Exemplo n.º 1
0
        def _loadAnalyzeFile(filename, name, imgObj, task):
            with f:
                filename = Future.get(filename)
                name = name or self.mgr.getUniqueObjName(
                    splitPathExt(filename)[1])
                img = imgObj or nibabel.load(filename)

                dat = dat = np.asanyarray(img.dataobj)
                hdr = dict(img.get_header())
                hdr['filename'] = filename

                pixdim = hdr['pixdim']
                interval = float(pixdim[4])

                if interval == 0.0 and len(
                        img.shape) == 4 and img.shape[-1] > 1:
                    interval = 1.0

                spacing = vec3(pixdim[1], pixdim[2], pixdim[3])
                dat = eidolon.transposeRowsColsNP(
                    dat)  # transpose from row-column to column-row

                obj = self.createObjectFromArray(name,
                                                 dat,
                                                 interval,
                                                 0,
                                                 vec3(),
                                                 rotator(),
                                                 spacing,
                                                 task=task)
                obj.source = hdr
                f.setObject(obj)
Exemplo n.º 2
0
    def loadSequence(self, filenames, name=None):
        fileobjs = [self.loadObject(f) for f in filenames]
        f = Future()

        @taskroutine('Loading VTK File Sequence')
        def _loadSeq(filenames, fileobjs, name, task):
            with f:
                fileobjs = list(map(Future.get, fileobjs))
                name = name or fileobjs[0].getName()
                obj = MeshSceneObject(name, [o.datasets[0] for o in fileobjs],
                                      self,
                                      filenames=filenames)

                for i, o in enumerate(fileobjs):
                    descdata = o.kwargs['descdata']
                    if not isinstance(descdata,
                                      str) and 'timestep' in descdata:
                        obj.timestepList[i] = int(descdata['timestep'])

                f.setObject(obj)

        return self.mgr.runTasks([_loadSeq(filenames, fileobjs, name)], f)
Exemplo n.º 3
0
    def saveXMLFile(self,
                    filenameprefix,
                    obj,
                    filetype='vtu',
                    setObjArgs=False):
        def writeArray(xo, mat, **kwargs):
            with xmltag(xo, 'DataArray', **kwargs) as xo1:
                o = xo1[1]
                o.write(' ' * xo1[0])
                for n in range(mat.n()):
                    for r in mat.getRow(n):
                        o.write(' ' + str(r))
                o.write('\n')

        def writeNodes(xo, nodes):
            with xmltag(xo, 'Points') as xo1:
                with xmltag(xo1,
                            'DataArray',
                            type="Float32",
                            NumberOfComponents="3",
                            Format="ascii") as xo2:
                    indents = ' ' * xo2[0]
                    o = xo2[1]
                    for n in range(nodes.n()):
                        nn = nodes.getAt(n)
                        o.write('%s%s %s %s\n' %
                                (indents, nn.x(), nn.y(), nn.z()))

        def writeFields(xo, nodefields, cellfields):
            if nodefields:
                with xmltag(xo, 'PointData') as xo1:
                    for df in nodefields:
                        writeArray(xo1,
                                   df,
                                   type="Float32",
                                   Name=df.getName(),
                                   NumberOfComponents=df.m(),
                                   Format="ascii")

            if cellfields:
                with xmltag(xo, 'CellData') as xo1:
                    for df in cellfields:
                        writeArray(xo1,
                                   df,
                                   type="Float32",
                                   Name=df.getName(),
                                   NumberOfComponents=df.m(),
                                   Format="ascii")

        f = Future()

        @taskroutine('Saving VTK XML File')
        def _saveFile(obj, filenameprefix, filetype, setObjArgs, task):
            with f:
                assert filetype in (
                    'vtu',
                )  # TODO: other file types? No real data format need for anything else though some may want vtp
                dds = obj.datasets
                filenameprefix = os.path.splitext(filenameprefix)[0]

                if os.path.isdir(filenameprefix):
                    filenameprefix = os.path.join(filenameprefix,
                                                  obj.getName())

                knowncelltypes = {c[2]: c[1] for c in CellTypes}
                cellorders = {c[2]: c[3] for c in CellTypes}

                if len(dds) == 1:
                    filenames = [filenameprefix + '.' + filetype]
                else:
                    filenames = [
                        '%s_%.4i.%s' % (filenameprefix, i, filetype)
                        for i in range(len(dds))
                    ]

                for fn, ds in zip(filenames, dds):
                    nodes = ds.getNodes()
                    inds = [
                        i for i in ds.enumIndexSets()
                        if i.getType() in knowncelltypes
                    ]
                    numcells = sum(i.n() for i in inds)
                    numindices = sum(i.n() * i.m() for i in inds)

                    cellfields = [
                        df for df in ds.enumDataFields() if df.n() == numcells
                    ]
                    nodefields = [
                        df for df in ds.enumDataFields()
                        if df.n() == nodes.n()
                    ]

                    with open(fn, 'w') as o:
                        o.write('<?xml version="1.0"?>\n')
                        if filetype == 'vtu':
                            with xmltag(o,
                                        'VTKFile',
                                        type="UnstructuredGrid",
                                        version="0.1",
                                        byte_order="BigEndian") as xo:
                                with xmltag(xo, 'UnstructuredGrid') as xo1:
                                    with xmltag(xo1,
                                                'Piece',
                                                NumberOfPoints=nodes.n(),
                                                NumberOfCells=numcells) as xo2:
                                        writeNodes(xo2, nodes)

