Exemplo n.º 1
0
                         device=device)

# Create trainer
trainer = Trainer(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    device=device,
    train_dataset=train_dataset,
    valid_dataset=valid_dataset,
    batch_size=1,
    num_workers=2,
    save_root=save_root,
    exp_name=args.exp_name,
    example_input=example_input,
    enable_save_trace=enable_save_trace,
    schedulers={'lr': lr_sched},
    valid_metrics=valid_metrics,
    preview_batch=preview_batch,
    preview_interval=5,
    inference_kwargs=inference_kwargs,
    hparams=hparams,
    # enable_videos=True,  # Uncomment to enable videos in tensorboard
    out_channels=out_channels,
    ipython_shell=args.ipython,
    # extra_save_steps=range(0, max_steps, 10_000),
    # mixed_precision=True,  # Enable to use Apex for mixed precision training
)

if args.deterministic:
    assert trainer.num_workers <= 1, 'num_workers > 1 introduces indeterministic behavior'
Exemplo n.º 2
0
criterion = CombinedLoss([crossentropy, dice], weight=[0.5, 0.5], device=device)

# Create trainer
trainer = Trainer(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    device=device,
    train_dataset=train_dataset,
    valid_dataset=valid_dataset,
    batchsize=1,
    num_workers=1,
    save_root=save_root,
    exp_name=args.exp_name,
    example_input=example_input,
    enable_save_trace=enable_save_trace,
    schedulers={'lr': lr_sched},
    valid_metrics=valid_metrics,
    preview_batch=preview_batch,
    preview_interval=5,
    # enable_videos=True,  # Uncomment to enable videos in tensorboard
    offset=train_dataset.offset,
    apply_softmax_for_prediction=True,
    num_classes=train_dataset.num_classes,
    # TODO: Tune these:
    preview_tile_shape=(32, 64, 64),
    preview_overlap_shape=(32, 64, 64),
    # mixed_precision=True,  # Enable to use Apex for mixed precision training
)

# Archiving training script, src folder, env info
Backup(script_path=__file__,save_path=trainer.save_path).archive_backup()
Exemplo n.º 3
0
]:
    valid_metrics[f'val_{evaluator.name}_mean'] = evaluator()  # Mean metrics
    for c in range(out_channels):
        valid_metrics[f'val_{evaluator.name}_c{c}'] = evaluator(c)

criterion = nn.CrossEntropyLoss().to(device)

# Create trainer
trainer = Trainer(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    device=device,
    train_dataset=train_dataset,
    valid_dataset=valid_dataset,
    batch_size=batch_size,
    num_workers=1,
    save_root=save_root,
    exp_name=args.exp_name,
    save_jit='script',
    schedulers={"lr": lr_sched},
    valid_metrics=valid_metrics,
    out_channels=out_channels,
)

# Archiving training script, src folder, env info
bk = Backup(script_path=__file__, save_path=trainer.save_path).archive_backup()

# Start training
trainer.run(max_steps)
Exemplo n.º 4
0
valid_metrics = {}

criterion = HybridDiceLoss()

# Create trainer
trainer = Trainer(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    device=device,
    train_dataset=train_dataset,
    valid_dataset=valid_dataset,
    batchsize=4,
    num_workers=8,
    save_root=save_root,
    exp_name=args.exp_name,
    example_input=example_input,
    enable_save_trace=enable_save_trace,
    schedulers=schedulers,
    valid_metrics=valid_metrics,
    enable_videos=False,  # Uncomment to get rid of videos in tensorboard
    offset=train_dataset.offset,
    apply_softmax_for_prediction=True,
    num_classes=train_dataset.num_classes,
    ipython_shell=False,
)

# Archiving training script, src folder, env info
Backup(script_path=__file__, save_path=trainer.save_path).archive_backup()

