Exemplo n.º 1
0
def main(args=None):
    # parse command-line options
    parser = argparse.ArgumentParser(
        description='description: generate ds9 region files associated '
                    'to a particular rectification and wavelength calibration'
    )

    # required arguments
    parser.add_argument("--rectwv_coeff", required=True,
                        help="Input JSON file with rectification and "
                             "wavelength calibration coefficients",
                        type=argparse.FileType('rt'))

    # optional arguments
    parser.add_argument("--debugplot",
                        help="Integer indicating plotting & debugging options"
                             " (default=0)",
                        default=0, type=int,
                        choices=DEBUGPLOT_CODES)
    parser.add_argument("--echo",
                        help="Display full command line",
                        action="store_true")
    args = parser.parse_args(args)

    if args.echo:
        print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n')

    # generate RectWaveCoeff object
    rectwv_coeff = RectWaveCoeff._datatype_load(
        args.rectwv_coeff.name)

    save_four_ds9(rectwv_coeff=rectwv_coeff, debugplot=args.debugplot)
    save_spectral_lines_ds9(rectwv_coeff=rectwv_coeff,
                            debugplot=args.debugplot)
Exemplo n.º 2
0
def main(args=None):
    # parse command-line options
    parser = argparse.ArgumentParser()
    # required arguments
    parser.add_argument("--input_rectwv_coeff",
                        required=True,
                        help="Input JSON file with rectification and "
                        "wavelength calibration polynomials "
                        "corresponding to a longslit observation",
                        type=argparse.FileType('rt'))
    parser.add_argument("--output_rectwv_coeff",
                        required=True,
                        help="Output JSON file with updated longslit_model "
                        "coefficients",
                        type=lambda x: arg_file_is_new(parser, x, mode='wt'))

    # optional arguments
    parser.add_argument("--geometry",
                        help="tuple x,y,dx,dy (default 0,0,640,480)",
                        default="0,0,640,480")
    parser.add_argument("--debugplot",
                        help="Integer indicating plotting & debugging options"
                        " (default=0)",
                        default=0,
                        type=int,
                        choices=DEBUGPLOT_CODES)
    parser.add_argument("--echo",
                        help="Display full command line",
                        action="store_true")
    args = parser.parse_args(args)

    if args.echo:
        print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n')

    # ---

    logging_from_debugplot(args.debugplot)
    logger = logging.getLogger(__name__)

    # geometry
    if args.geometry is None:
        geometry = None
    else:
        tmp_str = args.geometry.split(",")
        x_geom = int(tmp_str[0])
        y_geom = int(tmp_str[1])
        dx_geom = int(tmp_str[2])
        dy_geom = int(tmp_str[3])
        geometry = x_geom, y_geom, dx_geom, dy_geom

    # generate RectWaveCoeff object
    rectwv_coeff = RectWaveCoeff._datatype_load(args.input_rectwv_coeff.name)

    # update longslit_model parameters
    rectwv_coeff_updated = rectwv_coeff_add_longslit_model(
        rectwv_coeff=rectwv_coeff, geometry=geometry, debugplot=args.debugplot)

    # save updated RectWaveCoeff object into JSON file
    rectwv_coeff_updated.writeto(args.output_rectwv_coeff.name)
    logger.info('>>> Saving file ' + args.output_rectwv_coeff.name)
Exemplo n.º 3
0
def main(args=None):
    # parse command-line options
    parser = argparse.ArgumentParser(
        description='description: apply rectification polynomials '
                    'for the CSU configuration of a particular image'
    )

    # required arguments
    parser.add_argument("fitsfile",
                        help="Input FITS file",
                        type=argparse.FileType('rb'))
    parser.add_argument("--rectwv_coeff", required=True,
                        help="Input JSON file with rectification and "
                             "wavelength calibration coefficients",
                        type=argparse.FileType('rt'))
    parser.add_argument("--outfile", required=True,
                        help="Output FITS file with rectified image",
                        type=lambda x: arg_file_is_new(parser, x, mode='wb'))

    # optional arguments
    parser.add_argument("--resampling",
                        help="Resampling method: 1 -> nearest neighbor, "
                             "2 -> linear interpolation (default)",
                        default=2, type=int,
                        choices=(1, 2))
    parser.add_argument("--ignore_dtu_configuration",
                        help="Ignore DTU configurations differences between "
                             "transformation and input image",
                        action="store_true")
    parser.add_argument("--debugplot",
                        help="Integer indicating plotting & debugging options"
                             " (default=0)",
                        default=0, type=int,
                        choices=DEBUGPLOT_CODES)
    parser.add_argument("--echo",
                        help="Display full command line",
                        action="store_true")
    args = parser.parse_args(args)

    if args.echo:
        print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n')

    # read calibration structure from JSON file
    rectwv_coeff = RectWaveCoeff._datatype_load(
        args.rectwv_coeff.name)

    # read FITS image and its corresponding header
    hdulist = fits.open(args.fitsfile)
    header = hdulist[0].header
    image2d = hdulist[0].data
    hdulist.close()

    # protections
    naxis2, naxis1 = image2d.shape
    if naxis1 != header['naxis1'] or naxis2 != header['naxis2']:
        print('>>> NAXIS1:', naxis1)
        print('>>> NAXIS2:', naxis2)
        raise ValueError('Something is wrong with NAXIS1 and/or NAXIS2')
    if abs(args.debugplot) >= 10:
        print('>>> NAXIS1:', naxis1)
        print('>>> NAXIS2:', naxis2)

    # check that the input FITS file grism and filter match
    filter_name = header['filter']
    if filter_name != rectwv_coeff.tags['filter']:
        raise ValueError("Filter name does not match!")
    grism_name = header['grism']
    if grism_name != rectwv_coeff.tags['grism']:
        raise ValueError("Filter name does not match!")
    if abs(args.debugplot) >= 10:
        print('>>> grism.......:', grism_name)
        print('>>> filter......:', filter_name)

    # check that the DTU configurations are compatible
    dtu_conf_fitsfile = DtuConfiguration.define_from_fits(args.fitsfile)
    dtu_conf_jsonfile = DtuConfiguration.define_from_dictionary(
        rectwv_coeff.meta_info['dtu_configuration'])
    if dtu_conf_fitsfile != dtu_conf_jsonfile:
        print('DTU configuration (FITS file):\n\t', dtu_conf_fitsfile)
        print('DTU configuration (JSON file):\n\t', dtu_conf_jsonfile)
        if args.ignore_dtu_configuration:
            print('WARNING: DTU configuration differences found!')
        else:
            raise ValueError("DTU configurations do not match!")
    else:
        if abs(args.debugplot) >= 10:
            print('>>> DTU Configuration match!')
            print(dtu_conf_fitsfile)

    # valid slitlet numbers
    list_valid_islitlets = list(range(1, EMIR_NBARS + 1))
    for idel in rectwv_coeff.missing_slitlets:
        list_valid_islitlets.remove(idel)
    if abs(args.debugplot) >= 10:
        print('>>> valid slitlet numbers:\n', list_valid_islitlets)

    naxis2_enlarged = EMIR_NBARS * EMIR_NPIXPERSLIT_RECTIFIED
    image2d_rectified = np.zeros((naxis2_enlarged, EMIR_NAXIS1))
    image2d_unrectified = np.zeros((EMIR_NAXIS2, EMIR_NAXIS1))

    for islitlet in list_valid_islitlets:
        if args.debugplot == 0:
            islitlet_progress(islitlet, EMIR_NBARS)

        # define Slitlet2D object
        slt = Slitlet2D(islitlet=islitlet,
                        rectwv_coeff=rectwv_coeff,
                        debugplot=args.debugplot)

        # extract 2D image corresponding to the selected slitlet: note that
        # in this case we are not using select_unrectified_slitlets()
        # because it introduces extra zero pixels in the slitlet frontiers
        slitlet2d = slt.extract_slitlet2d(image2d)

        # rectify image
        slitlet2d_rect = slt.rectify(slitlet2d,
                                     resampling=args.resampling)

        # minimum and maximum useful row in the full 2d rectified image
        # (starting from 0)
        i1 = slt.iminslt - 1
        i2 = slt.imaxslt

        # minimum and maximum scan in the rectified slitlet
        # (in pixels, from 1 to NAXIS2)
        ii1 = slt.min_row_rectified
        ii2 = slt.max_row_rectified + 1

        # save rectified slitlet in its corresponding location within
        # the full 2d rectified image
        image2d_rectified[i1:i2, :] = slitlet2d_rect[ii1:ii2, :]

        # ---

        # unrectify image
        slitlet2d_unrect = slt.rectify(slitlet2d_rect,
                                       resampling=args.resampling,
                                       inverse=True)

        # minimum and maximum useful scan (pixel in the spatial direction)
        # for the rectified slitlet
        nscan_min, nscan_max = nscan_minmax_frontiers(
            slt.y0_frontier_lower,
            slt.y0_frontier_upper,
            resize=False
        )
        ii1 = nscan_min - slt.bb_ns1_orig
        ii2 = nscan_max - slt.bb_ns1_orig + 1

        j1 = slt.bb_nc1_orig - 1
        j2 = slt.bb_nc2_orig
        i1 = slt.bb_ns1_orig - 1 + ii1
        i2 = i1 + ii2 - ii1

        image2d_unrectified[i1:i2, j1:j2] = slitlet2d_unrect[ii1:ii2, :]

    if args.debugplot == 0:
        print('OK!')

    save_ndarray_to_fits(
        array=[image2d_rectified, image2d_unrectified],
        file_name=args.outfile,
        cast_to_float=[True] * 2,
        overwrite=True
    )
    print('>>> Saving file ' + args.outfile.name)
def rectwv_coeff_from_arc_image(reduced_image,
                                bound_param,
                                lines_catalog,
                                args_nbrightlines=None,
                                args_ymargin_bb=2,
                                args_remove_sp_background=True,
                                args_times_sigma_threshold=10,
                                args_order_fmap=2,
                                args_sigma_gaussian_filtering=2,
                                args_margin_npix=50,
                                args_poldeg_initial=3,
                                args_poldeg_refined=5,
                                args_interactive=False,
                                args_threshold_wv=0,
                                args_ylogscale=False,
                                args_pdf=None,
                                args_geometry=(0, 0, 640, 480),
                                debugplot=0):
    """Evaluate rect.+wavecal. coefficients from arc image

    Parameters
    ----------
    reduced_image : HDUList object
        Image with preliminary basic reduction: bpm, bias, dark and
        flatfield.
    bound_param : RefinedBoundaryModelParam instance
        Refined boundary model.
    lines_catalog : Numpy array
        2D numpy array with the contents of the master file with the
        expected arc line wavelengths.
    args_nbrightlines : int
        TBD
    args_ymargin_bb : int
        TBD
    args_remove_sp_background : bool
        TBD
    args_times_sigma_threshold : float
        TBD
    args_order_fmap : int
        TBD
    args_sigma_gaussian_filtering : float
        TBD
    args_margin_npix : int
        TBD
    args_poldeg_initial : int
        TBD
    args_poldeg_refined : int
        TBD
    args_interactive : bool
        TBD
    args_threshold_wv : float
        TBD
    args_ylogscale : bool
        TBD
    args_pdf : TBD
    args_geometry : TBD
    debugplot : int
            Debugging level for messages and plots. For details see
            'numina.array.display.pause_debugplot.py'.

    Returns
    -------
    rectwv_coeff : RectWaveCoeff instance
        Rectification and wavelength calibration coefficients for the
        particular CSU configuration of the input arc image.
    reduced_55sp : HDUList object
        Image with 55 spectra corresponding to the median spectrum for
        each slitlet, employed to derived the wavelength calibration
        polynomial.

    """

    logger = logging.getLogger(__name__)

    # protections
    if args_interactive and args_pdf is not None:
        logger.error('--interactive and --pdf are incompatible options')
        raise ValueError('--interactive and --pdf are incompatible options')

    # header and data array
    header = reduced_image[0].header
    image2d = reduced_image[0].data

    # check grism and filter
    filter_name = header['filter']
    logger.info('Filter: ' + filter_name)
    if filter_name != bound_param.tags['filter']:
        raise ValueError('Filter name does not match!')
    grism_name = header['grism']
    logger.info('Grism: ' + grism_name)
    if grism_name != bound_param.tags['grism']:
        raise ValueError('Grism name does not match!')

    # read the CSU configuration from the image header
    csu_conf = CsuConfiguration.define_from_header(header)
    logger.debug(csu_conf)

    # read the DTU configuration from the image header
    dtu_conf = DtuConfiguration.define_from_header(header)
    logger.debug(dtu_conf)

    # set boundary parameters
    parmodel = bound_param.meta_info['parmodel']
    params = bound_params_from_dict(bound_param.__getstate__())
    if abs(debugplot) >= 10:
        print('-' * 83)
        print('* FITTED BOUND PARAMETERS')
        params.pretty_print()
        pause_debugplot(debugplot)

    # determine parameters according to grism+filter combination
    wv_parameters = set_wv_parameters(filter_name, grism_name)
    islitlet_min = wv_parameters['islitlet_min']
    islitlet_max = wv_parameters['islitlet_max']
    if args_nbrightlines is None:
        nbrightlines = wv_parameters['nbrightlines']
    else:
        nbrightlines = [int(idum) for idum in args_nbrightlines.split(',')]
    poly_crval1_linear = wv_parameters['poly_crval1_linear']
    poly_cdelt1_linear = wv_parameters['poly_cdelt1_linear']
    wvmin_expected = wv_parameters['wvmin_expected']
    wvmax_expected = wv_parameters['wvmax_expected']
    wvmin_useful = wv_parameters['wvmin_useful']
    wvmax_useful = wv_parameters['wvmax_useful']

    # list of slitlets to be computed
    logger.info('list_slitlets: [' + str(islitlet_min) + ',... ' +
                str(islitlet_max) + ']')

    # read master arc line wavelengths (only brightest lines)
    wv_master = read_wv_master_from_array(master_table=lines_catalog,
                                          lines='brightest',
                                          debugplot=debugplot)

    # read master arc line wavelengths (whole data set)
    wv_master_all = read_wv_master_from_array(master_table=lines_catalog,
                                              lines='all',
                                              debugplot=debugplot)

    # check that the arc lines in the master file are properly sorted
    # in ascending order
    for i in range(len(wv_master_all) - 1):
        if wv_master_all[i] >= wv_master_all[i + 1]:
            logger.error('>>> wavelengths: ' + str(wv_master_all[i]) + '  ' +
                         str(wv_master_all[i + 1]))
            raise ValueError('Arc lines are not sorted in master file')

    # ---

    image2d_55sp = np.zeros((EMIR_NBARS, EMIR_NAXIS1))

    # compute rectification transformation and wavelength calibration
    # polynomials

    measured_slitlets = []

    cout = '0'
    for islitlet in range(1, EMIR_NBARS + 1):

        if islitlet_min <= islitlet <= islitlet_max:

            # define Slitlet2dArc object
            slt = Slitlet2dArc(islitlet=islitlet,
                               csu_conf=csu_conf,
                               ymargin_bb=args_ymargin_bb,
                               params=params,
                               parmodel=parmodel,
                               debugplot=debugplot)

            # extract 2D image corresponding to the selected slitlet, clipping
            # the image beyond the unrectified slitlet (in order to isolate
            # the arc lines of the current slitlet; otherwise there are
            # problems with arc lines from neighbour slitlets)
            image2d_tmp = select_unrectified_slitlet(
                image2d=image2d,
                islitlet=islitlet,
                csu_bar_slit_center=csu_conf.csu_bar_slit_center(islitlet),
                params=params,
                parmodel=parmodel,
                maskonly=False)
            slitlet2d = slt.extract_slitlet2d(image2d_tmp)

            # subtract smooth background computed as follows:
            # - median collapsed spectrum of the whole slitlet2d
            # - independent median filtering of the previous spectrum in the
            #   two halves in the spectral direction
            if args_remove_sp_background:
                spmedian = np.median(slitlet2d, axis=0)
                naxis1_tmp = spmedian.shape[0]
                jmidpoint = naxis1_tmp // 2
                sp1 = medfilt(spmedian[:jmidpoint], [201])
                sp2 = medfilt(spmedian[jmidpoint:], [201])
                spbackground = np.concatenate((sp1, sp2))
                slitlet2d -= spbackground

            # locate unknown arc lines
            slt.locate_unknown_arc_lines(
                slitlet2d=slitlet2d,
                times_sigma_threshold=args_times_sigma_threshold)

            # continue working with current slitlet only if arc lines have
            # been detected
            if slt.list_arc_lines is not None:

                # compute intersections between spectrum trails and arc lines
                slt.xy_spectrail_arc_intersections(slitlet2d=slitlet2d)

                # compute rectification transformation
                slt.estimate_tt_to_rectify(order=args_order_fmap,
                                           slitlet2d=slitlet2d)

                # rectify image
                slitlet2d_rect = slt.rectify(slitlet2d,
                                             resampling=2,
                                             transformation=1)

                # median spectrum and line peaks from rectified image
                sp_median, fxpeaks = slt.median_spectrum_from_rectified_image(
                    slitlet2d_rect,
                    sigma_gaussian_filtering=args_sigma_gaussian_filtering,
                    nwinwidth_initial=5,
                    nwinwidth_refined=5,
                    times_sigma_threshold=5,
                    npix_avoid_border=6,
                    nbrightlines=nbrightlines)

                image2d_55sp[islitlet - 1, :] = sp_median

                # determine expected wavelength limits prior to the wavelength
                # calibration
                csu_bar_slit_center = csu_conf.csu_bar_slit_center(islitlet)
                crval1_linear = poly_crval1_linear(csu_bar_slit_center)
                cdelt1_linear = poly_cdelt1_linear(csu_bar_slit_center)
                expected_wvmin = crval1_linear - \
                                 args_margin_npix * cdelt1_linear
                naxis1_linear = sp_median.shape[0]
                crvaln_linear = crval1_linear + \
                                (naxis1_linear - 1) * cdelt1_linear
                expected_wvmax = crvaln_linear + \
                                 args_margin_npix * cdelt1_linear
                # override previous estimates when necessary
                if wvmin_expected is not None:
                    expected_wvmin = wvmin_expected
                if wvmax_expected is not None:
                    expected_wvmax = wvmax_expected

                # clip initial master arc line list with bright lines to
                # the expected wavelength range
                lok1 = expected_wvmin <= wv_master
                lok2 = wv_master <= expected_wvmax
                lok = lok1 * lok2
                wv_master_eff = wv_master[lok]

                # perform initial wavelength calibration
                solution_wv = wvcal_spectrum(
                    sp=sp_median,
                    fxpeaks=fxpeaks,
                    poly_degree_wfit=args_poldeg_initial,
                    wv_master=wv_master_eff,
                    wv_ini_search=expected_wvmin,
                    wv_end_search=expected_wvmax,
                    wvmin_useful=wvmin_useful,
                    wvmax_useful=wvmax_useful,
                    geometry=args_geometry,
                    debugplot=slt.debugplot)
                # store initial wavelength calibration polynomial in current
                # slitlet instance
                slt.wpoly = np.polynomial.Polynomial(solution_wv.coeff)
                pause_debugplot(debugplot)

                # clip initial master arc line list with all the lines to
                # the expected wavelength range
                lok1 = expected_wvmin <= wv_master_all
                lok2 = wv_master_all <= expected_wvmax
                lok = lok1 * lok2
                wv_master_all_eff = wv_master_all[lok]

                # clip master arc line list to useful region
                if wvmin_useful is not None:
                    lok = wvmin_useful <= wv_master_all_eff
                    wv_master_all_eff = wv_master_all_eff[lok]
                if wvmax_useful is not None:
                    lok = wv_master_all_eff <= wvmax_useful
                    wv_master_all_eff = wv_master_all_eff[lok]

                # refine wavelength calibration
                if args_poldeg_refined > 0:
                    plottitle = '[slitlet#{}, refined]'.format(islitlet)
                    poly_refined, yres_summary = refine_arccalibration(
                        sp=sp_median,
                        poly_initial=slt.wpoly,
                        wv_master=wv_master_all_eff,
                        poldeg=args_poldeg_refined,
                        ntimes_match_wv=1,
                        interactive=args_interactive,
                        threshold=args_threshold_wv,
                        plottitle=plottitle,
                        ylogscale=args_ylogscale,
                        geometry=args_geometry,
                        pdf=args_pdf,
                        debugplot=slt.debugplot)
                    # store refined wavelength calibration polynomial in
                    # current slitlet instance
                    slt.wpoly = poly_refined

                # compute approximate linear values for CRVAL1 and CDELT1
                naxis1_linear = sp_median.shape[0]
                crmin1_linear = slt.wpoly(1)
                crmax1_linear = slt.wpoly(naxis1_linear)
                slt.crval1_linear = crmin1_linear
                slt.cdelt1_linear = \
                    (crmax1_linear - crmin1_linear) / (naxis1_linear - 1)

                # check that the trimming of wv_master and wv_master_all has
                # preserved the wavelength range [crmin1_linear, crmax1_linear]
                if crmin1_linear < expected_wvmin:
                    logger.warning(">>> islitlet: " + str(islitlet))
                    logger.warning("expected_wvmin: " + str(expected_wvmin))
                    logger.warning("crmin1_linear.: " + str(crmin1_linear))
                    logger.warning("WARNING: Unexpected crmin1_linear < "
                                   "expected_wvmin")
                if crmax1_linear > expected_wvmax:
                    logger.warning(">>> islitlet: " + str(islitlet))
                    logger.warning("expected_wvmax: " + str(expected_wvmax))
                    logger.warning("crmax1_linear.: " + str(crmax1_linear))
                    logger.warning("WARNING: Unexpected crmax1_linear > "
                                   "expected_wvmax")

                cout += '.'

            else:

                cout += 'x'

            if islitlet % 10 == 0:
                if cout != 'x':
                    cout = str(islitlet // 10)

            if debugplot != 0:
                pause_debugplot(debugplot)

        else:

            # define Slitlet2dArc object
            slt = Slitlet2dArc(islitlet=islitlet,
                               csu_conf=csu_conf,
                               ymargin_bb=args_ymargin_bb,
                               params=None,
                               parmodel=None,
                               debugplot=debugplot)

            cout += 'i'

        # store current slitlet in list of measured slitlets
        measured_slitlets.append(slt)

        logger.info(cout)

    # ---

    # generate FITS file structure with 55 spectra corresponding to the
    # median spectrum for each slitlet
    reduced_55sp = fits.PrimaryHDU(data=image2d_55sp)
    reduced_55sp.header['crpix1'] = (0.0, 'reference pixel')
    reduced_55sp.header['crval1'] = (0.0, 'central value at crpix2')
    reduced_55sp.header['cdelt1'] = (1.0, 'increment')
    reduced_55sp.header['ctype1'] = 'PIXEL'
    reduced_55sp.header['cunit1'] = ('Pixel', 'units along axis2')
    reduced_55sp.header['crpix2'] = (0.0, 'reference pixel')
    reduced_55sp.header['crval2'] = (0.0, 'central value at crpix2')
    reduced_55sp.header['cdelt2'] = (1.0, 'increment')
    reduced_55sp.header['ctype2'] = 'PIXEL'
    reduced_55sp.header['cunit2'] = ('Pixel', 'units along axis2')

    # ---

    # Generate structure to store intermediate results
    outdict = {}
    outdict['instrument'] = 'EMIR'
    outdict['meta_info'] = {}
    outdict['meta_info']['creation_date'] = datetime.now().isoformat()
    outdict['meta_info']['description'] = \
        'computation of rectification and wavelength calibration polynomial ' \
        'coefficients for a particular CSU configuration'
    outdict['meta_info']['recipe_name'] = 'undefined'
    outdict['meta_info']['origin'] = {}
    outdict['meta_info']['origin']['bound_param_uuid'] = \
        bound_param.uuid
    outdict['meta_info']['origin']['arc_image_uuid'] = 'undefined'
    outdict['tags'] = {}
    outdict['tags']['grism'] = grism_name
    outdict['tags']['filter'] = filter_name
    outdict['tags']['islitlet_min'] = islitlet_min
    outdict['tags']['islitlet_max'] = islitlet_max
    outdict['dtu_configuration'] = dtu_conf.outdict()
    outdict['uuid'] = str(uuid4())
    outdict['contents'] = {}

    missing_slitlets = []
    for slt in measured_slitlets:

        islitlet = slt.islitlet

        if islitlet_min <= islitlet <= islitlet_max:

            # avoid error when creating a python list of coefficients from
            # numpy polynomials when the polynomials do not exist (note that
            # the JSON format doesn't handle numpy arrays and such arrays must
            # be transformed into native python lists)
            if slt.wpoly is None:
                wpoly_coeff = None
            else:
                wpoly_coeff = slt.wpoly.coef.tolist()
            if slt.wpoly_longslit_model is None:
                wpoly_coeff_longslit_model = None
            else:
                wpoly_coeff_longslit_model = \
                    slt.wpoly_longslit_model.coef.tolist()

            # avoid similar error when creating a python list of coefficients
            # when the numpy array does not exist; note that this problem
            # does not happen with tt?_aij_longslit_model and
            # tt?_bij_longslit_model because the latter have already been
            # created as native python lists
            if slt.ttd_aij is None:
                ttd_aij = None
            else:
                ttd_aij = slt.ttd_aij.tolist()
            if slt.ttd_bij is None:
                ttd_bij = None
            else:
                ttd_bij = slt.ttd_bij.tolist()
            if slt.tti_aij is None:
                tti_aij = None
            else:
                tti_aij = slt.tti_aij.tolist()
            if slt.tti_bij is None:
                tti_bij = None
            else:
                tti_bij = slt.tti_bij.tolist()

            # creating temporary dictionary with the information corresponding
            # to the current slitlett that will be saved in the JSON file
            tmp_dict = {
                'csu_bar_left': slt.csu_bar_left,
                'csu_bar_right': slt.csu_bar_right,
                'csu_bar_slit_center': slt.csu_bar_slit_center,
                'csu_bar_slit_width': slt.csu_bar_slit_width,
                'x0_reference': slt.x0_reference,
                'y0_reference_lower': slt.y0_reference_lower,
                'y0_reference_middle': slt.y0_reference_middle,
                'y0_reference_upper': slt.y0_reference_upper,
                'y0_reference_lower_expected': slt.y0_reference_lower_expected,
                'y0_reference_middle_expected':
                slt.y0_reference_middle_expected,
                'y0_reference_upper_expected': slt.y0_reference_upper_expected,
                'y0_frontier_lower': slt.y0_frontier_lower,
                'y0_frontier_upper': slt.y0_frontier_upper,
                'y0_frontier_lower_expected': slt.y0_frontier_lower_expected,
                'y0_frontier_upper_expected': slt.y0_frontier_upper_expected,
                'corr_yrect_a': slt.corr_yrect_a,
                'corr_yrect_b': slt.corr_yrect_b,
                'min_row_rectified': slt.min_row_rectified,
                'max_row_rectified': slt.max_row_rectified,
                'ymargin_bb': slt.ymargin_bb,
                'bb_nc1_orig': slt.bb_nc1_orig,
                'bb_nc2_orig': slt.bb_nc2_orig,
                'bb_ns1_orig': slt.bb_ns1_orig,
                'bb_ns2_orig': slt.bb_ns2_orig,
                'spectrail': {
                    'poly_coef_lower':
                    slt.list_spectrails[
                        slt.i_lower_spectrail].poly_funct.coef.tolist(),
                    'poly_coef_middle':
                    slt.list_spectrails[
                        slt.i_middle_spectrail].poly_funct.coef.tolist(),
                    'poly_coef_upper':
                    slt.list_spectrails[
                        slt.i_upper_spectrail].poly_funct.coef.tolist(),
                },
                'frontier': {
                    'poly_coef_lower':
                    slt.list_frontiers[0].poly_funct.coef.tolist(),
                    'poly_coef_upper':
                    slt.list_frontiers[1].poly_funct.coef.tolist(),
                },
                'ttd_order': slt.ttd_order,
                'ttd_aij': ttd_aij,
                'ttd_bij': ttd_bij,
                'tti_aij': tti_aij,
                'tti_bij': tti_bij,
                'ttd_order_longslit_model': slt.ttd_order_longslit_model,
                'ttd_aij_longslit_model': slt.ttd_aij_longslit_model,
                'ttd_bij_longslit_model': slt.ttd_bij_longslit_model,
                'tti_aij_longslit_model': slt.tti_aij_longslit_model,
                'tti_bij_longslit_model': slt.tti_bij_longslit_model,
                'wpoly_coeff': wpoly_coeff,
                'wpoly_coeff_longslit_model': wpoly_coeff_longslit_model,
                'crval1_linear': slt.crval1_linear,
                'cdelt1_linear': slt.cdelt1_linear
            }
        else:
            missing_slitlets.append(islitlet)
            tmp_dict = {
                'csu_bar_left': slt.csu_bar_left,
                'csu_bar_right': slt.csu_bar_right,
                'csu_bar_slit_center': slt.csu_bar_slit_center,
                'csu_bar_slit_width': slt.csu_bar_slit_width,
                'x0_reference': slt.x0_reference,
                'y0_frontier_lower_expected': slt.y0_frontier_lower_expected,
                'y0_frontier_upper_expected': slt.y0_frontier_upper_expected
            }
        slitlet_label = "slitlet" + str(islitlet).zfill(2)
        outdict['contents'][slitlet_label] = tmp_dict