                                        # calculate a new indices matrix by combining all those in inds and
                                        # reordering the elements to match VTK ordering
                                        with xmltag(xo2, 'Cells') as xo3:
                                            indices = IndexMatrix(
                                                'indices', numindices)
                                            offsets = IndexMatrix(
                                                'offsets', numcells)
                                            types = IndexMatrix(
                                                'types', numcells)

                                            count = 0
                                            pos = 0
                                            ipos = 0
                                            for ind in inds:
                                                typenum = knowncelltypes[
                                                    ind.getType()]
                                                order = cellorders[
                                                    ind.getType()]
                                                for n in range(ind.n()):
                                                    count += ind.m()
                                                    offsets.setAt(
                                                        count, pos
                                                    )  # add element offset
                                                    types.setAt(
                                                        typenum, pos
                                                    )  # add element type
                                                    pos += 1

                                                    # reorder the index values of this element to VTK ordering
                                                    row = ind.getRow(n)
                                                    for nn in order:
                                                        indices.setAt(
                                                            row[nn], ipos)
                                                        ipos += 1

                                            writeArray(xo3,
                                                       indices,
                                                       type="Int32",
                                                       Name="connectivity",
                                                       Format="ascii")
                                            writeArray(xo3,
                                                       offsets,
                                                       type="Int32",
                                                       Name="offsets",
                                                       Format="ascii")
                                            writeArray(xo3,
                                                       types,
                                                       type="Int32",
                                                       Name="types",
                                                       Format="ascii")

                                        writeFields(xo2, nodefields,
                                                    cellfields)

                if setObjArgs:
                    if len(dds) == 1:
                        args = {'filename': filenames[0]}
                    else:
                        args = {'filenames': filenames}
                    args['descdata'] = ''
                    args['isXML'] = True
                    obj.plugin = self
                    obj.kwargs = args

                f.setObject(filenames)

        return self.mgr.runTasks(
            [_saveFile(obj, filenameprefix, filetype, setObjArgs)], f)
Exemplo n.º 4
0
    def loadXMLFile(self, filename, name=None):
        def _get(elem, name):
            return elem.get(name) or elem.get(name.lower())

        def readArray(node, byteorder, compressor):
            dtype = np.dtype(_get(node, 'type')).newbyteorder(byteorder)

            if _get(node, 'format') and _get(node,
                                             'format').lower() == 'binary':
                text = base64.decodestring(
                    node.text)[8:]  # skip 8 byte header?
                if compressor:
                    raise NotImplementedError(
                        "Haven't figured out compression yet")
                    #text=zlib.decompress(text[:24]) # TODO: skip 24 byte header? this refuses to work

                return np.frombuffer(text, dtype=dtype)
            else:
                return np.loadtxt(StringIO(node.text.replace('\n', ' ')),
                                  dtype).flatten()

        def readNodes(nodearray, byteorder, compressor):
            assert _get(nodearray, 'NumberOfComponents') == '3'
            arr = readArray(nodearray, byteorder, compressor)
            nodes = eidolon.Vec3Matrix('nodes', arr.shape[0] / 3)
            np.asarray(nodes).flat[:] = arr
            del arr
            return nodes

        def readFields(celldata, pointdata, byteorder, compressor):
            fields = []
            celldata = list(celldata)
            pointdata = list(pointdata)

            for array in (celldata + pointdata):
                fname = _get(array, 'Name')
                width = int(_get(array, 'NumberOfComponents') or 1)
                arr = readArray(array, byteorder, compressor)
                mat = eidolon.RealMatrix(fname, arr.shape[0] / width, width)
                np.asarray(mat).flat[:] = arr
                del arr

                fields.append(mat)
                if array in celldata:
                    mat.meta(StdProps._elemdata, 'True')

            return fields

        def yieldConnectedOffsets(conoffsetpair, byteorder, compressor):
            connect = first(c for c in conoffsetpair
                            if _get(c, 'Name') == 'connectivity')
            offsets = first(c for c in conoffsetpair
                            if _get(c, 'Name') == 'offsets')
            start = 0
            if connect is not None and len(connect.text.strip()) > 0:
                connect = readArray(connect, byteorder, compressor).tolist()
                offsets = readArray(offsets, byteorder, compressor).tolist()

                for off in offsets:
                    yield connect[start:off]
                    start = off

        f = Future()

