size=head_image_size,
            compound_coef=compound_coef,
            batch_size=batch_size)
        self.classifier = Classifier(
            in_channels=self.fpn_num_filters[self.compound_coef],
            num_anchors=num_anchors,
            num_classes=num_classes,
            num_layers=self.box_class_repeats[self.compound_coef],
            onnx_export=onnx_export,
            image_size=head_image_size,
            compound_coef=compound_coef,
            batch_size=batch_size)

        self.anchors = Anchors(anchor_scale=self.anchor_scale[compound_coef],
                               **kwargs)

        self.backbone_net = EfficientNet(
            self.backbone_compound_coef[compound_coef], load_weights)
    def __init__(self,
                 num_classes=80,
                 compound_coef=0,
                 load_weights=False,
                 onnx_export=False,
                 **kwargs):
        super(EfficientDetBackbone, self).__init__()
        self.compound_coef = compound_coef

        self.backbone_compound_coef = [0, 1, 2, 3, 4, 5, 6, 6]
        self.fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384]
        self.fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8]
        self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536]
        self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5]
        self.anchor_scale = [4., 4., 4., 4., 4., 4., 4., 5.]
        self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7),
                                                   (0.7, 1.4)])
        self.num_scales = len(
            kwargs.get('scales', [2**0, 2**(1.0 / 3.0), 2**(2.0 / 3.0)]))
        conv_channel_coef = {
            # the channels of P3/P4/P5.
            0: [40, 112, 320],
            1: [40, 112, 320],
            2: [48, 120, 352],
            3: [48, 136, 384],
            4: [56, 160, 448],
            5: [64, 176, 512],
            6: [72, 200, 576],
            7: [72, 200, 576],
        }

        num_anchors = len(self.aspect_ratios) * self.num_scales
        self.bifpn = nn.Sequential(*[
            BiFPN(self.fpn_num_filters[self.compound_coef],
                  conv_channel_coef[compound_coef],
                  True if _ == 0 else False,
                  onnx_export=onnx_export,
                  attention=True if compound_coef < 6 else False)
            for _ in range(self.fpn_cell_repeats[compound_coef])
        ])

        self.num_classes = num_classes
        self.regressor = Regressor(
            in_channels=self.fpn_num_filters[self.compound_coef],
            num_anchors=num_anchors,
            num_layers=self.box_class_repeats[self.compound_coef],
            onnx_export=onnx_export)
        self.classifier = Classifier(
            in_channels=self.fpn_num_filters[self.compound_coef],
            num_anchors=num_anchors,
            num_classes=num_classes,
            num_layers=self.box_class_repeats[self.compound_coef],
            onnx_export=onnx_export)

        self.anchors = Anchors(anchor_scale=self.anchor_scale[compound_coef],
                               **kwargs)
        self.backbone_net = EfficientNet(
            self.backbone_compound_coef[compound_coef], load_weights)
        print("Input size is {}".format(self.input_sizes[self.compound_coef]))
        self.forward_anchors = self.anchors(
            (self.input_sizes[self.compound_coef],
             self.input_sizes[self.compound_coef]))
        self.anchor_data = transform_anchors(
            self.forward_anchors) / self.input_sizes[self.compound_coef]
        self.total_anchors = self.anchor_data.shape[0]