    # ---

    # OBSOLETE
    '''
    # save JSON file needed to compute the MOS model
    with open(args.out_json.name, 'w') as fstream:
        json.dump(outdict, fstream, indent=2, sort_keys=True)
        print('>>> Saving file ' + args.out_json.name)
    '''

    # ---

    # Create object of type RectWaveCoeff with coefficients for
    # rectification and wavelength calibration
    rectwv_coeff = RectWaveCoeff(instrument='EMIR')
    rectwv_coeff.quality_control = numina.types.qc.QC.GOOD
    rectwv_coeff.tags['grism'] = grism_name
    rectwv_coeff.tags['filter'] = filter_name
    rectwv_coeff.meta_info['origin']['bound_param'] = \
        'uuid' + bound_param.uuid
    rectwv_coeff.meta_info['dtu_configuration'] = outdict['dtu_configuration']
    rectwv_coeff.total_slitlets = EMIR_NBARS
    rectwv_coeff.missing_slitlets = missing_slitlets
    for i in range(EMIR_NBARS):
        islitlet = i + 1
        dumdict = {'islitlet': islitlet}
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        if cslitlet in outdict['contents']:
            dumdict.update(outdict['contents'][cslitlet])
        else:
            raise ValueError("Unexpected error")
        rectwv_coeff.contents.append(dumdict)
    # debugging __getstate__ and __setstate__
    # rectwv_coeff.writeto(args.out_json.name)
    # print('>>> Saving file ' + args.out_json.name)
    # check_setstate_getstate(rectwv_coeff, args.out_json.name)
    logger.info('Generating RectWaveCoeff object with uuid=' +
                rectwv_coeff.uuid)

    return rectwv_coeff, reduced_55sp
def rectwv_coeff_from_mos_library(reduced_image,
                                  master_rectwv,
                                  ignore_dtu_configuration=True,
                                  debugplot=0):
    """Evaluate rect.+wavecal. coefficients from MOS library

    Parameters
    ----------
    reduced_image : HDUList object
        Image with preliminary basic reduction: bpm, bias, dark and
        flatfield.
    master_rectwv : MasterRectWave instance
        Rectification and Wavelength Calibrartion Library product.
        Contains the library of polynomial coefficients necessary
        to generate an instance of RectWaveCoeff with the rectification
        and wavelength calibration coefficients for the particular
        CSU configuration.
    ignore_dtu_configuration : bool
        If True, ignore differences in DTU configuration.
    debugplot : int
        Debugging level for messages and plots. For details see
        'numina.array.display.pause_debugplot.py'.

    Returns
    -------
    rectwv_coeff : RectWaveCoeff instance
        Rectification and wavelength calibration coefficients for the
        particular CSU configuration.

    """

    logger = logging.getLogger(__name__)
    logger.info('Computing expected RectWaveCoeff from CSU configuration')

    # header
    header = reduced_image[0].header

    # read the CSU configuration from the image header
    csu_conf = CsuConfiguration.define_from_header(header)

    # read the DTU configuration from the image header
    dtu_conf = DtuConfiguration.define_from_header(header)

    # retrieve DTU configuration from MasterRectWave object
    dtu_conf_calib = DtuConfiguration.define_from_dictionary(
        master_rectwv.meta_info['dtu_configuration']
    )
    # check that the DTU configuration employed to obtain the calibration
    # corresponds to the DTU configuration in the input FITS file
    if dtu_conf != dtu_conf_calib:
        if ignore_dtu_configuration:
            logger.warning('DTU configuration differences found!')
        else:
            logger.info('DTU configuration from image header:')
            logger.info(dtu_conf)
            logger.info('DTU configuration from master calibration:')
            logger.info(dtu_conf_calib)
            raise ValueError("DTU configurations do not match!")
    else:
        logger.info('DTU configuration match!')

    # check grism and filter
    filter_name = header['filter']
    logger.debug('Filter: ' + filter_name)
    if filter_name != master_rectwv.tags['filter']:
        raise ValueError('Filter name does not match!')
    grism_name = header['grism']
    logger.debug('Grism: ' + grism_name)
    if grism_name != master_rectwv.tags['grism']:
        raise ValueError('Grism name does not match!')

    # valid slitlet numbers
    list_valid_islitlets = list(range(1, EMIR_NBARS + 1))
    for idel in master_rectwv.missing_slitlets:
        list_valid_islitlets.remove(idel)
    logger.debug('valid slitlet numbers: ' + str(list_valid_islitlets))

    # initialize intermediate dictionary with relevant information
    # (note: this dictionary corresponds to an old structure employed to
    # store the information in a JSON file; this is no longer necessary,
    # but here we reuse that dictionary for convenience)
    outdict = {}
    outdict['instrument'] = 'EMIR'
    outdict['meta_info'] = {}
    outdict['meta_info']['creation_date'] = datetime.now().isoformat()
    outdict['meta_info']['description'] = \
        'computation of rectification and wavelength calibration polynomial ' \
        'coefficients for a particular CSU configuration from a MOS model '
    outdict['meta_info']['recipe_name'] = 'undefined'
    outdict['meta_info']['origin'] = {}
    outdict['meta_info']['origin']['fits_frame_uuid'] = 'TBD'
    outdict['meta_info']['origin']['rect_wpoly_mos_uuid'] = \
        master_rectwv.uuid
    outdict['meta_info']['origin']['fitted_boundary_param_uuid'] = \
        master_rectwv.meta_info['origin']['bound_param']
    outdict['tags'] = {}
    outdict['tags']['grism'] = grism_name
    outdict['tags']['filter'] = filter_name
    outdict['dtu_configuration'] = dtu_conf.outdict()
    outdict['uuid'] = str(uuid4())
    outdict['contents'] = {}

    # compute rectification and wavelength calibration coefficients for each
    # slitlet according to its csu_bar_slit_center value
    for islitlet in list_valid_islitlets:
        cslitlet = 'slitlet' + str(islitlet).zfill(2)

        # csu_bar_slit_center of current slitlet in initial FITS image
        csu_bar_slit_center = csu_conf.csu_bar_slit_center(islitlet)

        # input data structure
        tmpdict = master_rectwv.contents[islitlet - 1]
        list_csu_bar_slit_center = tmpdict['list_csu_bar_slit_center']

        # check extrapolations
        if csu_bar_slit_center < min(list_csu_bar_slit_center):
            logger.warning('extrapolating table with ' + cslitlet)
            logger.warning('minimum tabulated value: ' +
                           str(min(list_csu_bar_slit_center)))
            logger.warning('sought value...........: ' +
                           str(csu_bar_slit_center))
        if csu_bar_slit_center > max(list_csu_bar_slit_center):
            logger.warning('extrapolating table with ' + cslitlet)
            logger.warning('maximum tabulated value: ' +
                           str(max(list_csu_bar_slit_center)))
            logger.warning('sought value...........: ' +
                           str(csu_bar_slit_center))

        # rectification coefficients
        ttd_order = tmpdict['ttd_order']
        ncoef = ncoef_fmap(ttd_order)
        outdict['contents'][cslitlet] = {}
        outdict['contents'][cslitlet]['ttd_order'] = ttd_order
        outdict['contents'][cslitlet]['ttd_order_longslit_model'] = None
        for keycoef in ['ttd_aij', 'ttd_bij', 'tti_aij', 'tti_bij']:
            coef_out = []
            for icoef in range(ncoef):
                ccoef = str(icoef).zfill(2)
                list_cij = tmpdict['list_' + keycoef + '_' + ccoef]
                funinterp_coef = interp1d(list_csu_bar_slit_center,
                                          list_cij,
                                          kind='linear',
                                          fill_value='extrapolate')
                # note: funinterp_coef expects a numpy array
                dum = funinterp_coef([csu_bar_slit_center])
                coef_out.append(dum[0])
            outdict['contents'][cslitlet][keycoef] = coef_out
            outdict['contents'][cslitlet][keycoef + '_longslit_model'] = None

        # wavelength calibration coefficients
        ncoef = tmpdict['wpoly_degree'] + 1
        wpoly_coeff = []
        for icoef in range(ncoef):
            ccoef = str(icoef).zfill(2)
            list_cij = tmpdict['list_wpoly_coeff_' + ccoef]
            funinterp_coef = interp1d(list_csu_bar_slit_center,
                                      list_cij,
                                      kind='linear',
                                      fill_value='extrapolate')
            # note: funinterp_coef expects a numpy array
            dum = funinterp_coef([csu_bar_slit_center])
            wpoly_coeff.append(dum[0])
        outdict['contents'][cslitlet]['wpoly_coeff'] = wpoly_coeff
        outdict['contents'][cslitlet]['wpoly_coeff_longslit_model'] = None

        # update cdelt1_linear and crval1_linear
        wpoly_function = np.polynomial.Polynomial(wpoly_coeff)
        crmin1_linear = wpoly_function(1)
        crmax1_linear = wpoly_function(EMIR_NAXIS1)
        cdelt1_linear = (crmax1_linear - crmin1_linear) / (EMIR_NAXIS1 - 1)
        crval1_linear = crmin1_linear
        outdict['contents'][cslitlet]['crval1_linear'] = crval1_linear
        outdict['contents'][cslitlet]['cdelt1_linear'] = cdelt1_linear

        # update CSU keywords
        outdict['contents'][cslitlet]['csu_bar_left'] = \
            csu_conf.csu_bar_left(islitlet)
        outdict['contents'][cslitlet]['csu_bar_right'] = \
            csu_conf.csu_bar_right(islitlet)
        outdict['contents'][cslitlet]['csu_bar_slit_center'] = \
            csu_conf.csu_bar_slit_center(islitlet)
        outdict['contents'][cslitlet]['csu_bar_slit_width'] = \
            csu_conf.csu_bar_slit_width(islitlet)

    # for each slitlet compute spectrum trails and frontiers using the
    # fitted boundary parameters
    fitted_bound_param_json = {
        'contents': master_rectwv.meta_info['refined_boundary_model']
    }
    parmodel = fitted_bound_param_json['contents']['parmodel']
    fitted_bound_param_json.update({'meta_info': {'parmodel': parmodel}})
    params = bound_params_from_dict(fitted_bound_param_json)
    if abs(debugplot) >= 10:
        logger.debug('Fitted boundary parameters:')
        logger.debug(params.pretty_print())
    for islitlet in list_valid_islitlets:
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        # csu_bar_slit_center of current slitlet in initial FITS image
        csu_bar_slit_center = csu_conf.csu_bar_slit_center(islitlet)
        # compute and store x0_reference value
        x0_reference = float(EMIR_NAXIS1) / 2.0 + 0.5
        outdict['contents'][cslitlet]['x0_reference'] = x0_reference
        # compute spectrum trails (lower, middle and upper)
        list_spectrails = expected_distorted_boundaries(
            islitlet, csu_bar_slit_center,
            [0, 0.5, 1], params, parmodel,
            numpts=101, deg=5, debugplot=0
        )
        # store spectrails in output JSON file
        outdict['contents'][cslitlet]['spectrail'] = {}
        for idum, cdum in zip(range(3), ['lower', 'middle', 'upper']):
            outdict['contents'][cslitlet]['spectrail']['poly_coef_' + cdum] = \
                list_spectrails[idum].poly_funct.coef.tolist()
            outdict['contents'][cslitlet]['y0_reference_' + cdum] = \
                list_spectrails[idum].poly_funct(x0_reference)
        # compute frontiers (lower, upper)
        list_frontiers = expected_distorted_frontiers(
            islitlet, csu_bar_slit_center,
            params, parmodel,
            numpts=101, deg=5, debugplot=0
        )
        # store frontiers in output JSON
        outdict['contents'][cslitlet]['frontier'] = {}
        for idum, cdum in zip(range(2), ['lower', 'upper']):
            outdict['contents'][cslitlet]['frontier']['poly_coef_' + cdum] = \
                list_frontiers[idum].poly_funct.coef.tolist()
            outdict['contents'][cslitlet]['y0_frontier_' + cdum] = \
                list_frontiers[idum].poly_funct(x0_reference)

    # store bounding box parameters for each slitlet
    xdum = np.linspace(1, EMIR_NAXIS1, num=EMIR_NAXIS1)
    for islitlet in list_valid_islitlets:
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        # parameters already available in the input JSON file
        for par in ['bb_nc1_orig', 'bb_nc2_orig', 'ymargin_bb']:
            outdict['contents'][cslitlet][par] = \
                master_rectwv.contents[islitlet - 1][par]
        # estimate bb_ns1_orig and bb_ns2_orig using the already computed
        # frontiers and the value of ymargin_bb, following the same approach
        # employed in Slitlet2dArc.__init__()
        poly_lower_frontier = np.polynomial.Polynomial(
            outdict['contents'][cslitlet]['frontier']['poly_coef_lower']
        )
        poly_upper_frontier = np.polynomial.Polynomial(
            outdict['contents'][cslitlet]['frontier']['poly_coef_upper']
        )
        ylower = poly_lower_frontier(xdum)
        yupper = poly_upper_frontier(xdum)
        ymargin_bb = master_rectwv.contents[islitlet - 1]['ymargin_bb']
        bb_ns1_orig = int(ylower.min() + 0.5) - ymargin_bb
        if bb_ns1_orig < 1:
            bb_ns1_orig = 1
        bb_ns2_orig = int(yupper.max() + 0.5) + ymargin_bb
        if bb_ns2_orig > EMIR_NAXIS2:
            bb_ns2_orig = EMIR_NAXIS2
        outdict['contents'][cslitlet]['bb_ns1_orig'] = bb_ns1_orig
        outdict['contents'][cslitlet]['bb_ns2_orig'] = bb_ns2_orig