        @taskroutine('Loading VTK XML File')
        @eidolon.timing
        def _loadFile(filename, name, task):
            basename = name or os.path.basename(filename).split('.')[0]
            name = uniqueStr(
                basename, [o.getName() for o in self.mgr.enumSceneObjects()])
            ds = None

            tree = ET.parse(filename)
            root = tree.getroot()
            unstruc = root.find('UnstructuredGrid')
            poly = root.find('PolyData')
            appended = root.find('AppendedData')
            compressor = _get(root, 'compressor')
            byteorder = '<' if root.get(
                'byte_order') == 'LittleEndian' else '>'

            #if appended and _get(appended,'encoding').lower()=='base64':
            #    appended=base64.decodestring(root.find('AppendedData').text)

            if unstruc is not None:
                pieces = list(unstruc)

                points = pieces[0].find('Points')
                cells = pieces[0].find('Cells')
                celldata = pieces[0].find('CellData')
                pointdata = pieces[0].find('PointData')
                nodearray = points.find('DataArray')

                if celldata is None:
                    celldata = []
                if pointdata is None:
                    pointdata = []

                nodes = readNodes(nodearray, byteorder, compressor)

                connectivity = first(
                    i for i in cells
                    if i.get('Name').lower() == 'connectivity')
                types = first(i for i in cells
                              if i.get('Name').lower() == 'types')
                offsets = first(i for i in cells
                                if i.get('Name').lower() == 'offsets')

                indlist = readArray(
                    connectivity, byteorder,
                    compressor).tolist()  # faster as Python list?
                fields = readFields(celldata, pointdata, byteorder, compressor)

                celltypes = readArray(types, byteorder, compressor)
                offlist = readArray(offsets, byteorder, compressor)
                cellofflist = np.vstack((celltypes, offlist)).T.tolist(
                )  # pair each cell type entry with its width entry

                assert len(celltypes) == len(offlist)

                # map cell type IDs to IndexMatrix objects for containing the indices of that type and node ordering list
                indmats = {
                    i: (IndexMatrix(n + 'Inds', e, 0, len(s)), s)
                    for n, i, e, s in CellTypes
                }

                for celltype, off in cellofflist:
                    indmat, _ = indmats.get(celltype, (None, []))
                    if indmat is not None:  # only found for those cell types we understand (ie. not polygon)
                        indmat.append(*indlist[off - indmat.m():off])

                inds = []
                for ind, order in indmats.values(
                ):  # collect and reorder all non-empty index matrices
                    if ind.n() > 0:
                        ind[:, :] = np.asarray(
                            ind
                        )[:,
                          order]  # reorder columns to match CHeart node ordering
                        inds.append(ind)

                ds = PyDataSet('vtk', nodes, inds, fields)

            elif poly is not None:
                pieces = list(poly)

                #numPoints=int(_get(pieces[0],'NumberOfPoints')

                points = pieces[0].find('Points')
                celldata = pieces[0].find('CellData')
                pointdata = pieces[0].find('PointData')
                nodearray = points.find('DataArray')
                nodes = readNodes(nodearray, byteorder, compressor)
                inds = []

                lines = IndexMatrix('lines', ElemType._Line1NL, 0, 2)
                tris = IndexMatrix('tris', ElemType._Tri1NL, 0, 3)
                quads = IndexMatrix('quads', ElemType._Quad1NL, 0, 4)

                for a, b in yieldConnectedOffsets(pieces[0].find('Lines'),
                                                  byteorder, compressor):
                    lines.append(a, b)

                for strip in yieldConnectedOffsets(pieces[0].find('Strips'),
                                                   byteorder, compressor):
                    for a, b, c in eidolon.successive(strip, 3):
                        tris.append(a, b, c)

                for poly in yieldConnectedOffsets(pieces[0].find('Polys'),
                                                  byteorder, compressor):
                    if len(poly) == 2:
                        lines.append(*poly)
                    elif len(poly) == 3:
                        tris.append(*poly)
                    elif len(poly) == 4:
                        quads.append(*poly)

                    # TODO: read in arbitrary polygon and triangulate?

                if len(lines) > 0:
                    inds.append(lines)

                if len(tris) > 0:
                    inds.append(tris)

                if len(quads) > 0:
                    quads[:, :] = np.asarray(quads)[:, CellTypes.Quad[-1]]
                    inds.append(quads)

                fields = readFields(celldata, pointdata, byteorder, compressor)

                ds = PyDataSet('vtk', nodes, inds, fields)
            else:
                raise NotImplementedError('Dataset not understood yet')

            f.setObject(
                MeshSceneObject(name,
                                ds,
                                self,
                                filename=filename,
                                isXML=True,
                                descdata=''))

        return self.mgr.runTasks([_loadFile(filename, name)], f)
Exemplo n.º 5
0
    def saveLegacyFile(self, filename, obj, **kwargs):
        dsindex = kwargs.get('dsindex', 0)
        ds = obj.datasets[dsindex] if isinstance(obj, MeshSceneObject) else obj
        datasettype = kwargs.get('datasettype', ds.meta(
            VTKProps.datasettype)) or DatasetTypes._UNSTRUCTURED_GRID
        desc = kwargs.get('descStr', ds.meta(VTKProps._desc)).strip()
        writeFields = kwargs.get('writeFields', True)
        vecfunc = kwargs.get('vecfunc', tuple)
        version = 3.0

        assert datasettype in DatasetTypes, 'Unsupported dataset type: %s' % datasettype

        if not desc:
            if isinstance(obj, MeshSceneObject):
                desc = repr({
                    'desc': 'Eidolon Output For ' + obj.getName(),
                    'timestep': obj.timestepList[dsindex]
                })
            else:
                desc = 'Eidolon Output For ' + obj.getName()

        f = Future()