# Start training
Exemplo n.º 5
0
# Create trainer
trainer = Trainer(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    device=device,
    train_dataset=train_dataset,
    valid_dataset=valid_dataset,
    batchsize=1,
    num_workers=1,
    save_root=save_root,
    exp_name=args.exp_name,
    example_input=example_input,
    enable_save_trace=enable_save_trace,
    schedulers=
    schedulers,  #{"lr": optim.lr_scheduler.StepLR(optimizer, 1000, 0.995)},
    valid_metrics=valid_metrics,
    #preview_batch=preview_batch,
    #preview_interval=5,
    enable_videos=False,  # Uncomment to get rid of videos in tensorboard
    offset=train_dataset.offset,
    apply_softmax_for_prediction=True,
    num_classes=train_dataset.num_classes,
    ipython_shell=False,
    # TODO: Tune these:
    #preview_tile_shape=(48, 96, 96),
    #preview_overlap_shape=(48, 96, 96),
    #sample_plotting_handler = handlers._tb_log_sample_images_Synapse,
    #mixed_precision=True,  # Enable to use Apex for mixed precision training
)
Exemplo n.º 6
0
                           weight_decay=0.5e-4,
                           lr=lr,
                           amsgrad=True)
    lr_sched = optim.lr_scheduler.StepLR(optimizer, lr_stepsize, lr_dec)

    # criterion = LovaszLoss().to(device)
    criterion = DiceLoss().to(device)

    # Create and run trainer
    trainer = Trainer(
        model=model,
        criterion=criterion,
        optimizer=optimizer,
        device=device,
        train_dataset=train_dataset,
        valid_dataset=valid_dataset,
        batchsize=batch_size,
        num_workers=2,
        save_root=save_root,
        exp_name=args.exp_name,
        schedulers={"lr": lr_sched},
        ipython_shell=False,
        mixed_precision=False,  # Enable to use Apex for mixed precision training
    )

    # Archiving training script, src folder, env info
    bk = Backup(script_path=__file__,
                save_path=trainer.save_path).archive_backup()

    trainer.run(max_steps)
Exemplo n.º 7
0
    }

    # Class weights for imbalanced dataset
    class_weights = torch.tensor([0.2653,  0.7347])

    # criterion = nn.CrossEntropyLoss(weight=class_weights)
    criterion = DiceLoss()

    # Create trainer
    trainer = Trainer(
        model=model,
        criterion=criterion,
        optimizer=optimizer,
        device=device,
        train_dataset=train_dataset,
        valid_dataset=valid_dataset,
        batchsize=batch_size,
        num_workers=2,
        save_root=save_root,
        exp_name=args.exp_name,
        schedulers={"lr": lr_sched},
        valid_metrics=valid_metrics,
    )

    # Archiving training script, src folder, env info
    Backup(script_path=__file__,save_path=trainer.save_path).archive_backup()

    # Start training
    trainer.train(max_steps=max_steps, max_runtime=max_runtime)


# How to re-calculate mean, std and class_weights for other datasets:
Exemplo n.º 8
0
crossentropy = nn.CrossEntropyLoss()  # weight=torch.tensor((0.2, 0.8)))
dice = DiceLoss()  # weight=torch.tensor((0.2, 0.8)), apply_softmax=True)
criterion = CombinedLoss([crossentropy, dice],
                         weight=[0.5, 0.5],
                         device=device)

# Create trainer
trainer = Trainer(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    device=device,
    train_dataset=train_dataset,
    valid_dataset=valid_dataset,
    batchsize=1,
    num_workers=1,
    save_root=save_root,
    exp_name=args.exp_name,
    schedulers={'lr': lr_sched},
    valid_metrics=valid_metrics,
    enable_videos=True,
    offset=train_dataset.offset,
    apply_softmax_for_prediction=True,
    num_classes=train_dataset.num_classes,
)

# Archiving training script, src folder, env info
Backup(script_path=__file__, save_path=trainer.save_path).archive_backup()

# Start training
trainer.run(max_steps=max_steps, max_runtime=max_runtime)