Exemplo n.º 1
0
def run_many_configs(args=None,
                     sys_argv=None,
                     return_0_if_ok=True,
                     started=None):
    started = started or datetime.datetime.now()
    env_cmd_line = Namespace(
        **{k: v
           for d in (vars(args), parse_env_vars()) for k, v in d.items()})
    logger.info(
        'With --config-dir, DASK_CLIENT and DASK_SCHEDULER in config files are ignored'
    )
    dask_client = getattr(env_cmd_line, 'DASK_CLIENT', 'SERIAL')
    dask_scheduler = getattr(env_cmd_line, 'DASK_SCHEDULER', None)
    ret_val = 1
    with try_finally_log_etime(started) as _:
        with warnings.catch_warnings():
            # scikit-learn has a number
            # of deprecation warnings for kmeans
            warnings.simplefilter("ignore")
            results = [1]
            with client_context(dask_client, dask_scheduler) as client:
                kw = {
                    'args': args,
                    'sys_argv': sys_argv,
                    'return_0_if_ok': True,
                    'client': client,
                }
                pipe = partial(_run_one_config_of_many, **kw)
                fnames = glob.glob(os.path.join(args.config_dir, '*.yaml'))
                ret_val = max(map(pipe, fnames))
    return ret_val
Exemplo n.º 2
0
def predict_many(data_source,
                 saved_model_tag=None,
                 ensemble=None,
                 client=None,
                 serialize=None,
                 to_raster=True,
                 elm_predict_path=None):
    '''See elm.pipeline.Pipeline.predict_many method

    '''

    env = parse_env_vars()
    elm_predict_path = elm_predict_path or env.get('ELM_PREDICT_PATH')
    if serialize and elm_predict_path and not os.path.exists(elm_predict_path):
        os.mkdir(elm_predict_path)
    pipe_example = ensemble[0][1]
    ds = data_source.copy()
    X = ds.pop('X', None)
    y = ds.pop('y', None)
    args_list = ds.pop('args_list', None)
    sampler = ds.pop('sampler', None)
    dsk = make_samples_dask(X, y, None, pipe_example, args_list, sampler, ds)
    sample_keys = tuple(dsk)
    args_list = tuple(itertools.product(sample_keys, ensemble))
    keys = []
    last_file_name = None
    for idx, (sample_key, (estimator_tag, estimator)) in enumerate(args_list):
        name = _next_name('predict_many')
        predict_tag = '{}-{}'.format(estimator_tag, sample_key)
        if saved_model_tag:
            predict_tag += '-' + saved_model_tag
        dsk[name] = (
            _predict_one_sample_one_arg,
            estimator,
            serialize,
            to_raster,
            predict_tag,
            elm_predict_path,
            sample_key,
        )

        keys.append(name)
    logger.info('Predict {} estimator(s) and {} sample(s) '
                '({} combination[s])'.format(len(ensemble), len(sample_keys),
                                             len(args_list)))
    preds = []
    if client is None:
        new = dask.get(dsk, keys)
    else:
        new = client.get(dsk, keys)
    return tuple(itertools.chain.from_iterable(new))
Exemplo n.º 3
0
import glob
import os
from elm.config import parse_env_vars

ENV = parse_env_vars()
ELM_HAS_EXAMPLES = ENV['ELM_HAS_EXAMPLES']
if ELM_HAS_EXAMPLES:
    ELM_EXAMPLE_DATA_PATH = ENV['ELM_EXAMPLE_DATA_PATH']
    TIF_FILES = glob.glob(
        os.path.join(ELM_EXAMPLE_DATA_PATH, 'tif', 'L8', '015', '033',
                     'LC80150332013207LGN00', '*.TIF'))
    HDF5_FILES = glob.glob(
        os.path.join(ELM_EXAMPLE_DATA_PATH, 'hdf5', '2016', '01', '01',
                     'imerg', '*.HDF5'))
    HDF4_FILES = glob.glob(os.path.join(ELM_EXAMPLE_DATA_PATH, 'hdf4',
                                        '*.hdf'))
    NETCDF_FILES = glob.glob(
        os.path.join(ELM_EXAMPLE_DATA_PATH, 'netcdf', '*.nc'))
else:
    ELM_EXAMPLE_DATA_PATH = None
    TIF_FILES = []
    HDF5_FILES = []
    HDF4_FILES = []
    NETCDF_FILES = []


def assertions_on_metadata(meta):
    required_keys = ('meta', 'band_meta')
    for key in required_keys:
        assert key in meta