        @taskroutine('Saving VTK Legacy File')
        def _saveFile(filename, ds, datasettype, desc, version, task):
            with f:
                nodes = ds.getNodes()
                with open(filename, 'w') as o:
                    o.write(
                        '# vtk DataFile Version %.1f\n%s\nASCII\nDATASET %s' %
                        (version, desc, datasettype))

                    if datasettype == DatasetTypes._STRUCTURED_GRID:
                        griddims = eval(ds.meta(VTKProps._griddims))
                        o.write(' %i %i %i' % griddims)
                    o.write('\n')

                    # write out points
                    o.write('POINTS %i double\n' % nodes.n())
                    for n in range(nodes.n()):
                        o.write('%f %f %f\n' % vecfunc(nodes.getAt(n)))

                    # write out the extra components for unstructured grids
                    if datasettype == DatasetTypes._UNSTRUCTURED_GRID:
                        cells = []
                        celltypes = []
                        for inds in ds.indices.values():
                            tname, cid, sortinds = first(
                                (n, i, s) for n, i, e, s in CellTypes
                                if e == inds.getType()) or (None, None, None)

                            if tname == CellTypes._Poly:
                                polyinds = ds.getIndexSet(
                                    inds.meta(VTKProps._polyinds))
                                celltypes += [cid] * polyinds.n()

                                for p in range(polyinds.n()):
                                    start, end = polyinds.getRow(p)
                                    poly = tuple(
                                        inds.getAt(i)
                                        for i in range(start, end))
                                    cells.append(poly)
                            elif tname != None:
                                #unsortinds=list(reversed(indexList(sortinds,list(reversed(range(len(sortinds)))))))
                                unsortinds = eidolon.indexList(
                                    sortinds, list(range(len(sortinds))))

                                celltypes += [cid] * inds.n()
                                for ind in range(inds.n()):
                                    cells.append(
                                        eidolon.indexList(
                                            unsortinds, inds.getRow(ind)))

                        if len(cells) > 0:
                            o.write(
                                'CELLS %i %i\n' %
                                (len(cells), sum(len(c) + 1 for c in cells)))
                            for c in cells:
                                o.write(' '.join(map(str, [len(c)] +
                                                     list(c))) + '\n')

                            o.write('CELL_TYPES %i\n' % len(celltypes))
                            o.write('\n'.join(map(str, celltypes)) + '\n')

                    # write out fields as POINT_DATA, CELL_DATA is not supported
                    fields = list(ds.fields.values()) if writeFields else []
                    if len(fields) > 0:
                        o.write('POINT_DATA %i\n' % nodes.n())

                    for dat in fields:
                        atype = dat.meta(
                            VTKProps._attrtype) or AttrTypes._SCALARS
                        name = dat.getName()

                        if atype in (AttrTypes._SCALARS, AttrTypes._VECTORS,
                                     AttrTypes._NORMALS, AttrTypes._TENSORS):
                            o.write(
                                '%s %s float\n' % (atype, name)
                            )  # scalars doesn't preserve any lookup table components
                        elif atype in (AttrTypes._TEXTURE_COORDINATES,
                                       AttrTypes._COLOR_SCALARS):
                            dtype = ' float' if atype == AttrTypes._TEXTURE_COORDINATES else ''
                            o.write('%s %s %s\n' % (atype, dat.m(), dtype))
                        elif atype == AttrTypes._LOOKUP_TABLE:
                            o.write('%s %i\n' % (atype, dat.n()))
                        else:
                            continue  # skips field matrices if these get stored

                        for n in range(dat.n()):
                            o.write(' '.join(map(str, dat.getRow(n))) + '\n')

                f.setObject(filename)

        return self.mgr.runTasks(
            [_saveFile(filename, ds, datasettype, desc, version)], f)
Exemplo n.º 6
0
    def loadLegacyFile(self, filename, name=None, strdata=None):
        f = Future()

        @taskroutine('Loading VTK Legacy File')
        def _loadFile(filename, name, strdata, task):
            result = self.parseString(strdata or open(filename).read())

            basename = name or os.path.basename(filename).split('.')[0]
            name = uniqueStr(
                basename, [o.getName() for o in self.mgr.enumSceneObjects()])

            version, desc, data = result[:3]
            pointattrs = [a for a in result[3:] if a[0] == 'POINT_DATA']
            cellattrs = [a for a in result[3:] if a[0] == 'CELL_DATA']

            ds = None
            indmats = []
            metamap = {
                VTKProps.desc: desc,
                VTKProps.version: str(version),
                VTKProps.datasettype: data[0]
            }