    # additional parameters (see Slitlet2dArc.__init__)
    for islitlet in list_valid_islitlets:
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        # define expected frontier ordinates at x0_reference for the rectified
        # image imposing the vertical length of the slitlet to be constant
        # and equal to EMIR_NPIXPERSLIT_RECTIFIED
        outdict['contents'][cslitlet]['y0_frontier_lower_expected'] = \
            expected_y0_lower_frontier(islitlet)
        outdict['contents'][cslitlet]['y0_frontier_upper_expected'] = \
            expected_y0_upper_frontier(islitlet)
        # compute linear transformation to place the rectified slitlet at
        # the center of the current slitlet bounding box
        tmpdict = outdict['contents'][cslitlet]
        xdum1 = tmpdict['y0_frontier_lower']
        ydum1 = tmpdict['y0_frontier_lower_expected']
        xdum2 = tmpdict['y0_frontier_upper']
        ydum2 = tmpdict['y0_frontier_upper_expected']
        corr_yrect_b = (ydum2 - ydum1) / (xdum2 - xdum1)
        corr_yrect_a = ydum1 - corr_yrect_b * xdum1
        # compute expected location of rectified boundaries
        y0_reference_lower_expected = \
            corr_yrect_a + corr_yrect_b * tmpdict['y0_reference_lower']
        y0_reference_middle_expected = \
            corr_yrect_a + corr_yrect_b * tmpdict['y0_reference_middle']
        y0_reference_upper_expected = \
            corr_yrect_a + corr_yrect_b * tmpdict['y0_reference_upper']
        # shift transformation to center the rectified slitlet within the
        # slitlet bounding box
        ydummid = (ydum1 + ydum2) / 2
        ioffset = int(
            ydummid - (tmpdict['bb_ns1_orig'] + tmpdict['bb_ns2_orig']) / 2.0)
        corr_yrect_a -= ioffset
        # minimum and maximum row in the rectified slitlet encompassing
        # EMIR_NPIXPERSLIT_RECTIFIED pixels
        # a) scan number (in pixels, from 1 to NAXIS2)
        xdum1 = corr_yrect_a + \
                corr_yrect_b * tmpdict['y0_frontier_lower']
        xdum2 = corr_yrect_a + \
                corr_yrect_b * tmpdict['y0_frontier_upper']
        # b) row number (starting from zero)
        min_row_rectified = \
            int((round(xdum1 * 10) + 5) / 10) - tmpdict['bb_ns1_orig']
        max_row_rectified = \
            int((round(xdum2 * 10) - 5) / 10) - tmpdict['bb_ns1_orig']
        # save previous results in outdict
        outdict['contents'][cslitlet]['y0_reference_lower_expected'] = \
            y0_reference_lower_expected
        outdict['contents'][cslitlet]['y0_reference_middle_expected'] = \
            y0_reference_middle_expected
        outdict['contents'][cslitlet]['y0_reference_upper_expected'] = \
            y0_reference_upper_expected
        outdict['contents'][cslitlet]['corr_yrect_a'] = corr_yrect_a
        outdict['contents'][cslitlet]['corr_yrect_b'] = corr_yrect_b
        outdict['contents'][cslitlet]['min_row_rectified'] = min_row_rectified
        outdict['contents'][cslitlet]['max_row_rectified'] = max_row_rectified

    # ---

    # Create object of type RectWaveCoeff with coefficients for
    # rectification and wavelength calibration
    rectwv_coeff = RectWaveCoeff(instrument='EMIR')
    rectwv_coeff.quality_control = numina.types.qc.QC.GOOD
    rectwv_coeff.tags['grism'] = grism_name
    rectwv_coeff.tags['filter'] = filter_name
    rectwv_coeff.meta_info['origin']['bound_param'] = \
        master_rectwv.meta_info['origin']['bound_param']
    rectwv_coeff.meta_info['origin']['master_rectwv'] = \
        'uuid' + master_rectwv.uuid
    rectwv_coeff.meta_info['dtu_configuration'] = outdict['dtu_configuration']
    rectwv_coeff.total_slitlets = EMIR_NBARS
    for i in range(EMIR_NBARS):
        islitlet = i + 1
        dumdict = {'islitlet': islitlet}
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        if cslitlet in outdict['contents']:
            dumdict.update(outdict['contents'][cslitlet])
        else:
            dumdict.update({
                'csu_bar_left': csu_conf.csu_bar_left(islitlet),
                'csu_bar_right': csu_conf.csu_bar_right(islitlet),
                'csu_bar_slit_center': csu_conf.csu_bar_slit_center(islitlet),
                'csu_bar_slit_width': csu_conf.csu_bar_slit_width(islitlet),
                'x0_reference': float(EMIR_NAXIS1) / 2.0 + 0.5,
                'y0_frontier_lower_expected':
                    expected_y0_lower_frontier(islitlet),
                'y0_frontier_upper_expected':
                    expected_y0_upper_frontier(islitlet)
            })
            rectwv_coeff.missing_slitlets.append(islitlet)
        rectwv_coeff.contents.append(dumdict)
    # debugging __getstate__ and __setstate__
    # rectwv_coeff.writeto(args.out_rect_wpoly.name)
    # print('>>> Saving file ' + args.out_rect_wpoly.name)
    # check_setstate_getstate(rectwv_coeff, args.out_rect_wpoly.name)
    logger.info('Generating RectWaveCoeff object with uuid=' +
                rectwv_coeff.uuid)

    return rectwv_coeff
Exemplo n.º 6
0
def main(args=None):
    # parse command-line options
    parser = argparse.ArgumentParser(
        description='description: compute pixel-to-pixel flatfield')

    # required arguments
    parser.add_argument("fitsfile",
                        help="Input FITS file (flat ON-OFF)",
                        type=argparse.FileType('rb'))
    parser.add_argument("--rectwv_coeff",
                        required=True,
                        help="Input JSON file with rectification and "
                        "wavelength calibration coefficients",
                        type=argparse.FileType('rt'))
    parser.add_argument("--minimum_fraction",
                        required=True,
                        help="Minimum allowed flatfielding value",
                        type=float,
                        default=0.01)
    parser.add_argument("--minimum_value_in_output",
                        help="Minimum value allowed in output file: pixels "
                        "below this value are set to 1.0 (default=0.01)",
                        type=float,
                        default=0.01)
    parser.add_argument("--nwindow_median",
                        required=True,
                        help="Window size to smooth median spectrum in the "
                        "spectral direction",
                        type=int)
    parser.add_argument("--outfile",
                        required=True,
                        help="Output FITS file",
                        type=lambda x: arg_file_is_new(parser, x, mode='wb'))

    # optional arguments
    parser.add_argument("--delta_global_integer_offset_x_pix",
                        help="Delta global integer offset in the X direction "
                        "(default=0)",
                        default=0,
                        type=int)
    parser.add_argument("--delta_global_integer_offset_y_pix",
                        help="Delta global integer offset in the Y direction "
                        "(default=0)",
                        default=0,
                        type=int)
    parser.add_argument("--resampling",
                        help="Resampling method: 1 -> nearest neighbor, "
                        "2 -> linear interpolation (default)",
                        default=2,
                        type=int,
                        choices=(1, 2))
    parser.add_argument("--ignore_DTUconf",
                        help="Ignore DTU configurations differences between "
                        "model and input image",
                        action="store_true")
    parser.add_argument("--debugplot",
                        help="Integer indicating plotting & debugging options"
                        " (default=0)",
                        default=0,
                        type=int,
                        choices=DEBUGPLOT_CODES)
    parser.add_argument("--echo",
                        help="Display full command line",
                        action="store_true")
    args = parser.parse_args(args)

    if args.echo:
        print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n')

    # read calibration structure from JSON file
    rectwv_coeff = RectWaveCoeff._datatype_load(args.rectwv_coeff.name)

    # modify (when requested) global offsets
    rectwv_coeff.global_integer_offset_x_pix += \
        args.delta_global_integer_offset_x_pix
    rectwv_coeff.global_integer_offset_y_pix += \
        args.delta_global_integer_offset_y_pix

    # read FITS image and its corresponding header
    hdulist = fits.open(args.fitsfile)
    header = hdulist[0].header
    image2d = hdulist[0].data
    hdulist.close()

    # apply global offsets
    image2d = apply_integer_offsets(
        image2d=image2d,
        offx=rectwv_coeff.global_integer_offset_x_pix,
        offy=rectwv_coeff.global_integer_offset_y_pix)

    # protections
    naxis2, naxis1 = image2d.shape
    if naxis1 != header['naxis1'] or naxis2 != header['naxis2']:
        print('>>> NAXIS1:', naxis1)
        print('>>> NAXIS2:', naxis2)
        raise ValueError('Something is wrong with NAXIS1 and/or NAXIS2')
    if abs(args.debugplot) >= 10:
        print('>>> NAXIS1:', naxis1)
        print('>>> NAXIS2:', naxis2)

    # check that the input FITS file grism and filter match
    filter_name = header['filter']
    if filter_name != rectwv_coeff.tags['filter']:
        raise ValueError("Filter name does not match!")
    grism_name = header['grism']
    if grism_name != rectwv_coeff.tags['grism']:
        raise ValueError("Filter name does not match!")
    if abs(args.debugplot) >= 10:
        print('>>> grism.......:', grism_name)
        print('>>> filter......:', filter_name)

    # check that the DTU configurations are compatible
    dtu_conf_fitsfile = DtuConfiguration.define_from_fits(args.fitsfile)
    dtu_conf_jsonfile = DtuConfiguration.define_from_dictionary(
        rectwv_coeff.meta_info['dtu_configuration'])
    if dtu_conf_fitsfile != dtu_conf_jsonfile:
        print('DTU configuration (FITS file):\n\t', dtu_conf_fitsfile)
        print('DTU configuration (JSON file):\n\t', dtu_conf_jsonfile)
        if args.ignore_DTUconf:
            print('WARNING: DTU configuration differences found!')
        else:
            raise ValueError('DTU configurations do not match')
    else:
        if abs(args.debugplot) >= 10:
            print('>>> DTU Configuration match!')
            print(dtu_conf_fitsfile)

    # valid slitlet numbers
    list_valid_islitlets = list(range(1, EMIR_NBARS + 1))
    for idel in rectwv_coeff.missing_slitlets:
        list_valid_islitlets.remove(idel)
    if abs(args.debugplot) >= 10:
        print('>>> valid slitlet numbers:\n', list_valid_islitlets)

    # ---

    # initialize rectified image
    image2d_flatfielded = np.zeros((EMIR_NAXIS2, EMIR_NAXIS1))

    # main loop
    for islitlet in list_valid_islitlets:
        if args.debugplot == 0:
            islitlet_progress(islitlet, EMIR_NBARS)

        # define Slitlet2D object
        slt = Slitlet2D(islitlet=islitlet,
                        rectwv_coeff=rectwv_coeff,
                        debugplot=args.debugplot)

        if abs(args.debugplot) >= 10:
            print(slt)

        # extract (distorted) slitlet from the initial image
        slitlet2d = slt.extract_slitlet2d(image2d)

        # rectify slitlet
        slitlet2d_rect = slt.rectify(slitlet2d, resampling=args.resampling)
        naxis2_slitlet2d, naxis1_slitlet2d = slitlet2d_rect.shape

        if naxis1_slitlet2d != EMIR_NAXIS1:
            print('naxis1_slitlet2d: ', naxis1_slitlet2d)
            print('EMIR_NAXIS1.....: ', EMIR_NAXIS1)
            raise ValueError("Unexpected naxis1_slitlet2d")

        # get useful slitlet region (use boundaires instead of frontiers;
        # note that the nscan_minmax_frontiers() works well independently
        # of using frontiers of boundaries as arguments)
        nscan_min, nscan_max = nscan_minmax_frontiers(slt.y0_reference_lower,
                                                      slt.y0_reference_upper,
                                                      resize=False)
        ii1 = nscan_min - slt.bb_ns1_orig
        ii2 = nscan_max - slt.bb_ns1_orig + 1

        # median spectrum
        sp_collapsed = np.median(slitlet2d_rect[ii1:(ii2 + 1), :], axis=0)

        # smooth median spectrum along the spectral direction
        sp_median = ndimage.median_filter(sp_collapsed,
                                          args.nwindow_median,
                                          mode='nearest')
        ymax_spmedian = sp_median.max()
        y_threshold = ymax_spmedian * args.minimum_fraction
        sp_median[np.where(sp_median < y_threshold)] = 0.0

        if abs(args.debugplot) > 10:
            title = 'Slitlet#' + str(islitlet) + '(median spectrum)'
            xdum = np.arange(1, naxis1_slitlet2d + 1)
            ax = ximplotxy(xdum,
                           sp_collapsed,
                           title=title,
                           show=False,
                           **{'label': 'collapsed spectrum'})
            ax.plot(xdum, sp_median, label='filtered spectrum')
            ax.plot([1, naxis1_slitlet2d],
                    2 * [y_threshold],
                    label='threshold')
            ax.legend()
            ax.set_ylim(-0.05 * ymax_spmedian, 1.05 * ymax_spmedian)
            pause_debugplot(args.debugplot, pltshow=True, tight_layout=True)

        # generate rectified slitlet region filled with the median spectrum
        slitlet2d_rect_spmedian = np.tile(sp_median, (naxis2_slitlet2d, 1))
        if abs(args.debugplot) > 10:
            slt.ximshow_rectified(slitlet2d_rect_spmedian)

        # unrectified image
        slitlet2d_unrect_spmedian = slt.rectify(slitlet2d_rect_spmedian,
                                                resampling=args.resampling,
                                                inverse=True)

        # normalize initial slitlet image (avoid division by zero)
        slitlet2d_norm = np.zeros_like(slitlet2d)
        for j in range(naxis1_slitlet2d):
            for i in range(naxis2_slitlet2d):
                den = slitlet2d_unrect_spmedian[i, j]
                if den == 0:
                    slitlet2d_norm[i, j] = 1.0
                else:
                    slitlet2d_norm[i, j] = slitlet2d[i, j] / den

        if abs(args.debugplot) > 10:
            slt.ximshow_unrectified(slitlet2d_norm)

        for j in range(EMIR_NAXIS1):
            xchannel = j + 1
            y0_lower = slt.list_frontiers[0](xchannel)
            y0_upper = slt.list_frontiers[1](xchannel)
            n1, n2 = nscan_minmax_frontiers(y0_frontier_lower=y0_lower,
                                            y0_frontier_upper=y0_upper,
                                            resize=True)
            # note that n1 and n2 are scans (ranging from 1 to NAXIS2)
            nn1 = n1 - slt.bb_ns1_orig + 1
            nn2 = n2 - slt.bb_ns1_orig + 1
            image2d_flatfielded[(n1 - 1):n2, j] = \
                slitlet2d_norm[(nn1 - 1):nn2, j]

            # force to 1.0 region around frontiers
            image2d_flatfielded[(n1 - 1):(n1 + 2), j] = 1
            image2d_flatfielded[(n2 - 5):n2, j] = 1
    if args.debugplot == 0:
        print('OK!')

