def configure(self, env): import params env.set_params(params) print 'Install plugins'; output = os.system("/usr/share/elasticsearch/bin/plugin -DproxyHost=proxy.ash2.symcpe.net -DproxyPort=8080 --install mobz/elasticsearch-head") print output output = os.system("/usr/share/elasticsearch/bin/plugin -DproxyHost=proxy.ash2.symcpe.net -DproxyPort=8080 --install elasticsearch/elasticsearch-repository-hdfs/2.1.0-hadoop2") print output output = os.system("/usr/share/elasticsearch/bin/plugin -DproxyHost=proxy.ash2.symcpe.net -DproxyPort=8080 --install royrusso/elasticsearch-HQ") print output elastic()
def configure(self, env): import params env.set_params(params) print 'Install plugins' output = os.system( "/usr/share/elasticsearch/bin/plugin -DproxyHost=proxy.ash2.symcpe.net -DproxyPort=8080 --install mobz/elasticsearch-head" ) print output output = os.system( "/usr/share/elasticsearch/bin/plugin -DproxyHost=proxy.ash2.symcpe.net -DproxyPort=8080 --install elasticsearch/elasticsearch-repository-hdfs/2.1.0-hadoop2" ) print output output = os.system( "/usr/share/elasticsearch/bin/plugin -DproxyHost=proxy.ash2.symcpe.net -DproxyPort=8080 --install royrusso/elasticsearch-HQ" ) print output elastic()
def calling_lex(query): client = boto3.client('lex-runtime') response = client.post_text(botName='SearchIntent', botAlias='$LATEST', userId='USER', inputText=query) print(json.dumps(response)) if response['dialogState'] == "ReadyForFulfillment": keywordone = response['slots']['keywordone'] keywordtwo = response['slots']['keywordtwo'] print(keywordone) print(keywordtwo) response = elastic.elastic(keywordone, keywordtwo) print("response from elastic module") print(response) else: response = "Inappropiate Querry" return response
def configure(self, env, upgrade_type=None, config_dir=None): import params env.set_params(params) Logger.info('Configure Elasticsearch master node') elastic()
from ridge import ridge from lasso import lasso from elastic import elastic import utilities # Load dataset. normalized = True dataset = utilities.import_CCPP(normalized) fit, _ = my_lslr(dataset, 15000, 0.1) utilities.stats(dataset, fit, 'My LSLR') fit, _ = my_ridge(dataset, 15000, 0.1, 0.1) utilities.stats(dataset, fit, 'My Ridge') fit = lslr(dataset) utilities.stats(dataset, fit, 'Library LSLR') fit = ridge(dataset) utilities.stats(dataset, fit, 'Library Ridge') # Load dataset. normalized = False dataset = utilities.import_CCPP(normalized) fit = elastic(dataset) utilities.stats(dataset, fit, 'Library Elastic') fit = lasso(dataset) utilities.stats(dataset, fit, 'Library Lasso')
def configure(self, env, upgrade_type=None, config_dir=None): import params env.set_params(params) elastic()
def configure(self, env): import params env.set_params(params) elastic()
def configure(self, env): import params env.set_params(params) # install elastic plugins elastic(name='master')
def plot_evaluation(my_colors, lib_colors): # Load dataset. dataset = utilities.import_CCPP(True) # Store constant variables. y_real = np.array(dataset.iloc[:, 4].values) std_patch = mpatches.Patch(color='darkslategray') fits = [] losses = [] losses_per_epoch = [] titles = ['LSLR Loss Per Epoch', 'Ridge Loss Per Epoch'] patches = ['Our LSLR Loss', 'Our Ridge Loss'] colors = my_colors epochs = 15000 # Calculate my regression fits. fit, loss = my_lslr(dataset, epochs, 0.1) fits.append(fit) losses_per_epoch.append(loss) losses.append(evaluate_fit(dataset, fits[0])) fit, loss = my_ridge(dataset, epochs, 0.1, 0.1) fits.append(fit) losses_per_epoch.append(loss) losses.append(evaluate_fit(dataset, fits[1])) # Print stats. utilities.stats(dataset, fits[0], 'My LSLR') utilities.stats(dataset, fits[1], 'My Ridge') # Setup plot. fig = plt.figure() ax = fig.add_subplot(111) x_axis = np.linspace(0, epochs, len(losses_per_epoch[0]), endpoint=True) ax.plot(x_axis, losses_per_epoch[1], color=colors[1], alpha=0.75) ax.plot(x_axis, losses_per_epoch[0], color=colors[0], alpha=0.75) ax.legend( [mpatches.Patch(color=colors[0]), mpatches.Patch(color=colors[1])], [patches[0], patches[1]]) ax.set(title='Loss Per Epoch', xlabel='Epoch', ylabel='Loss') plt.show() # Plot fit losses. titles = ['Our LSLR', 'Our Ridge'] x_axis = np.linspace(0, len(dataset.iloc[:, 4].values), len(dataset.iloc[:, 4].values), endpoint=True) fig, ax = plt.subplots(1, 2) for i in range(0, len(fits)): mean = np.mean(losses[i]) print(titles[i] + ' Mean: ' + str(mean)) loss_patch = mpatches.Patch(color=colors[i]) ax[i].semilogy(x_axis, losses[i], color=colors[i]) ax[i].set_xlim(0, len(dataset.iloc[:, 4].values)) ax[i].axhline(y=np.std(y_real)**2, color='darkslategray', xmin=0, xmax=len(dataset.iloc[:, 4].values), linestyle='-') ax[i].axhline(y=mean, color='w', xmin=0, xmax=len(dataset.iloc[:, 4].values), linestyle='-') ax[i].text(1.05, mean, '{:.4f}'.format(mean), va='center', ha="left", bbox=dict(alpha=0), transform=ax[i].get_yaxis_transform()) ax[i].legend([loss_patch, std_patch], [patches[i], 'Standard Deviation']) ax[i].set(title=titles[i], xlabel='Value', ylabel='Logarithmic Loss') plt.subplots_adjust(wspace=0.3) plt.show() # Reset variables. fits = [] losses = [] titles = ['LSLR', 'Ridge', 'Lasso', 'Elastic Net'] patches = ['LSLR Loss', 'Ridge Loss', 'Lasso Loss', 'Elastic Net Loss'] colors = lib_colors # Calculate regression fits from libraries. fits.append(lslr(dataset)) losses.append(evaluate_fit(dataset, fits[0])) fits.append(ridge(dataset)) losses.append(evaluate_fit(dataset, fits[1])) fits.append(lasso(dataset)) losses.append(evaluate_fit(dataset, fits[2])) fits.append(elastic(dataset)) losses.append(evaluate_fit(dataset, fits[3])) # Print stats. utilities.stats(dataset, fits[0], 'Library LSLR') utilities.stats(dataset, fits[1], 'Library Ridge') utilities.stats(dataset, fits[2], 'Library Lasso') utilities.stats(dataset, fits[3], 'Library Elastic Net') # Plot fit losses. fig, ax = plt.subplots(2, 2) fig.suptitle('Evaluation of Regression Libraries') for i in range(0, len(fits)): mean = np.mean(losses[i]) print(titles[i] + ' Mean: ' + str(mean)) loss_patch = mpatches.Patch(color=colors[i]) ax[int(i / 2) % 2, i % 2].semilogy(x_axis, losses[i], color=colors[i]) ax[int(i / 2) % 2, i % 2].set_xlim(0, len(dataset.iloc[:, 4].values)) ax[int(i / 2) % 2, i % 2].axhline(y=np.std(y_real)**2, color='darkslategray', xmin=0, xmax=len(dataset.iloc[:, 4].values), linestyle='-') ax[int(i / 2) % 2, i % 2].axhline(y=mean, color='w', xmin=0, xmax=len(dataset.iloc[:, 4].values), linestyle='-') ax[int(i / 2) % 2, i % 2].text(1.05, mean, '{:.4f}'.format(mean), va='center', ha="left", bbox=dict(alpha=0), transform=ax[int(i / 2) % 2, i % 2].get_yaxis_transform()) ax[int(i / 2) % 2, i % 2].legend([loss_patch, std_patch], [patches[i], 'Standard Deviation']) ax[int(i / 2) % 2, i % 2].set(title=titles[i], xlabel='Value', ylabel='Loss (Logarithmic)') plt.subplots_adjust(wspace=0.3, hspace=0.7) plt.show()