            # interpret dataset blocks
            if data[0] == DatasetTypes._UNSTRUCTURED_GRID:
                nodes, cells, celltypes = data[1:]

                # map cell types to the indices of members of `cells' of that type
                typeindices = {}
                for i in range(celltypes.n()):
                    typeindices.setdefault(celltypes.getAt(i), []).append(i)

                for ctype, inds in typeindices.items():
                    tname, elemtypename, sortinds = first(
                        (n, e, s) for n, i, e, s in CellTypes
                        if i == ctype) or (None, None, None)
                    matname = '' if tname == None else uniqueStr(
                        tname, [i.getName() for i in indmats], '')
                    if tname == CellTypes._Poly:
                        mat = IndexMatrix(matname, elemtypename, 0)
                        polyinds = IndexMatrix(matname + 'Inds',
                                               VTKProps._polyinds, 0, 2)
                        mat.meta(VTKProps._polyinds, polyinds.getName())
                        indmats.append(mat)
                        indmats.append(polyinds)

                        for ind in inds:
                            row = cells.getRow(ind)
                            length = row[0]
                            polyinds.append(mat.n(), mat.n() + length)
                            for r in row[1:length + 1]:
                                mat.append(r)

                    elif tname != None:
                        elemtype = ElemType[elemtypename]
                        mat = IndexMatrix(matname, elemtypename, 0,
                                          elemtype.numNodes())
                        indmats.append(mat)
                        for ind in inds:
                            sortedinds = eidolon.indexList(
                                sortinds,
                                cells.getRow(ind)[1:])
                            mat.append(*sortedinds)

            elif data[0] == DatasetTypes._STRUCTURED_GRID:
                dims, nodes = data[1:]
                dimx, dimy, dimz = map(int, dims)

                assert dimx > 1
                assert dimy > 1
                assert dimz > 1

                _, inds = eidolon.generateHexBox(dimx - 2, dimy - 2, dimz - 2)

                inds = eidolon.listToMatrix(inds, 'hexes')
                inds.setType(ElemType._Hex1NL)

                indmats = [inds]
                metamap[VTKProps._griddims] = repr((dimx, dimy, dimz))

            elif data[0] == DatasetTypes._POLYDATA:
                nodes = data[1]
                polyelems = data[2:]

                lines = IndexMatrix('lines', ElemType._Line1NL, 0, 2)
                tris = IndexMatrix('tris', ElemType._Tri1NL, 0, 3)
                quads = IndexMatrix('quads', ElemType._Quad1NL, 0, 4)

                for pname, numelems, numvals, ind in polyelems:
                    n = 0
                    if pname == 'POLYGONS':
                        while n < ind.n():
                            polylen = ind.getAt(n)
                            if polylen == 2:
                                lines.append(ind.getAt(n + 1),
                                             ind.getAt(n + 2))
                            elif polylen == 3:
                                tris.append(ind.getAt(n + 1), ind.getAt(n + 2),
                                            ind.getAt(n + 3))
                            elif polylen == 4:
                                quads.append(ind.getAt(n + 1),
                                             ind.getAt(n + 2),
                                             ind.getAt(n + 4),
                                             ind.getAt(n + 3))

                            n += polylen + 1

                if len(tris) > 0:
                    indmats.append(tris)
                if len(quads) > 0:
                    indmats.append(quads)
                if len(lines) > 0:
                    indmats.append(lines)
            else:
                raise NotImplementedError(
                    'Dataset type %s not understood yet' % str(data[0]))

            ds = PyDataSet('vtk', nodes, indmats)
            for k, v in metamap.items():
                ds.meta(k, v)

            # read attributes into fields
            for attr in list(pointattrs) + list(cellattrs):
                for attrtype in attr[2:]:
                    atype = str(attrtype[0])

                    spatialname = first(
                        ds.indices.keys())  # TODO: choose a better topology

                    if atype == AttrTypes._FIELD:
                        for fname, width, length, dtype, dat in attrtype[3:]:
                            assert (width * length) == dat.n()
                            assert length == nodes.n(
                            ) or length == ds.indices[spatialname].n()

                            dat.setName(fname)
                            dat.setM(width)
                            dat.meta(StdProps._topology, spatialname)
                            dat.meta(StdProps._spatial, spatialname)
                            dat.meta(VTKProps._attrtype, atype)
                            ds.setDataField(dat)
                    else:
                        dat = attrtype[-1]
                        dat.setName(str(attrtype[1]))
                        dat.meta(StdProps._topology, spatialname)
                        dat.meta(StdProps._spatial, spatialname)
                        dat.meta(VTKProps._attrtype, atype)
                        ds.setDataField(dat)