    # set pixels below minimum value to 1.0
    filtered = np.where(image2d_flatfielded < args.minimum_value_in_output)
    image2d_flatfielded[filtered] = 1.0

    # restore global offsets
    image2d_flatfielded = apply_integer_offsets(
        image2d=image2d_flatfielded,
        offx=-rectwv_coeff.global_integer_offset_x_pix,
        offy=-rectwv_coeff.global_integer_offset_y_pix)

    # save output file
    save_ndarray_to_fits(array=image2d_flatfielded,
                         file_name=args.outfile,
                         main_header=header,
                         overwrite=True)
    print('>>> Saving file ' + args.outfile.name)
Exemplo n.º 7
0
def main(args=None):

    # parse command-line options
    parser = argparse.ArgumentParser(prog='rect_wpoly_for_mos')
    # required arguments
    parser.add_argument("input_list",
                        help="TXT file with list JSON files derived from "
                             "longslit data")
    parser.add_argument("--fitted_bound_param", required=True,
                        help="Input JSON with fitted boundary parameters",
                        type=argparse.FileType('rt'))
    parser.add_argument("--out_MOSlibrary", required=True,
                        help="Output JSON file with results",
                        type=lambda x: arg_file_is_new(parser, x))
    # optional arguments
    parser.add_argument("--debugplot",
                        help="Integer indicating plotting & debugging options"
                             " (default=0)",
                        default=0, type=int,
                        choices=DEBUGPLOT_CODES)
    parser.add_argument("--echo",
                        help="Display full command line",
                        action="store_true")
    args = parser.parse_args(args)

    if args.echo:
        print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n')

    # ---

    # Read input TXT file with list of JSON files
    list_json_files = list_fileinfo_from_txt(args.input_list)
    nfiles = len(list_json_files)
    if abs(args.debugplot) >= 10:
        print('>>> Number of input JSON files:', nfiles)
        for item in list_json_files:
            print(item)
    if nfiles < 2:
        raise ValueError("Insufficient number of input JSON files")

    # read fitted boundary parameters and check that all the longslit JSON
    # files have been computed using the same fitted boundary parameters
    refined_boundary_model = RefinedBoundaryModelParam._datatype_load(
        args.fitted_bound_param.name)
    for ifile in range(nfiles):
        coef_rect_wpoly = RectWaveCoeff._datatype_load(
            list_json_files[ifile].filename)
        uuid_tmp = coef_rect_wpoly.meta_info['origin']['bound_param']
        if uuid_tmp[4:] != refined_boundary_model.uuid:
            print('Expected uuid:', refined_boundary_model.uuid)
            print('uuid for ifile #' + str(ifile + 1) + ": " + uuid_tmp)
            raise ValueError("Fitted boundary parameter uuid's do not match")

    # check consistency of grism, filter, DTU configuration and list of
    # valid slitlets
    coef_rect_wpoly_first_longslit = RectWaveCoeff._datatype_load(
        list_json_files[0].filename)
    filter_name = coef_rect_wpoly_first_longslit.tags['filter']
    grism_name = coef_rect_wpoly_first_longslit.tags['grism']
    dtu_conf = DtuConfiguration.define_from_dictionary(
        coef_rect_wpoly_first_longslit.meta_info['dtu_configuration']
    )
    list_valid_islitlets = list(range(1, EMIR_NBARS + 1))
    for idel in coef_rect_wpoly_first_longslit.missing_slitlets:
        list_valid_islitlets.remove(idel)
    for ifile in range(1, nfiles):
        coef_rect_wpoly = RectWaveCoeff._datatype_load(
            list_json_files[ifile].filename)
        filter_tmp = coef_rect_wpoly.tags['filter']
        if filter_name != filter_tmp:
            print(filter_name)
            print(filter_tmp)
            raise ValueError("Unexpected different filter found")
        grism_tmp = coef_rect_wpoly.tags['grism']
        if grism_name != grism_tmp:
            print(grism_name)
            print(grism_tmp)
            raise ValueError("Unexpected different grism found")
        coef_rect_wpoly = RectWaveCoeff._datatype_load(
            list_json_files[ifile].filename)
        dtu_conf_tmp = DtuConfiguration.define_from_dictionary(
            coef_rect_wpoly.meta_info['dtu_configuration']
        )
        if dtu_conf != dtu_conf_tmp:
            print(dtu_conf)
            print(dtu_conf_tmp)
            raise ValueError("Unexpected different DTU configurations found")
        list_valid_islitlets_tmp = list(range(1, EMIR_NBARS + 1))
        for idel in coef_rect_wpoly.missing_slitlets:
            list_valid_islitlets_tmp.remove(idel)
        if list_valid_islitlets != list_valid_islitlets_tmp:
            print(list_valid_islitlets)
            print(list_valid_islitlets_tmp)
            raise ValueError("Unexpected different list of valid slitlets")

    # check consistency of horizontal bounding box limits (bb_nc1_orig and
    # bb_nc2_orig) and ymargin_bb, and store the values for each slitlet
    dict_bb_param = {}
    print("Checking horizontal bounding box limits and ymargin_bb:")
    for islitlet in list(range(1, EMIR_NBARS + 1)):
        if islitlet in list_valid_islitlets:
            islitlet_progress(islitlet, EMIR_NBARS, ignore=False)
            cslitlet = 'slitlet' + str(islitlet).zfill(2)
            dict_bb_param[cslitlet] = {}
            for par in ['bb_nc1_orig', 'bb_nc2_orig', 'ymargin_bb']:
                value_initial = \
                    coef_rect_wpoly_first_longslit.contents[islitlet - 1][par]
                for ifile in range(1, nfiles):
                    coef_rect_wpoly = RectWaveCoeff._datatype_load(
                        list_json_files[ifile].filename)
                    value_tmp = coef_rect_wpoly.contents[islitlet - 1][par]
                    if value_initial != value_tmp:
                        print(islitlet, value_initial, value_tmp)
                        print(value_tmp)
                        raise ValueError("Unexpected different " + par)
                    dict_bb_param[cslitlet][par] = value_initial
        else:
            islitlet_progress(islitlet, EMIR_NBARS, ignore=True)
    print('OK!')

    # ---

    # Read and store all the longslit data
    list_coef_rect_wpoly = []
    for ifile in range(nfiles):
        coef_rect_wpoly = RectWaveCoeff._datatype_load(
            list_json_files[ifile].filename)
        list_coef_rect_wpoly.append(coef_rect_wpoly)

    # ---

    # Initialize structure to save results into an ouptut JSON file
    outdict = {}
    outdict['refined_boundary_model'] = refined_boundary_model.__getstate__()
    outdict['instrument'] = 'EMIR'
    outdict['meta_info'] = {}
    outdict['meta_info']['creation_date'] = datetime.now().isoformat()
    outdict['meta_info']['description'] = \
        'rectification and wavelength calibration polynomial coefficients ' \
        'as a function of csu_bar_slit_center for MOS'
    outdict['meta_info']['recipe_name'] = 'undefined'
    outdict['meta_info']['origin'] = {}
    outdict['meta_info']['origin']['wpoly_longslits'] = {}
    for ifile in range(nfiles):
        cdum = 'longslit_' + str(ifile + 1).zfill(3) + '_uuid'
        outdict['meta_info']['origin']['wpoly_longslits'][cdum] = \
            list_coef_rect_wpoly[ifile].uuid
    outdict['tags'] = {}
    outdict['tags']['grism'] = grism_name
    outdict['tags']['filter'] = filter_name
    outdict['dtu_configuration'] = dtu_conf.outdict()
    outdict['uuid'] = str(uuid4())
    outdict['contents'] = {}

    # include bb_nc1_orig, bb_nc2_orig and ymargin_bb for each slitlet
    # (note that the values of bb_ns1_orig and bb_ns2_orig cannot be
    # computed at this stage because they depend on csu_bar_slit_center)
    for islitlet in list_valid_islitlets:
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        outdict['contents'][cslitlet] = dict_bb_param[cslitlet]

    # check that order for rectification transformations is the same for all
    # the slitlets and longslit configurations
    order_check_list = []
    for ifile in range(nfiles):
        tmpdict = list_coef_rect_wpoly[ifile].contents
        for islitlet in list_valid_islitlets:
            ttd_order = tmpdict[islitlet - 1]['ttd_order']
            if ttd_order is not None:
                order_check_list.append(ttd_order)
            ttd_order_modeled = \
                tmpdict[islitlet - 1]['ttd_order_longslit_model']
            order_check_list.append(ttd_order_modeled)
    # remove duplicates in list
    order_no_duplicates = list(set(order_check_list))
    if len(order_no_duplicates) != 1:
        print('order_no_duplicates:', order_no_duplicates)
        raise ValueError('tdd_order is not constant!')
    ttd_order = int(order_no_duplicates[0])
    ncoef_rect = ncoef_fmap(ttd_order)
    if abs(args.debugplot) >= 10:
        print('>>> ttd_order........:', ttd_order)
        print('>>> ncoef_rect.......:', ncoef_rect)

    # check that polynomial degree in frontiers and spectrails are the same
    poldeg_check_list = []
    for ifile in range(nfiles):
        tmpdict = list_coef_rect_wpoly[ifile].contents
        for islitlet in list_valid_islitlets:
            tmppoly = tmpdict[islitlet - 1]['frontier']['poly_coef_lower']
            poldeg_check_list.append(len(tmppoly) - 1)
            tmppoly = tmpdict[islitlet - 1]['frontier']['poly_coef_upper']
            poldeg_check_list.append(len(tmppoly) - 1)
            tmppoly = tmpdict[islitlet - 1]['spectrail']['poly_coef_lower']
            poldeg_check_list.append(len(tmppoly) - 1)
            tmppoly = tmpdict[islitlet - 1]['spectrail']['poly_coef_middle']
            poldeg_check_list.append(len(tmppoly) - 1)
            tmppoly = tmpdict[islitlet - 1]['spectrail']['poly_coef_upper']
            poldeg_check_list.append(len(tmppoly) - 1)
    # remove duplicates in list
    poldeg_no_duplicates = list(set(poldeg_check_list))
    if len(poldeg_no_duplicates) != 1:
        print('poldeg_no_duplicates:', poldeg_no_duplicates)
        raise ValueError('poldeg is not constant in frontiers and '
                         'spectrails!')
    poldeg_spectrails = int(poldeg_no_duplicates[0])
    if abs(args.debugplot) >= 10:
        print('>>> poldeg spectrails:', poldeg_spectrails)

    # check that polynomial degree of wavelength calibration is the same for
    # all the slitlets
    poldeg_check_list = []
    for ifile in range(nfiles):
        tmpdict = list_coef_rect_wpoly[ifile].contents
        for islitlet in list_valid_islitlets:
            tmppoly = tmpdict[islitlet - 1]['wpoly_coeff']
            poldeg_check_list.append(len(tmppoly) - 1)
            tmppoly = tmpdict[islitlet - 1]['wpoly_coeff_longslit_model']
            poldeg_check_list.append(len(tmppoly) - 1)
    # remove duplicates in list
    poldeg_no_duplicates = list(set(poldeg_check_list))
    if len(poldeg_no_duplicates) != 1:
        print('poldeg_no_duplicates:', poldeg_no_duplicates)
        raise ValueError('poldeg is not constant in wavelength calibration '
                         'polynomials!')
    poldeg_wavecal = int(poldeg_no_duplicates[0])
    if abs(args.debugplot) >= 10:
        print('>>> poldeg wavecal...:', poldeg_wavecal)

    # ---

    # csu_bar_slit_center values for each slitlet
    print("CSU_bar_slit_center values:")
    for islitlet in list(range(1, EMIR_NBARS + 1)):
        if islitlet in list_valid_islitlets:
            islitlet_progress(islitlet, EMIR_NBARS, ignore=False)
            cslitlet = 'slitlet' + str(islitlet).zfill(2)
            list_csu_bar_slit_center = []
            for ifile in range(nfiles):
                tmpdict = list_coef_rect_wpoly[ifile].contents[islitlet - 1]
                csu_bar_slit_center = tmpdict['csu_bar_slit_center']
                list_csu_bar_slit_center.append(csu_bar_slit_center)
            # check that list_csu_bar_slit_center is properly sorted
            if not np.all(list_csu_bar_slit_center[:-1] <=
                      list_csu_bar_slit_center[1:]):
                print('cslitlet: ', cslitlet)
                print('list_csu_bar_slit_center: ', list_csu_bar_slit_center)
                raise ValueError('Unsorted list_csu_bar_slit_center')
            outdict['contents'][cslitlet]['list_csu_bar_slit_center'] = \
                list_csu_bar_slit_center
        else:
            islitlet_progress(islitlet, EMIR_NBARS, ignore=True)
    print('OK!')

    # ---

    # rectification polynomial coefficients

    # note: when aij and bij have not been computed, we use the modeled
    # version aij_longslit_model and bij_longslit_model
    print("Rectification polynomial coefficients:")
    for islitlet in list(range(1, EMIR_NBARS + 1)):
        if islitlet in list_valid_islitlets:
            islitlet_progress(islitlet, EMIR_NBARS, ignore=False)
            cslitlet = 'slitlet' + str(islitlet).zfill(2)
            outdict['contents'][cslitlet]['ttd_order'] = ttd_order
            outdict['contents'][cslitlet]['ncoef_rect'] = ncoef_rect
            for keycoef in ['ttd_aij', 'ttd_bij', 'tti_aij', 'tti_bij']:
                for icoef in range(ncoef_rect):
                    ccoef = str(icoef).zfill(2)
                    list_cij = []
                    for ifile in range(nfiles):
                        tmpdict = \
                            list_coef_rect_wpoly[ifile].contents[islitlet - 1]
                        cij = tmpdict[keycoef]
                        if cij is not None:
                            list_cij.append(cij[icoef])
                        else:
                            cij_modeled = tmpdict[keycoef + '_longslit_model']
                            if cij_modeled is None:
                                raise ValueError("Unexpected cij_modeled=None!")
                            else:
                                list_cij.append(cij_modeled[icoef])
                            if abs(args.debugplot) >= 10:
                                print("Warning: using " + keycoef +
                                      "_longslit_model for " + cslitlet +
                                      " in file " +
                                      list_json_files[ifile].filename)
                    cdum = 'list_' + keycoef + '_' + ccoef
                    outdict['contents'][cslitlet][cdum] = list_cij
        else:
            islitlet_progress(islitlet, EMIR_NBARS, ignore=True)

    print('OK!')

    # ---

    # wavelength calibration polynomial coefficients

    # note: when wpoly_coeff have not been computed, we use the
    # wpoly_coeff_longslit_model
    print("Wavelength calibration polynomial coefficients:")
    for islitlet in list(range(1, EMIR_NBARS + 1)):
        if islitlet in list_valid_islitlets:
            islitlet_progress(islitlet, EMIR_NBARS, ignore=False)
            cslitlet = 'slitlet' + str(islitlet).zfill(2)
            outdict['contents'][cslitlet]['wpoly_degree'] = poldeg_wavecal
            for icoef in range(poldeg_wavecal + 1):
                ccoef = str(icoef).zfill(2)
                list_cij = []
                for ifile in range(nfiles):
                    tmpdict = list_coef_rect_wpoly[ifile].contents[islitlet - 1]
                    cij = tmpdict['wpoly_coeff']
                    if cij is not None:
                        list_cij.append(cij[icoef])
                    else:
                        cij_modeled = tmpdict['wpoly_coeff_longslit_model']
                        if cij_modeled is None:
                            raise ValueError("Unexpected cij_modeled=None!")
                        else:
                            list_cij.append(cij_modeled[icoef])
                        if abs(args.debugplot) >= 10:
                            print("Warning: using wpoly_coeff_longslit_model" +
                                  " for " + cslitlet +
                                  " in file " +
                                  list_json_files[ifile].filename)
                outdict['contents'][cslitlet]['list_wpoly_coeff_' + ccoef] = \
                    list_cij
        else:
            islitlet_progress(islitlet, EMIR_NBARS, ignore=True)
    print('OK!')

