def log_train_metrics(self, loss, acc, completed_batch, worker=0): acc = acc/100.0 self.gs += 1 with EMetrics.open() as em: em.record(EMetrics.TEST_GROUP,completed_batch,{'loss': loss, 'accuracy': acc}) with ELog.open() as log: log.recordTrain("Train", completed_batch, self.gs, loss, acc, worker)
def mq_record(batch, logs): loss = logs['loss'] accuracy = logs['accuracy'] with EMetrics.open() as em: em.record(EMetrics.TEST_GROUP, batch, { 'loss': loss, 'accuracy': accuracy })
def __init__(self): self.emetrics = EMetrics.open(getCurrentSubID())
def test(epoch,em): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: if args.cuda: data, target = data.cuda(), target.cuda() output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) # accuracy = correct / len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) #em.record(EMetrics.TEST_GROUP,epoch,{'loss': test_loss, 'accuracy': accuracy}) with EMetrics.open() as em: for epoch in range(1, args.epochs + 1): train(epoch) test(epoch,em) torch.save(model.state_dict(),output_model_path)
def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument( '--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') args = parser.parse_args() print(args) use_cuda = not args.no_cuda torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") #kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} kwargs = {} train_loader = torch.utils.data.DataLoader(datasets.MNIST( data_dir, train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST( data_dir, train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) if use_cuda: print("Let's use {} gpus".format(str(torch.cuda.device_count()))) # multi-GPUs data if use_cuda and torch.cuda.device_count() > 1: model = nn.DataParallel(Net()).to(device) else: model = Net().to(device) optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) # optimizer = nn.DataParallel(optimizer, device_ids=[0, 1]) start_time = time.time() with EMetrics.open() as em: for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch, em) test(args, model, device, test_loader) duration = (time.time() - start_time) / 60 print("Train finished. Time cost: %.2f minutes" % (duration)) torch.save(model.state_dict(), output_model_path) print("Model saved in path: %s" % output_model_path)
def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args, unknown = parser.parse_known_args() print(sys.path) print("known arguments: ", args) print("unknown arguments", unknown) print("torch version: %s" % torch.__version__) use_cuda = not args.no_cuda if use_cuda: print("Let's use {} gpus".format(str(torch.cuda.device_count()))) # for onnx torch.cuda.manual_seed(args.seed) #torch.set_default_tensor_type(torch.cuda.FloatTensor) else: print("Let's use cpu") torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") # kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} kwargs = {} train_loader = torch.utils.data.DataLoader( datasets.MNIST(data_dir, train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST(data_dir, train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) # multi-GPUs data if use_cuda and torch.cuda.device_count() > 1: model = nn.DataParallel(Net()).to(device) else: model = Net().to(device) print("Model parameters are on cuda") if all(p.is_cuda for p in model.parameters()) else print("Model parameters are on cpu") optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) start_time = time.time() with EMetrics.open() as em: for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch, em) test(args, model, device, test_loader) duration = (time.time() - start_time) / 60 print("Train finished. Time cost: %.2f minutes" % duration) torch.save(model.state_dict(), output_model_pt) print("Model saved in path: %s" % output_model_pt) # export onnx model dummy_input = torch.randn(1, 1, 28, 28, device=device) if type(model) is nn.DataParallel: # torch.nn.DataParallel is not supported by ONNX exporter, please use 'attribute' module to unwrap model from torch.nn.DataParallel model = model.module torch.onnx.export(model, dummy_input, output_model_onnx, export_params=True) print("Onnx Model saved in path: %s" % output_model_onnx)
from emetrics import EMetrics with EMetrics.open() as metrics: metrics.record( EMetrics.TEST_GROUP, 1, {"accuracy": 0.6}) # record TEST metric accuracy=0.6 after step 1 metrics.record( EMetrics.TRAIN_GROUP, 1, {"accuracy": 0.67}) # record TRAIN metric accuracy=0.6 after step 1 metrics.record( EMetrics.TEST_GROUP, 2, {"accuracy": 0.5}) # record TEST metric accuracy=0.5 after step 2 metrics.record( EMetrics.TRAIN_GROUP, 2, {"accuracy": 0.54}) # record TRAIN metric accuracy=0.6 after step 1 metrics.record( EMetrics.TEST_GROUP, 3, {"accuracy": 0.9}) # record TEST metric accuracy=0.9 after step 3 metrics.record( EMetrics.TRAIN_GROUP, 1, {"accuracy": 0.91}) # record TRAIN metric accuracy=0.6 after step 1
def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument( '--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") if use_cuda: torch.cuda.manual_seed(args.seed) #torch.cuda.set_device(device) torch.set_default_tensor_type(torch.cuda.FloatTensor) kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} root_folder = os.getenv("DATA_DIR") output_model_folder = os.environ["RESULT_DIR"] output_model_path = os.path.join(output_model_folder, "model") output_model_path_file = os.path.join(output_model_path, "trained_model.pt") output_model_path_onnx = os.path.join(output_model_path, "trained_model.onnx") train_loader = torch.utils.data.DataLoader(datasets.MNIST( root_folder, train=True, download=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST( root_folder, train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) model = Net().to(device) if use_cuda: model.cuda() optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) with EMetrics.open() as em: for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader, epoch, em) torch.save(model.state_dict(), output_model_path_file) x = torch.randn(1, 1, 28, 28, requires_grad=True) torch.onnx.export(model, x, output_model_path_onnx, export_params=True)