                        if atype in (AttrTypes._NORMALS, AttrTypes._VECTORS):
                            dat.setM(3)
                        elif atype == AttrTypes._LOOKUP_TABLE:
                            dat.setM(4)
                        elif atype == AttrTypes._TENSORS:
                            dat.setM(9)
                        elif atype in (AttrTypes._TEXTURE_COORDINATES,
                                       AttrTypes._COLOR_SCALARS):
                            dat.setM(attrtype[2])
                        elif atype == AttrTypes._SCALARS:
                            if isinstance(attrtype[3], int):
                                dat.setM(attrtype[3])
                            if attrtype[3] == AttrTypes._LOOKUP_TABLE:
                                dat.meta(AttrTypes._LOOKUP_TABLE,
                                         str(attrtype[4]))
                            elif attrtype[4] == AttrTypes._LOOKUP_TABLE:
                                dat.meta(AttrTypes._LOOKUP_TABLE,
                                         str(attrtype[5]))

            try:
                descdata = eval(
                    desc
                )  # if desc is a Python object (eg. timestep number) attempt to evaluate it
            except:
                descdata = desc  # just a normal string

            f.setObject(
                MeshSceneObject(name,
                                ds,
                                self,
                                filename=filename,
                                descdata=descdata,
                                result=result))

        return self.mgr.runTasks([_loadFile(filename, name, strdata)], f)
Exemplo n.º 7
0
    def saveObject(self,
                   obj,
                   path,
                   overwrite=False,
                   setFilenames=False,
                   **kwargs):
        f = Future()

        @taskroutine('Saving Nifti File')
        def _saveFile(path, obj, kwargs, task):
            with f:
                assert isinstance(obj, ImageSceneObject)

                if os.path.isdir(path):
                    path = os.path.join(path, obj.getName())

                if not overwrite and os.path.exists(path):
                    raise IOError('File already exists: %r' % path)

                if not eidolon.hasExtension(path, 'nii', 'nii.gz'):
                    path += '.nii'

                if 'datatype' in kwargs:
                    datatype = kwargs.pop('datatype')
                elif isinstance(obj.source, dict) and 'datatype' in obj.source:
                    datatype = data_type_codes.dtype[int(
                        obj.source['datatype'])]
                else:
                    datatype = np.float32

                mat = self.getImageObjectArray(obj, datatype)
                dat = mat['array']
                pos = mat['pos']
                spacex, spacey, spacez = mat['spacing']
                rot = rotator(vec3(0, 0, 1), math.pi) * mat['rot'] * rotator(
                    vec3(0, 0, 1), -halfpi)
                toffset = mat['toffset']
                interval = mat['interval']

                affine = np.array(rot.toMatrix())
                affine[:, 3] = -pos.x(), -pos.y(), pos.z(), 1.0

                dat = eidolon.transposeRowsColsNP(
                    dat)  # transpose from row-column to column-row

                imgobj = nibabel.nifti1.Nifti1Image(dat, affine)

                # header info: http://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
                hdr = {
                    'pixdim':
                    np.array([
                        1.0, spacex, spacey, spacez if spacez != 0.0 else 1.0,
                        interval, 1.0, 1.0, 1.0
                    ], np.float32),
                    'toffset':
                    toffset,
                    'slice_duration':
                    interval,
                    'xyzt_units':
                    unit_codes['mm'] | unit_codes['msec'],
                    'qform_code':
                    xform_codes['aligned'],
                    'sform_code':
                    xform_codes['scanner'],
                    'datatype':
                    data_type_codes.code[datatype]
                }

                hdr.update(kwargs)

                for k, v in hdr.items():
                    if k in imgobj.header:
                        imgobj.header[k] = v

                nibabel.save(imgobj, path)

                if setFilenames:
                    obj.plugin.removeObject(obj)
                    obj.plugin = self
                    obj.source = dict(nibabel.load(path).get_header())
                    obj.source['filename'] = path
                elif isinstance(obj.source, dict) and 'filename' in obj.source:
                    obj.source['filename'] = path

                f.setObject(imgobj)

        return self.mgr.runTasks([_saveFile(path, obj, kwargs)], f)
Exemplo n.º 8
0
        def _loadNiftiFile(filename, name, imgObj, task):
            with f:
                filename = Future.get(filename)
                name = name or self.mgr.getUniqueObjName(
                    splitPathExt(filename)[1])
                img = imgObj or nibabel.load(filename)

                hdr = dict(img.header)
                hdr['filename'] = filename

                pixdim = hdr['pixdim']
                xyzt_units = hdr['xyzt_units']
                x = float(hdr['qoffset_x'])
                y = float(hdr['qoffset_y'])
                z = float(hdr['qoffset_z'])
                b = float(hdr['quatern_b'])
                c = float(hdr['quatern_c'])
                d = float(hdr['quatern_d'])
                toffset = float(hdr['toffset'])
                interval = float(pixdim[4])

                if interval == 0.0 and len(
                        img.shape) == 4 and img.shape[-1] > 1:
                    interval = 1.0

                qfac = float(pixdim[0]) or 1.0
                spacing = vec3(pixdim[1], pixdim[2], qfac * pixdim[3])

