Exemplo n.º 1
0
 def _predict(self, filenames):
     images = read_images_for_torch(filenames).to(self.device)
     labels = self.network.predict(images).astype('uint8')
     infos = [
         FilenameParser.get_imageinfo_from_filename(nm) for nm in filenames
     ]
     return self.pack_into_annotated_images(infos, labels)
Exemplo n.º 2
0
 def _predict(self, filenames_and_boxes):
     input_x = self._read_images_for_stage(filenames_and_boxes)
     stage_probs = self.network.predict_proba(input_x)
     infos = [
         FilenameParser.get_imageinfo_from_filename(nm)
         for nm, box in filenames_and_boxes]
     return self.pack_into_annotated_images(infos, stage_probs)
Exemplo n.º 3
0
 def _grab_names_and_boxes_for_stages(
         self, stage_smooth, valid_stages, names_and_boxes):
     infos = [
         FP.get_imageinfo_from_filename(nm) for nm, _ in names_and_boxes]
     out = [
         name_and_box
         for name_and_box, info in zip(names_and_boxes, infos)
         if stage_smooth[info].annotation in valid_stages]
     return out
Exemplo n.º 4
0
    def test_create_from_filename_and_data(self):
        filename = (
            '/media/brian/Data/Dalit-Embryo-Images/training-data-folders/' +
            'D2016_06_03_S1113_I313_pdb/WELL06/F0/168.jpg')
        data = [1, 2, 4]
        image = AnnotatedImage.create_from_filename_and_data(
            filename, data)

        true_info = FilenameParser.get_imageinfo_from_filename(filename)
        self.assertEqual(image.info, true_info)
        self.assertEqual(image.annotation, data)
Exemplo n.º 5
0
    def _predict(self, filenames_and_boxes):
        boxes = [box for filename, box in filenames_and_boxes]
        filenames = [filename for filename, box in filenames_and_boxes]

        outputs_raw = [
            self._predict_single_timepoint_raw(*name_and_box)
            for name_and_box in filenames_and_boxes
        ]

        output = self._transform_to_final_output(outputs_raw, boxes)
        infos = [
            FilenameParser.get_imageinfo_from_filename(nm) for nm in filenames
        ]
        return self.pack_into_annotated_images(infos, output)
Exemplo n.º 6
0
    def test_grab_1cell_names_and_boxes(self):
        stages = make_fake_smoothed_stages()
        box = (1, 1, 100, 100)
        names_and_boxes = [
            (FP.get_partial_filename_from_imageinfo(i.info), box)
            for i in stages.iterate_over_images()]
        p = Pipeline('cpu')

        onecell_names_boxes = p._grab_1cell_names_and_boxes(
            stages, names_and_boxes)

        images_in_onecell_stage = [
            i for i in stages.iterate_over_images() if i.annotation == 1]
        for name, _ in onecell_names_boxes:
            info = FP.get_imageinfo_from_filename(name)
            self.assertEqual(stages[info].annotation, 1)
        self.assertEqual(
            len(images_in_onecell_stage),
            len(onecell_names_boxes))
Exemplo n.º 7
0
    def test_grab_cleavage_names_and_boxes(self):
        stages = make_fake_smoothed_stages()
        box = (1, 1, 100, 100)
        names_and_boxes = [
            (FP.get_partial_filename_from_imageinfo(i.info), box)
            for i in stages.iterate_over_images()]
        p = Pipeline('cpu')

        cleavage_names_boxes = p._grab_cleavage_names_and_boxes(
            stages, names_and_boxes)

        cleavage_stages = {1, 2, 3, 4, 5, 6, 7, 8}
        images_in_cleavage_stage = [
            i for i in stages.iterate_over_images()
            if i.annotation in cleavage_stages]
        for name, _ in cleavage_names_boxes:
            info = FP.get_imageinfo_from_filename(name)
            self.assertIn(stages[info].annotation, cleavage_stages)
        self.assertEqual(
            len(images_in_cleavage_stage),
            len(cleavage_names_boxes))
    def _predict(self, f0_filenames_and_boxes):
        filenames = [nm for nm, box in f0_filenames_and_boxes]
        boxes = [box for nm, box in f0_filenames_and_boxes]

        augmented_names = [augment_focus(nm) for nm in filenames]
        fm_filenames_and_boxes = [
            (names[0], box)
            for names, box in zip(augmented_names, boxes)]
        fp_filenames_and_boxes = [
            (names[2], box)
            for names, box in zip(augmented_names, boxes)]

        frag_f0 = self._predict_for_focus_level(f0_filenames_and_boxes)
        frag_fm = self._predict_for_focus_level(fm_filenames_and_boxes)
        frag_fp = self._predict_for_focus_level(fp_filenames_and_boxes)
        frag_values = np.mean([frag_f0, frag_fm, frag_fp], axis=0)

        infos = [
            FilenameParser.get_imageinfo_from_filename(nm)
            for nm in filenames]
        return self.pack_into_annotated_images(infos, frag_values)
Exemplo n.º 9
0
 def test_get_imageinfo_from_filename(self):
     true_info = INFO_F0
     parser = FilenameParser(EMBRYO_FOLDER)
     filename = parser.get_filename_from_imageinfo(true_info)
     parsed_info = parser.get_imageinfo_from_filename(filename)
     self.assertEqual(parsed_info, true_info)