    # ---

    # OBSOLETE
    # Save resulting JSON structure
    '''
    with open(args.out_MOSlibrary.name + '_old', 'w') as fstream:
        json.dump(outdict, fstream, indent=2, sort_keys=True)
        print('>>> Saving file ' + args.out_MOSlibrary.name + '_old')
    '''

    # --

    # Create object of type MasterRectWave with library of coefficients
    # for rectification and wavelength calibration
    master_rectwv = MasterRectWave(instrument='EMIR')
    master_rectwv.quality_control = numina.types.qc.QC.GOOD
    master_rectwv.tags['grism'] = grism_name
    master_rectwv.tags['filter'] = filter_name
    master_rectwv.meta_info['dtu_configuration'] = outdict['dtu_configuration']
    master_rectwv.meta_info['refined_boundary_model'] = {
        'parmodel': refined_boundary_model.meta_info['parmodel']
    }
    master_rectwv.meta_info['refined_boundary_model'].update(
        outdict['refined_boundary_model']['contents']
    )
    master_rectwv.total_slitlets = EMIR_NBARS
    master_rectwv.meta_info['origin'] = {
        'bound_param': 'uuid' + refined_boundary_model.uuid,
        'longslit_frames': ['uuid:' + list_coef_rect_wpoly[ifile].uuid
                            for ifile in range(nfiles)]
    }
    for i in range(EMIR_NBARS):
        islitlet = i + 1
        dumdict = {'islitlet': islitlet}
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        if cslitlet in outdict['contents']:
            dumdict.update(outdict['contents'][cslitlet])
        else:
            dumdict.update({
                'bb_nc1_orig': 0,
                'bb_nc2_orig': 0,
                'ymargin_bb': 0,
                'list_csu_bar_slit_center': [],
                'ttd_order': 0,
                'ncoef_rect': 0,
                'wpolydegree': 0
            })
            master_rectwv.missing_slitlets.append(islitlet)
        master_rectwv.contents.append(dumdict)
    master_rectwv.writeto(args.out_MOSlibrary.name)
    print('>>> Saving file ' + args.out_MOSlibrary.name)
Exemplo n.º 8
0
def main(args=None):

    # parse command-line options
    parser = argparse.ArgumentParser(prog='rect_wpoly_for_mos')
    # required arguments
    parser.add_argument("input_list",
                        help="TXT file with list JSON files derived from "
                        "longslit data")
    parser.add_argument("--fitted_bound_param",
                        required=True,
                        help="Input JSON with fitted boundary parameters",
                        type=argparse.FileType('rt'))
    parser.add_argument("--out_MOSlibrary",
                        required=True,
                        help="Output JSON file with results",
                        type=lambda x: arg_file_is_new(parser, x))
    # optional arguments
    parser.add_argument("--debugplot",
                        help="Integer indicating plotting & debugging options"
                        " (default=0)",
                        default=0,
                        type=int,
                        choices=DEBUGPLOT_CODES)
    parser.add_argument("--echo",
                        help="Display full command line",
                        action="store_true")
    args = parser.parse_args(args)

    if args.echo:
        print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n')

    # ---

    # Read input TXT file with list of JSON files
    list_json_files = list_fileinfo_from_txt(args.input_list)
    nfiles = len(list_json_files)
    if abs(args.debugplot) >= 10:
        print('>>> Number of input JSON files:', nfiles)
        for item in list_json_files:
            print(item)
    if nfiles < 2:
        raise ValueError("Insufficient number of input JSON files")

    # read fitted boundary parameters and check that all the longslit JSON
    # files have been computed using the same fitted boundary parameters
    refined_boundary_model = RefinedBoundaryModelParam._datatype_load(
        args.fitted_bound_param.name)
    for ifile in range(nfiles):
        coef_rect_wpoly = RectWaveCoeff._datatype_load(
            list_json_files[ifile].filename)
        uuid_tmp = coef_rect_wpoly.meta_info['origin']['bound_param']
        if uuid_tmp[4:] != refined_boundary_model.uuid:
            print('Expected uuid:', refined_boundary_model.uuid)
            print('uuid for ifile #' + str(ifile + 1) + ": " + uuid_tmp)
            raise ValueError("Fitted boundary parameter uuid's do not match")

    # check consistency of grism, filter, DTU configuration and list of
    # valid slitlets
    coef_rect_wpoly_first_longslit = RectWaveCoeff._datatype_load(
        list_json_files[0].filename)
    filter_name = coef_rect_wpoly_first_longslit.tags['filter']
    grism_name = coef_rect_wpoly_first_longslit.tags['grism']
    dtu_conf = DtuConfiguration.define_from_dictionary(
        coef_rect_wpoly_first_longslit.meta_info['dtu_configuration'])
    list_valid_islitlets = list(range(1, EMIR_NBARS + 1))
    for idel in coef_rect_wpoly_first_longslit.missing_slitlets:
        list_valid_islitlets.remove(idel)
    for ifile in range(1, nfiles):
        coef_rect_wpoly = RectWaveCoeff._datatype_load(
            list_json_files[ifile].filename)
        filter_tmp = coef_rect_wpoly.tags['filter']
        if filter_name != filter_tmp:
            print(filter_name)
            print(filter_tmp)
            raise ValueError("Unexpected different filter found")
        grism_tmp = coef_rect_wpoly.tags['grism']
        if grism_name != grism_tmp:
            print(grism_name)
            print(grism_tmp)
            raise ValueError("Unexpected different grism found")
        coef_rect_wpoly = RectWaveCoeff._datatype_load(
            list_json_files[ifile].filename)
        dtu_conf_tmp = DtuConfiguration.define_from_dictionary(
            coef_rect_wpoly.meta_info['dtu_configuration'])
        if dtu_conf != dtu_conf_tmp:
            print(dtu_conf)
            print(dtu_conf_tmp)
            raise ValueError("Unexpected different DTU configurations found")
        list_valid_islitlets_tmp = list(range(1, EMIR_NBARS + 1))
        for idel in coef_rect_wpoly.missing_slitlets:
            list_valid_islitlets_tmp.remove(idel)
        if list_valid_islitlets != list_valid_islitlets_tmp:
            print(list_valid_islitlets)
            print(list_valid_islitlets_tmp)
            raise ValueError("Unexpected different list of valid slitlets")

    # check consistency of horizontal bounding box limits (bb_nc1_orig and
    # bb_nc2_orig) and ymargin_bb, and store the values for each slitlet
    dict_bb_param = {}
    print("Checking horizontal bounding box limits and ymargin_bb:")
    for islitlet in list_valid_islitlets:
        islitlet_progress(islitlet, EMIR_NBARS)
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        dict_bb_param[cslitlet] = {}
        for par in ['bb_nc1_orig', 'bb_nc2_orig', 'ymargin_bb']:
            value_initial = \
                coef_rect_wpoly_first_longslit.contents[islitlet - 1][par]
            for ifile in range(1, nfiles):
                coef_rect_wpoly = RectWaveCoeff._datatype_load(
                    list_json_files[ifile].filename)
                value_tmp = coef_rect_wpoly.contents[islitlet - 1][par]
                if value_initial != value_tmp:
                    print(islitlet, value_initial, value_tmp)
                    print(value_tmp)
                    raise ValueError("Unexpected different " + par)
                dict_bb_param[cslitlet][par] = value_initial
    print('OK!')

    # ---

    # Read and store all the longslit data
    list_coef_rect_wpoly = []
    for ifile in range(nfiles):
        coef_rect_wpoly = RectWaveCoeff._datatype_load(
            list_json_files[ifile].filename)
        list_coef_rect_wpoly.append(coef_rect_wpoly)

    # ---

    # Initialize structure to save results into an ouptut JSON file
    outdict = {}
    outdict['refined_boundary_model'] = refined_boundary_model.__getstate__()
    outdict['instrument'] = 'EMIR'
    outdict['meta_info'] = {}
    outdict['meta_info']['creation_date'] = datetime.now().isoformat()
    outdict['meta_info']['description'] = \
        'rectification and wavelength calibration polynomial coefficients ' \
        'as a function of csu_bar_slit_center for MOS'
    outdict['meta_info']['recipe_name'] = 'undefined'
    outdict['meta_info']['origin'] = {}
    outdict['meta_info']['origin']['wpoly_longslits'] = {}
    for ifile in range(nfiles):
        cdum = 'longslit_' + str(ifile + 1).zfill(3) + '_uuid'
        outdict['meta_info']['origin']['wpoly_longslits'][cdum] = \
            list_coef_rect_wpoly[ifile].uuid
    outdict['tags'] = {}
    outdict['tags']['grism'] = grism_name
    outdict['tags']['filter'] = filter_name
    outdict['dtu_configuration'] = dtu_conf.outdict()
    outdict['uuid'] = str(uuid4())
    outdict['contents'] = {}

    # include bb_nc1_orig, bb_nc2_orig and ymargin_bb for each slitlet
    # (note that the values of bb_ns1_orig and bb_ns2_orig cannot be
    # computed at this stage because they depend on csu_bar_slit_center)
    for islitlet in list_valid_islitlets:
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        outdict['contents'][cslitlet] = dict_bb_param[cslitlet]

    # check that order for rectification transformations is the same for all
    # the slitlets and longslit configurations
    order_check_list = []
    for ifile in range(nfiles):
        tmpdict = list_coef_rect_wpoly[ifile].contents
        for islitlet in list_valid_islitlets:
            ttd_order = tmpdict[islitlet - 1]['ttd_order']
            if ttd_order is not None:
                order_check_list.append(ttd_order)
            ttd_order_modeled = \
                tmpdict[islitlet - 1]['ttd_order_longslit_model']
            order_check_list.append(ttd_order_modeled)
    # remove duplicates in list
    order_no_duplicates = list(set(order_check_list))
    if len(order_no_duplicates) != 1:
        print('order_no_duplicates:', order_no_duplicates)
        raise ValueError('tdd_order is not constant!')
    ttd_order = int(order_no_duplicates[0])
    ncoef_rect = ncoef_fmap(ttd_order)
    if abs(args.debugplot) >= 10:
        print('>>> ttd_order........:', ttd_order)
        print('>>> ncoef_rect.......:', ncoef_rect)

    # check that polynomial degree in frontiers and spectrails are the same
    poldeg_check_list = []
    for ifile in range(nfiles):
        tmpdict = list_coef_rect_wpoly[ifile].contents
        for islitlet in list_valid_islitlets:
            tmppoly = tmpdict[islitlet - 1]['frontier']['poly_coef_lower']
            poldeg_check_list.append(len(tmppoly) - 1)
            tmppoly = tmpdict[islitlet - 1]['frontier']['poly_coef_upper']
            poldeg_check_list.append(len(tmppoly) - 1)
            tmppoly = tmpdict[islitlet - 1]['spectrail']['poly_coef_lower']
            poldeg_check_list.append(len(tmppoly) - 1)
            tmppoly = tmpdict[islitlet - 1]['spectrail']['poly_coef_middle']
            poldeg_check_list.append(len(tmppoly) - 1)
            tmppoly = tmpdict[islitlet - 1]['spectrail']['poly_coef_upper']
            poldeg_check_list.append(len(tmppoly) - 1)
    # remove duplicates in list
    poldeg_no_duplicates = list(set(poldeg_check_list))
    if len(poldeg_no_duplicates) != 1:
        print('poldeg_no_duplicates:', poldeg_no_duplicates)
        raise ValueError('poldeg is not constant in frontiers and '
                         'spectrails!')
    poldeg_spectrails = int(poldeg_no_duplicates[0])
    if abs(args.debugplot) >= 10:
        print('>>> poldeg spectrails:', poldeg_spectrails)

    # check that polynomial degree of wavelength calibration is the same for
    # all the slitlets
    poldeg_check_list = []
    for ifile in range(nfiles):
        tmpdict = list_coef_rect_wpoly[ifile].contents
        for islitlet in list_valid_islitlets:
            tmppoly = tmpdict[islitlet - 1]['wpoly_coeff']
            poldeg_check_list.append(len(tmppoly) - 1)
            tmppoly = tmpdict[islitlet - 1]['wpoly_coeff_longslit_model']
            poldeg_check_list.append(len(tmppoly) - 1)
    # remove duplicates in list
    poldeg_no_duplicates = list(set(poldeg_check_list))
    if len(poldeg_no_duplicates) != 1:
        print('poldeg_no_duplicates:', poldeg_no_duplicates)
        raise ValueError('poldeg is not constant in wavelength calibration '
                         'polynomials!')
    poldeg_wavecal = int(poldeg_no_duplicates[0])
    if abs(args.debugplot) >= 10:
        print('>>> poldeg wavecal...:', poldeg_wavecal)

    # ---

    # csu_bar_slit_center values for each slitlet
    print("CSU_bar_slit_center values:")
    for islitlet in list_valid_islitlets:
        islitlet_progress(islitlet, EMIR_NBARS)
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        list_csu_bar_slit_center = []
        for ifile in range(nfiles):
            tmpdict = list_coef_rect_wpoly[ifile].contents[islitlet - 1]
            csu_bar_slit_center = tmpdict['csu_bar_slit_center']
            list_csu_bar_slit_center.append(csu_bar_slit_center)
        # check that list_csu_bar_slit_center is properly sorted
        if not np.all(
                list_csu_bar_slit_center[:-1] <= list_csu_bar_slit_center[1:]):
            print('cslitlet: ', cslitlet)
            print('list_csu_bar_slit_center: ', list_csu_bar_slit_center)
            raise ValueError('Unsorted list_csu_bar_slit_center')
        outdict['contents'][cslitlet]['list_csu_bar_slit_center'] = \
            list_csu_bar_slit_center
    print('OK!')

    # ---

    # rectification polynomial coefficients

    # note: when aij and bij have not been computed, we use the modeled
    # version aij_longslit_model and bij_longslit_model
    print("Rectification polynomial coefficients:")
    for islitlet in list_valid_islitlets:
        islitlet_progress(islitlet, EMIR_NBARS)
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        outdict['contents'][cslitlet]['ttd_order'] = ttd_order
        outdict['contents'][cslitlet]['ncoef_rect'] = ncoef_rect
        for keycoef in ['ttd_aij', 'ttd_bij', 'tti_aij', 'tti_bij']:
            for icoef in range(ncoef_rect):
                ccoef = str(icoef).zfill(2)
                list_cij = []
                for ifile in range(nfiles):
                    tmpdict = \
                        list_coef_rect_wpoly[ifile].contents[islitlet - 1]
                    cij = tmpdict[keycoef]
                    if cij is not None:
                        list_cij.append(cij[icoef])
                    else:
                        cij_modeled = tmpdict[keycoef + '_longslit_model']
                        if cij_modeled is None:
                            raise ValueError("Unexpected cij_modeled=None!")
                        else:
                            list_cij.append(cij_modeled[icoef])
                        if abs(args.debugplot) >= 10:
                            print("Warning: using " + keycoef +
                                  "_longslit_model for " + cslitlet +
                                  " in file " +
                                  list_json_files[ifile].filename)
                cdum = 'list_' + keycoef + '_' + ccoef
                outdict['contents'][cslitlet][cdum] = list_cij
    print('OK!')