                if int(hdr['qform_code']) > 0:
                    position = vec3(-x, -y, z)
                    rot = rotator(
                        -c, b, math.sqrt(max(0, 1.0 -
                                             (b * b + c * c + d * d))),
                        -d) * rotator(vec3.Z(), halfpi)
                else:
                    affine = img.get_affine()
                    position = vec3(-affine[0, 3], -affine[1, 3], affine[2, 3])
                    rmat = np.asarray([
                        affine[0, :3] / -spacing.x(),
                        affine[1, :3] / -spacing.y(),
                        affine[2, :3] / spacing.z()
                    ])
                    rot = rotator(*rmat.flatten().tolist()) * rotator(
                        vec3.Z(), halfpi)

                xyzunit = xyzt_units & 0x07  # isolate space units with a bitmask of 7
                tunit = xyzt_units & 0x38  # isolate time units with a bitmask of 56

                if tunit == 0:  # if no tunit provided, try to guess
                    if interval < 1.0:
                        tunit = unit_codes['sec']
                    elif interval > 1000.0:
                        tunit = unit_codes['usec']

                # convert to millimeters
                if xyzunit == unit_codes['meter']:
                    position *= 1000.0
                    spacing *= 1000.0
                elif xyzunit == unit_codes['micron']:
                    position /= 1000.0
                    spacing /= 1000.0

                # convert to milliseconds
                if tunit == unit_codes['sec']:
                    toffset *= 1000.0
                    interval *= 1000.0
                elif tunit == unit_codes['usec']:
                    toffset /= 1000.0
                    interval /= 1000.0

                dobj = img.dataobj
                datshape = tuple(
                    d or 1 for d in dobj.shape
                )  # dimensions are sometimes given as 0 for some reason?

                # reading file data directly is expected to be faster than using nibabel, specifically by using memmap
                if filename.endswith('.gz'):
                    dat = img.get_data()
                    #dat=np.asanyarray(dobj) # same as the above

#                    with gzip.open(filename) as o: # TODO: not sure if this is any faster than the above
#                        o.seek(dobj.offset) # seek beyond the header
#                        dat=np.frombuffer(o.read(),dobj.dtype).reshape(datshape,order=dobj.order)
                else:
                    # mmap the image data below the header in the file
                    dat = np.memmap(dobj.file_like, dobj.dtype, 'r',
                                    dobj.offset, datshape, dobj.order)

                dat = eidolon.transposeRowsColsNP(
                    dat)  # transpose from row-column to column-row

                obj = self.createObjectFromArray(name,
                                                 dat,
                                                 interval,
                                                 toffset,
                                                 position,
                                                 rot,
                                                 spacing,
                                                 task=task)
                obj.source = hdr

                # apply slope since this isn't done automatically when using memmap/gzip
                if not filename.endswith('.gz'):
                    eidolon.applySlopeIntercept(obj,
                                                *img.header.get_slope_inter())

                f.setObject(obj)
Exemplo n.º 9
0
        def _loadFile(filename,
                      name,
                      position=None,
                      rot=None,
                      toffset=None,
                      interval=None,
                      task=None):
            with f:
                filename = Future.get(filename)
                name = name or self.mgr.getUniqueObjName(
                    splitPathExt(filename)[1])

                recfile = os.path.splitext(filename)[0]
                if os.path.exists(recfile + '.rec'):
                    recfile = recfile + '.rec'
                elif os.path.exists(recfile + '.REC'):
                    recfile = recfile + '.REC'
                else:
                    raise IOError("Cannot find rec file '%s.rec'" % recfile)

                geninfo, imginfo = parseParFile(filename)  # read par file
                rec = np.fromfile(recfile, np.uint8)  # read rec file

                #               numorients=geninfo[genInfoFields.maxgrad[2]][0]
                #               numslices=geninfo[genInfoFields.maxloc[2]][0]
                #               numsteps=geninfo[genInfoFields.maxphase[2]][0]

                #               slicenum=imgInfoFields.slicenum[-1]
                #               trigger=imgInfoFields.trigger[-1]

                #               numslices=len(set(i[slicenum] for i in imginfo))
                #               # count the number of times the slice number decreases one slice to the next, this indicates how many times the slice index loops back
                #               numorients=1+sum(1 if imginfo[i][slicenum]>imginfo[i+1][slicenum] else 0 for i in range(len(imginfo)-1))
                #               # count the number of times the trigger time decreases one slice to the next, this indicates when the images transition between volumes
                #               numvols=1+sum(1 if imginfo[i][trigger]>imginfo[i+1][trigger] else 0 for i in range(len(imginfo)-1))/(numorients*numslices)

                #               if len(imginfo)!=(numvols*numorients*numslices*numsteps):
                #                   raise IOError,'Mismatch between stated orient, slice, and step numbers and number of images (%r != %r*%r*%r*%r)'%(len(imginfo),numorients,numslices,numsteps,numvols)

                #               orientsize=len(imginfo)/numorients
                datasize = 0
                objs = []
                rpos = 0
                typemap = {
                }  # maps type ID to dict mapping dynamic ID to SharedImage lists

                for imgi in imginfo:  # sum up the sizes of each image to compare against the actual size of the rec file
                    w, h = imgi[imgInfoFields.reconres[-1]]
                    pixelsize = imgi[imgInfoFields.imgpix[
                        -1]] / 8  # convert from bits to bytes
                    datasize += w * h * pixelsize

                if rec.shape[0] != datasize:
                    raise IOError(
                        'Rec file incorrect size, should be %i but is %i' %
                        (datasize, rec.shape[0]))

                for imgi in imginfo:
                    dynamic = imgi[imgInfoFields.dynnum[-1]]
                    itype = imgi[imgInfoFields.imgtypemr[-1]]
                    dims = imgi[imgInfoFields.reconres[-1]]
                    trigger = imgi[imgInfoFields.trigger[-1]]
                    orientation = imgi[imgInfoFields.sliceori[-1]]
                    spacing = imgi[imgInfoFields.pixspace[-1]]
                    offcenter = imgi[imgInfoFields.imgoff[-1]]
                    angulation = imgi[imgInfoFields.imgang[-1]]
                    pixelsize = imgi[imgInfoFields.imgpix[-1]]
                    reslope = imgi[imgInfoFields.rescalesl[-1]]
                    intercept = imgi[imgInfoFields.rescalein[-1]]

                    if itype not in typemap:
                        typemap[itype] = dict()

                    if dynamic not in typemap[itype]:
                        typemap[itype][dynamic] = []

                    images = typemap[itype][dynamic]

                    dtype = np.dtype('uint' + str(pixelsize))

                    pos, rot = getTransformFromInfo(offcenter,
                                                    angulation, orientation,
                                                    vec3(*spacing),
                                                    vec3(*dims))

                    imgsize = dims[0] * dims[1] * dtype.itemsize
                    arr = rec[rpos:rpos + imgsize].view(dtype).reshape(dims)
                    rpos += imgsize

                    if scalemethod in ('dv', 'DV'):
                        arr = (arr.astype(float) *
                               reslope) + intercept  # DV scaling method

                    simg = SharedImage(recfile, pos, rot, dims, spacing,
                                       trigger)
                    simg.allocateImg('%s_t%i_d%i_img%i' %
                                     (name, itype, dynamic, len(images)))
                    #simg.setArrayImg(arr)
                    simg.setMinMaxValues(arr.min(), arr.max())
                    np.asarray(simg.img)[:, :] = arr

                    images.append(simg)

                for itype in typemap:
                    for dynamic, images in typemap[itype].items():
                        vname = '%s_t%i_d%i' % (name, itype, dynamic)
                        source = {
                            'geninfo': geninfo,
                            'imginfo': imginfo,
                            'filename': filename,
                            'scalemethod': scalemethod,
                            'loadorder': len(objs)
                        }
                        obj = ImageSceneObject(vname, source, images, self)
                        objs.append(obj)


#               for numo in range(numorients):
#                   orientimgs=imginfo[numo*orientsize:(numo+1)*orientsize]
#
#                   for numv in range(numvols):
#                       volsimgs=[img for i,img in enumerate(orientimgs) if i%numvols==numv]
#                       images=[]
#                       for imgi in volsimgs:
#                           vname='%s_o%i_v%i'%(name,numo,numv)
#                           dims=imgi[imgInfoFields.reconres[-1]]
#                           trigger=imgi[imgInfoFields.trigger[-1]]
#                           orientation=imgi[imgInfoFields.sliceori[-1]]
#                           spacing=imgi[imgInfoFields.pixspace[-1]]
#                           offcenter=imgi[imgInfoFields.imgoff[-1]]
#                           angulation=imgi[imgInfoFields.imgang[-1]]
#                           pixelsize=imgi[imgInfoFields.imgpix[-1]]
#
#                           reslope=imgi[imgInfoFields.rescalesl[-1]]
#                           intercept=imgi[imgInfoFields.rescalein[-1]]
#
#                           dtype=np.dtype('uint'+str(pixelsize))
#
#                           pos,rot=self._getTransformFromInfo(offcenter,angulation,orientation,vec3(*spacing),vec3(*dims))
#
#                           imgsize=dims[0]*dims[1]*dtype.itemsize
#                           arr=rec[rpos:rpos+imgsize].view(dtype).reshape(dims)
#                           rpos+=imgsize
#
#                           if scalemethod in ('dv','DV'):
#                               arr=(arr.astype(float)*reslope)+intercept # DV scaling method
#
#                           simg=SharedImage(recfile,pos,rot,dims,spacing,trigger)
#                           simg.allocateImg('%s_img%i'%(vname,len(images)))
#                           simg.setArrayImg(arr)
#                           images.append(simg)
#
#                       obj=ImageSceneObject(vname,{'geninfo':geninfo,'imginfo':imginfo,'filename':filename},images,self)
#                       objs.append(obj)

                assert rpos == rec.shape[0], '%i != %i' % (rpos, rec.shape[0])

                f.setObject(objs)