    # ---

    # wavelength calibration polynomial coefficients

    # note: when wpoly_coeff have not been computed, we use the
    # wpoly_coeff_longslit_model
    print("Wavelength calibration polynomial coefficients:")
    for islitlet in list_valid_islitlets:
        islitlet_progress(islitlet, EMIR_NBARS)
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        outdict['contents'][cslitlet]['wpoly_degree'] = poldeg_wavecal
        for icoef in range(poldeg_wavecal + 1):
            ccoef = str(icoef).zfill(2)
            list_cij = []
            for ifile in range(nfiles):
                tmpdict = list_coef_rect_wpoly[ifile].contents[islitlet - 1]
                cij = tmpdict['wpoly_coeff']
                if cij is not None:
                    list_cij.append(cij[icoef])
                else:
                    cij_modeled = tmpdict['wpoly_coeff_longslit_model']
                    if cij_modeled is None:
                        raise ValueError("Unexpected cij_modeled=None!")
                    else:
                        list_cij.append(cij_modeled[icoef])
                    if abs(args.debugplot) >= 10:
                        print("Warning: using wpoly_coeff_longslit_model" +
                              " for " + cslitlet + " in file " +
                              list_json_files[ifile].filename)
            outdict['contents'][cslitlet]['list_wpoly_coeff_' + ccoef] = \
                list_cij
    print('OK!')

    # ---

    # OBSOLETE
    # Save resulting JSON structure
    '''
    with open(args.out_MOSlibrary.name + '_old', 'w') as fstream:
        json.dump(outdict, fstream, indent=2, sort_keys=True)
        print('>>> Saving file ' + args.out_MOSlibrary.name + '_old')
    '''

    # --

    # Create object of type MasterRectWave with library of coefficients
    # for rectification and wavelength calibration
    master_rectwv = MasterRectWave(instrument='EMIR')
    master_rectwv.quality_control = numina.types.qc.QC.GOOD
    master_rectwv.tags['grism'] = grism_name
    master_rectwv.tags['filter'] = filter_name
    master_rectwv.meta_info['dtu_configuration'] = outdict['dtu_configuration']
    master_rectwv.meta_info['refined_boundary_model'] = {
        'parmodel': refined_boundary_model.meta_info['parmodel']
    }
    master_rectwv.meta_info['refined_boundary_model'].update(
        outdict['refined_boundary_model']['contents'])
    master_rectwv.total_slitlets = EMIR_NBARS
    master_rectwv.meta_info['origin'] = {
        'bound_param':
        'uuid' + refined_boundary_model.uuid,
        'longslit_frames': [
            'uuid:' + list_coef_rect_wpoly[ifile].uuid
            for ifile in range(nfiles)
        ]
    }
    for i in range(EMIR_NBARS):
        islitlet = i + 1
        dumdict = {'islitlet': islitlet}
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        if cslitlet in outdict['contents']:
            dumdict.update(outdict['contents'][cslitlet])
        else:
            dumdict.update({
                'bb_nc1_orig': 0,
                'bb_nc2_orig': 0,
                'ymargin_bb': 0,
                'list_csu_bar_slit_center': [],
                'ttd_order': 0,
                'ncoef_rect': 0,
                'wpolydegree': 0
            })
            master_rectwv.missing_slitlets.append(islitlet)
        master_rectwv.contents.append(dumdict)
    master_rectwv.writeto(args.out_MOSlibrary.name)
    print('>>> Saving file ' + args.out_MOSlibrary.name)
Exemplo n.º 9
0
def main(args=None):
    # parse command-line options
    parser = argparse.ArgumentParser(
        description='description: apply rectification and wavelength '
        'calibration polynomials for the CSU configuration of a '
        'particular image')

    # required arguments
    parser.add_argument("fitsfile",
                        help="Input FITS file",
                        type=argparse.FileType('rb'))
    parser.add_argument("--rectwv_coeff",
                        required=True,
                        help="Input JSON file with rectification and "
                        "wavelength calibration coefficients",
                        type=argparse.FileType('rt'))
    parser.add_argument("--outfile",
                        required=True,
                        help="Output FITS file with rectified and "
                        "wavelength calibrated image",
                        type=lambda x: arg_file_is_new(parser, x, mode='wb'))

    # optional arguments
    parser.add_argument("--delta_global_integer_offset_x_pix",
                        help="Delta global integer offset in the X direction "
                        "(default=0)",
                        default=0,
                        type=int)
    parser.add_argument("--delta_global_integer_offset_y_pix",
                        help="Delta global integer offset in the Y direction "
                        "(default=0)",
                        default=0,
                        type=int)
    parser.add_argument("--resampling",
                        help="Resampling method: 1 -> nearest neighbor, "
                        "2 -> linear interpolation (default)",
                        default=2,
                        type=int,
                        choices=(1, 2))
    parser.add_argument("--ignore_dtu_configuration",
                        help="Ignore DTU configurations differences between "
                        "transformation and input image",
                        action="store_true")
    parser.add_argument("--debugplot",
                        help="Integer indicating plotting & debugging options"
                        " (default=0)",
                        default=0,
                        type=int,
                        choices=DEBUGPLOT_CODES)
    parser.add_argument("--echo",
                        help="Display full command line",
                        action="store_true")
    args = parser.parse_args(args)

    if args.echo:
        print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n')

    # ---

    logging_from_debugplot(args.debugplot)

    # generate RectWaveCoeff object
    rectwv_coeff = RectWaveCoeff._datatype_load(args.rectwv_coeff.name)

    # modify (when requested) global offsets
    rectwv_coeff.global_integer_offset_x_pix += \
        args.delta_global_integer_offset_x_pix
    rectwv_coeff.global_integer_offset_y_pix += \
        args.delta_global_integer_offset_y_pix

    # generate HDUList object
    # read FITS image and its corresponding header
    hdulist = fits.open(args.fitsfile)

    # rectification and wavelength calibration
    reduced_arc = apply_rectwv_coeff(
        hdulist,
        rectwv_coeff,
        args_resampling=args.resampling,
        args_ignore_dtu_configuration=args.ignore_dtu_configuration,
        debugplot=args.debugplot)

    # save result
    reduced_arc.writeto(args.outfile, overwrite=True)
Exemplo n.º 10
0
def main(args=None):
    # parse command-line options
    parser = argparse.ArgumentParser(
        description='description: apply rectification and wavelength '
                    'calibration polynomials for the CSU configuration of a '
                    'particular image'
    )

    # required arguments
    parser.add_argument("fitsfile",
                        help="Input FITS file",
                        type=argparse.FileType('rb'))
    parser.add_argument("--rectwv_coeff", required=True,
                        help="Input JSON file with rectification and "
                             "wavelength calibration coefficients",
                        type=argparse.FileType('rt'))
    parser.add_argument("--outfile", required=True,
                        help="Output FITS file with rectified and "
                             "wavelength calibrated image",
                        type=lambda x: arg_file_is_new(parser, x, mode='wb'))

    # optional arguments
    parser.add_argument("--delta_global_integer_offset_x_pix",
                        help="Delta global integer offset in the X direction "
                             "(default=0)",
                        default=0, type=int)
    parser.add_argument("--delta_global_integer_offset_y_pix",
                        help="Delta global integer offset in the Y direction "
                             "(default=0)",
                        default=0, type=int)
    parser.add_argument("--resampling",
                        help="Resampling method: 1 -> nearest neighbor, "
                             "2 -> linear interpolation (default)",
                        default=2, type=int,
                        choices=(1, 2))
    parser.add_argument("--ignore_dtu_configuration",
                        help="Ignore DTU configurations differences between "
                             "transformation and input image",
                        action="store_true")
    parser.add_argument("--debugplot",
                        help="Integer indicating plotting & debugging options"
                             " (default=0)",
                        default=0, type=int,
                        choices=DEBUGPLOT_CODES)
    parser.add_argument("--echo",
                        help="Display full command line",
                        action="store_true")
    args = parser.parse_args(args)

    if args.echo:
        print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n')

    # ---

    logging_from_debugplot(args.debugplot)

    # generate RectWaveCoeff object
    rectwv_coeff = RectWaveCoeff._datatype_load(args.rectwv_coeff.name)

    # modify (when requested) global offsets
    rectwv_coeff.global_integer_offset_x_pix += \
        args.delta_global_integer_offset_x_pix
    rectwv_coeff.global_integer_offset_y_pix += \
        args.delta_global_integer_offset_y_pix

    # generate HDUList object
    # read FITS image and its corresponding header
    hdulist = fits.open(args.fitsfile)

    # rectification and wavelength calibration
    reduced_arc = apply_rectwv_coeff(
        hdulist,
        rectwv_coeff,
        args_resampling=args.resampling,
        args_ignore_dtu_configuration=args.ignore_dtu_configuration,
        debugplot=args.debugplot
    )

    # save result
    reduced_arc.writeto(args.outfile, overwrite=True)
def rectwv_coeff_from_mos_library(reduced_image,
                                  master_rectwv,
                                  ignore_dtu_configuration=True,
                                  debugplot=0):
    """Evaluate rect.+wavecal. coefficients from MOS library

    Parameters
    ----------
    reduced_image : HDUList object
        Image with preliminary basic reduction: bpm, bias, dark and
        flatfield.
    master_rectwv : MasterRectWave instance
        Rectification and Wavelength Calibrartion Library product.
        Contains the library of polynomial coefficients necessary
        to generate an instance of RectWaveCoeff with the rectification
        and wavelength calibration coefficients for the particular
        CSU configuration.
    ignore_dtu_configuration : bool
        If True, ignore differences in DTU configuration.
    debugplot : int
        Debugging level for messages and plots. For details see
        'numina.array.display.pause_debugplot.py'.

    Returns
    -------
    rectwv_coeff : RectWaveCoeff instance
        Rectification and wavelength calibration coefficients for the
        particular CSU configuration.

    """

    logger = logging.getLogger(__name__)
    logger.info('Computing expected RectWaveCoeff from CSU configuration')

    # header
    header = reduced_image[0].header

    # read the CSU configuration from the image header
    csu_conf = CsuConfiguration.define_from_header(header)

    # read the DTU configuration from the image header
    dtu_conf = DtuConfiguration.define_from_header(header)

    # retrieve DTU configuration from MasterRectWave object
    dtu_conf_calib = DtuConfiguration.define_from_dictionary(
        master_rectwv.meta_info['dtu_configuration'])
    # check that the DTU configuration employed to obtain the calibration
    # corresponds to the DTU configuration in the input FITS file
    if dtu_conf != dtu_conf_calib:
        if ignore_dtu_configuration:
            logger.warning('DTU configuration differences found!')
        else:
            logger.info('DTU configuration from image header:')
            logger.info(dtu_conf)
            logger.info('DTU configuration from master calibration:')
            logger.info(dtu_conf_calib)
            raise ValueError("DTU configurations do not match!")
    else:
        logger.info('DTU configuration match!')

    # check grism and filter
    filter_name = header['filter']
    logger.debug('Filter: ' + filter_name)
    if filter_name != master_rectwv.tags['filter']:
        raise ValueError('Filter name does not match!')
    grism_name = header['grism']
    logger.debug('Grism: ' + grism_name)
    if grism_name != master_rectwv.tags['grism']:
        raise ValueError('Grism name does not match!')

    # valid slitlet numbers
    list_valid_islitlets = list(range(1, EMIR_NBARS + 1))
    for idel in master_rectwv.missing_slitlets:
        list_valid_islitlets.remove(idel)
    logger.debug('valid slitlet numbers: ' + str(list_valid_islitlets))

    # initialize intermediate dictionary with relevant information
    # (note: this dictionary corresponds to an old structure employed to
    # store the information in a JSON file; this is no longer necessary,
    # but here we reuse that dictionary for convenience)
    outdict = {}
    outdict['instrument'] = 'EMIR'
    outdict['meta_info'] = {}
    outdict['meta_info']['creation_date'] = datetime.now().isoformat()
    outdict['meta_info']['description'] = \
        'computation of rectification and wavelength calibration polynomial ' \
        'coefficients for a particular CSU configuration from a MOS model '
    outdict['meta_info']['recipe_name'] = 'undefined'
    outdict['meta_info']['origin'] = {}
    outdict['meta_info']['origin']['fits_frame_uuid'] = 'TBD'
    outdict['meta_info']['origin']['rect_wpoly_mos_uuid'] = \
        master_rectwv.uuid
    outdict['meta_info']['origin']['fitted_boundary_param_uuid'] = \
        master_rectwv.meta_info['origin']['bound_param']
    outdict['tags'] = {}
    outdict['tags']['grism'] = grism_name
    outdict['tags']['filter'] = filter_name
    outdict['dtu_configuration'] = dtu_conf.outdict()
    outdict['uuid'] = str(uuid4())
    outdict['contents'] = {}

    # compute rectification and wavelength calibration coefficients for each
    # slitlet according to its csu_bar_slit_center value
    for islitlet in list_valid_islitlets:
        cslitlet = 'slitlet' + str(islitlet).zfill(2)

        # csu_bar_slit_center of current slitlet in initial FITS image
        csu_bar_slit_center = csu_conf.csu_bar_slit_center(islitlet)

        # input data structure
        tmpdict = master_rectwv.contents[islitlet - 1]
        list_csu_bar_slit_center = tmpdict['list_csu_bar_slit_center']

        # check extrapolations
        if csu_bar_slit_center < min(list_csu_bar_slit_center):
            logger.warning('extrapolating table with ' + cslitlet)
            logger.warning('minimum tabulated value: ' +
                           str(min(list_csu_bar_slit_center)))
            logger.warning('sought value...........: ' +
                           str(csu_bar_slit_center))
        if csu_bar_slit_center > max(list_csu_bar_slit_center):
            logger.warning('extrapolating table with ' + cslitlet)
            logger.warning('maximum tabulated value: ' +
                           str(max(list_csu_bar_slit_center)))
            logger.warning('sought value...........: ' +
                           str(csu_bar_slit_center))

        # rectification coefficients
        ttd_order = tmpdict['ttd_order']
        ncoef = ncoef_fmap(ttd_order)
        outdict['contents'][cslitlet] = {}
        outdict['contents'][cslitlet]['ttd_order'] = ttd_order
        outdict['contents'][cslitlet]['ttd_order_longslit_model'] = None
        for keycoef in ['ttd_aij', 'ttd_bij', 'tti_aij', 'tti_bij']:
            coef_out = []
            for icoef in range(ncoef):
                ccoef = str(icoef).zfill(2)
                list_cij = tmpdict['list_' + keycoef + '_' + ccoef]
                funinterp_coef = interp1d(list_csu_bar_slit_center,
                                          list_cij,
                                          kind='linear',
                                          fill_value='extrapolate')
                # note: funinterp_coef expects a numpy array
                dum = funinterp_coef([csu_bar_slit_center])
                coef_out.append(dum[0])
            outdict['contents'][cslitlet][keycoef] = coef_out
            outdict['contents'][cslitlet][keycoef + '_longslit_model'] = None

        # wavelength calibration coefficients
        ncoef = tmpdict['wpoly_degree'] + 1
        wpoly_coeff = []
        for icoef in range(ncoef):
            ccoef = str(icoef).zfill(2)
            list_cij = tmpdict['list_wpoly_coeff_' + ccoef]
            funinterp_coef = interp1d(list_csu_bar_slit_center,
                                      list_cij,
                                      kind='linear',
                                      fill_value='extrapolate')
            # note: funinterp_coef expects a numpy array
            dum = funinterp_coef([csu_bar_slit_center])
            wpoly_coeff.append(dum[0])
        outdict['contents'][cslitlet]['wpoly_coeff'] = wpoly_coeff
        outdict['contents'][cslitlet]['wpoly_coeff_longslit_model'] = None

        # update cdelt1_linear and crval1_linear
        wpoly_function = np.polynomial.Polynomial(wpoly_coeff)
        crmin1_linear = wpoly_function(1)
        crmax1_linear = wpoly_function(EMIR_NAXIS1)
        cdelt1_linear = (crmax1_linear - crmin1_linear) / (EMIR_NAXIS1 - 1)
        crval1_linear = crmin1_linear
        outdict['contents'][cslitlet]['crval1_linear'] = crval1_linear
        outdict['contents'][cslitlet]['cdelt1_linear'] = cdelt1_linear

        # update CSU keywords
        outdict['contents'][cslitlet]['csu_bar_left'] = \
            csu_conf.csu_bar_left(islitlet)
        outdict['contents'][cslitlet]['csu_bar_right'] = \
            csu_conf.csu_bar_right(islitlet)
        outdict['contents'][cslitlet]['csu_bar_slit_center'] = \
            csu_conf.csu_bar_slit_center(islitlet)
        outdict['contents'][cslitlet]['csu_bar_slit_width'] = \
            csu_conf.csu_bar_slit_width(islitlet)

    # for each slitlet compute spectrum trails and frontiers using the
    # fitted boundary parameters
    fitted_bound_param_json = {
        'contents': master_rectwv.meta_info['refined_boundary_model']
    }
    parmodel = fitted_bound_param_json['contents']['parmodel']
    fitted_bound_param_json.update({'meta_info': {'parmodel': parmodel}})
    params = bound_params_from_dict(fitted_bound_param_json)
    if abs(debugplot) >= 10:
        logger.debug('Fitted boundary parameters:')
        logger.debug(params.pretty_print())
    for islitlet in list_valid_islitlets:
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        # csu_bar_slit_center of current slitlet in initial FITS image
        csu_bar_slit_center = csu_conf.csu_bar_slit_center(islitlet)
        # compute and store x0_reference value
        x0_reference = float(EMIR_NAXIS1) / 2.0 + 0.5
        outdict['contents'][cslitlet]['x0_reference'] = x0_reference
        # compute spectrum trails (lower, middle and upper)
        list_spectrails = expected_distorted_boundaries(islitlet,
                                                        csu_bar_slit_center,
                                                        [0, 0.5, 1],
                                                        params,
                                                        parmodel,
                                                        numpts=101,
                                                        deg=5,
                                                        debugplot=0)
        # store spectrails in output JSON file
        outdict['contents'][cslitlet]['spectrail'] = {}
        for idum, cdum in zip(range(3), ['lower', 'middle', 'upper']):
            outdict['contents'][cslitlet]['spectrail']['poly_coef_' + cdum] = \
                list_spectrails[idum].poly_funct.coef.tolist()
            outdict['contents'][cslitlet]['y0_reference_' + cdum] = \
                list_spectrails[idum].poly_funct(x0_reference)
        # compute frontiers (lower, upper)
        list_frontiers = expected_distorted_frontiers(islitlet,
                                                      csu_bar_slit_center,
                                                      params,
                                                      parmodel,
                                                      numpts=101,
                                                      deg=5,
                                                      debugplot=0)
        # store frontiers in output JSON
        outdict['contents'][cslitlet]['frontier'] = {}
        for idum, cdum in zip(range(2), ['lower', 'upper']):
            outdict['contents'][cslitlet]['frontier']['poly_coef_' + cdum] = \
                list_frontiers[idum].poly_funct.coef.tolist()
            outdict['contents'][cslitlet]['y0_frontier_' + cdum] = \
                list_frontiers[idum].poly_funct(x0_reference)

    # store bounding box parameters for each slitlet
    xdum = np.linspace(1, EMIR_NAXIS1, num=EMIR_NAXIS1)
    for islitlet in list_valid_islitlets:
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        # parameters already available in the input JSON file
        for par in ['bb_nc1_orig', 'bb_nc2_orig', 'ymargin_bb']:
            outdict['contents'][cslitlet][par] = \
                master_rectwv.contents[islitlet - 1][par]
        # estimate bb_ns1_orig and bb_ns2_orig using the already computed
        # frontiers and the value of ymargin_bb, following the same approach
        # employed in Slitlet2dArc.__init__()
        poly_lower_frontier = np.polynomial.Polynomial(
            outdict['contents'][cslitlet]['frontier']['poly_coef_lower'])
        poly_upper_frontier = np.polynomial.Polynomial(
            outdict['contents'][cslitlet]['frontier']['poly_coef_upper'])
        ylower = poly_lower_frontier(xdum)
        yupper = poly_upper_frontier(xdum)
        ymargin_bb = master_rectwv.contents[islitlet - 1]['ymargin_bb']
        bb_ns1_orig = int(ylower.min() + 0.5) - ymargin_bb
        if bb_ns1_orig < 1:
            bb_ns1_orig = 1
        bb_ns2_orig = int(yupper.max() + 0.5) + ymargin_bb
        if bb_ns2_orig > EMIR_NAXIS2:
            bb_ns2_orig = EMIR_NAXIS2
        outdict['contents'][cslitlet]['bb_ns1_orig'] = bb_ns1_orig
        outdict['contents'][cslitlet]['bb_ns2_orig'] = bb_ns2_orig

    # additional parameters (see Slitlet2dArc.__init__)
    for islitlet in list_valid_islitlets:
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        # define expected frontier ordinates at x0_reference for the rectified
        # image imposing the vertical length of the slitlet to be constant
        # and equal to EMIR_NPIXPERSLIT_RECTIFIED
        outdict['contents'][cslitlet]['y0_frontier_lower_expected'] = \
            expected_y0_lower_frontier(islitlet)
        outdict['contents'][cslitlet]['y0_frontier_upper_expected'] = \
            expected_y0_upper_frontier(islitlet)
        # compute linear transformation to place the rectified slitlet at
        # the center of the current slitlet bounding box
        tmpdict = outdict['contents'][cslitlet]
        xdum1 = tmpdict['y0_frontier_lower']
        ydum1 = tmpdict['y0_frontier_lower_expected']
        xdum2 = tmpdict['y0_frontier_upper']
        ydum2 = tmpdict['y0_frontier_upper_expected']
        corr_yrect_b = (ydum2 - ydum1) / (xdum2 - xdum1)
        corr_yrect_a = ydum1 - corr_yrect_b * xdum1
        # compute expected location of rectified boundaries
        y0_reference_lower_expected = \
            corr_yrect_a + corr_yrect_b * tmpdict['y0_reference_lower']
        y0_reference_middle_expected = \
            corr_yrect_a + corr_yrect_b * tmpdict['y0_reference_middle']
        y0_reference_upper_expected = \
            corr_yrect_a + corr_yrect_b * tmpdict['y0_reference_upper']
        # shift transformation to center the rectified slitlet within the
        # slitlet bounding box
        ydummid = (ydum1 + ydum2) / 2
        ioffset = int(ydummid -
                      (tmpdict['bb_ns1_orig'] + tmpdict['bb_ns2_orig']) / 2.0)
        corr_yrect_a -= ioffset
        # minimum and maximum row in the rectified slitlet encompassing
        # EMIR_NPIXPERSLIT_RECTIFIED pixels
        # a) scan number (in pixels, from 1 to NAXIS2)
        xdum1 = corr_yrect_a + \
                corr_yrect_b * tmpdict['y0_frontier_lower']
        xdum2 = corr_yrect_a + \
                corr_yrect_b * tmpdict['y0_frontier_upper']
        # b) row number (starting from zero)
        min_row_rectified = \
            int((round(xdum1 * 10) + 5) / 10) - tmpdict['bb_ns1_orig']
        max_row_rectified = \
            int((round(xdum2 * 10) - 5) / 10) - tmpdict['bb_ns1_orig']
        # save previous results in outdict
        outdict['contents'][cslitlet]['y0_reference_lower_expected'] = \
            y0_reference_lower_expected
        outdict['contents'][cslitlet]['y0_reference_middle_expected'] = \
            y0_reference_middle_expected
        outdict['contents'][cslitlet]['y0_reference_upper_expected'] = \
            y0_reference_upper_expected
        outdict['contents'][cslitlet]['corr_yrect_a'] = corr_yrect_a
        outdict['contents'][cslitlet]['corr_yrect_b'] = corr_yrect_b
        outdict['contents'][cslitlet]['min_row_rectified'] = min_row_rectified
        outdict['contents'][cslitlet]['max_row_rectified'] = max_row_rectified

    # ---

    # Create object of type RectWaveCoeff with coefficients for
    # rectification and wavelength calibration
    rectwv_coeff = RectWaveCoeff(instrument='EMIR')
    rectwv_coeff.quality_control = numina.types.qc.QC.GOOD
    rectwv_coeff.tags['grism'] = grism_name
    rectwv_coeff.tags['filter'] = filter_name
    rectwv_coeff.meta_info['origin']['bound_param'] = \
        master_rectwv.meta_info['origin']['bound_param']
    rectwv_coeff.meta_info['origin']['master_rectwv'] = \
        'uuid' + master_rectwv.uuid
    rectwv_coeff.meta_info['dtu_configuration'] = outdict['dtu_configuration']
    rectwv_coeff.total_slitlets = EMIR_NBARS
    for i in range(EMIR_NBARS):
        islitlet = i + 1
        dumdict = {'islitlet': islitlet}
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        if cslitlet in outdict['contents']:
            dumdict.update(outdict['contents'][cslitlet])
        else:
            dumdict.update({
                'csu_bar_left':
                csu_conf.csu_bar_left(islitlet),
                'csu_bar_right':
                csu_conf.csu_bar_right(islitlet),
                'csu_bar_slit_center':
                csu_conf.csu_bar_slit_center(islitlet),
                'csu_bar_slit_width':
                csu_conf.csu_bar_slit_width(islitlet),
                'x0_reference':
                float(EMIR_NAXIS1) / 2.0 + 0.5,
                'y0_frontier_lower_expected':
                expected_y0_lower_frontier(islitlet),
                'y0_frontier_upper_expected':
                expected_y0_upper_frontier(islitlet)
            })
            rectwv_coeff.missing_slitlets.append(islitlet)
        rectwv_coeff.contents.append(dumdict)
    # debugging __getstate__ and __setstate__
    # rectwv_coeff.writeto(args.out_rect_wpoly.name)
    # print('>>> Saving file ' + args.out_rect_wpoly.name)
    # check_setstate_getstate(rectwv_coeff, args.out_rect_wpoly.name)
    logger.info('Generating RectWaveCoeff object with uuid=' +
                rectwv_coeff.uuid)

    return rectwv_coeff
Exemplo n.º 12
0
def main(args=None):
    # parse command-line options
    parser = argparse.ArgumentParser(
        description='description: compute pixel-to-pixel flatfield'
    )

    # required arguments
    parser.add_argument("fitsfile",
                        help="Input FITS file (flat ON-OFF)",
                        type=argparse.FileType('rb'))
    parser.add_argument("--rectwv_coeff", required=True,
                        help="Input JSON file with rectification and "
                             "wavelength calibration coefficients",
                        type=argparse.FileType('rt'))
    parser.add_argument("--minimum_slitlet_width_mm", required=True,
                        help="Minimum slitlet width in mm",
                        type=float)
    parser.add_argument("--maximum_slitlet_width_mm", required=True,
                        help="Maximum slitlet width in mm",
                        type=float)
    parser.add_argument("--minimum_fraction", required=True,
                        help="Minimum allowed flatfielding value",
                        type=float, default=0.01)
    parser.add_argument("--minimum_value_in_output",
                        help="Minimum value allowed in output file: pixels "
                             "below this value are set to 1.0 (default=0.01)",
                        type=float, default=0.01)
    parser.add_argument("--maximum_value_in_output",
                        help="Maximum value allowed in output file: pixels "
                             "above this value are set to 1.0 (default=10.0)",
                        type=float, default=10.0)
    # parser.add_argument("--nwindow_median", required=True,
    #                     help="Window size to smooth median spectrum in the "
    #                          "spectral direction",
    #                     type=int)
    parser.add_argument("--outfile", required=True,
                        help="Output FITS file",
                        type=lambda x: arg_file_is_new(parser, x, mode='wb'))

    # optional arguments
    parser.add_argument("--delta_global_integer_offset_x_pix",
                        help="Delta global integer offset in the X direction "
                             "(default=0)",
                        default=0, type=int)
    parser.add_argument("--delta_global_integer_offset_y_pix",
                        help="Delta global integer offset in the Y direction "
                             "(default=0)",
                        default=0, type=int)
    parser.add_argument("--resampling",
                        help="Resampling method: 1 -> nearest neighbor, "
                             "2 -> linear interpolation (default)",
                        default=2, type=int,
                        choices=(1, 2))
    parser.add_argument("--ignore_DTUconf",
                        help="Ignore DTU configurations differences between "
                             "model and input image",
                        action="store_true")
    parser.add_argument("--debugplot",
                        help="Integer indicating plotting & debugging options"
                             " (default=0)",
                        default=0, type=int,
                        choices=DEBUGPLOT_CODES)
    parser.add_argument("--echo",
                        help="Display full command line",
                        action="store_true")
    args = parser.parse_args(args)

    if args.echo:
        print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n')

    # read calibration structure from JSON file
    rectwv_coeff = RectWaveCoeff._datatype_load(args.rectwv_coeff.name)

    # modify (when requested) global offsets
    rectwv_coeff.global_integer_offset_x_pix += \
        args.delta_global_integer_offset_x_pix
    rectwv_coeff.global_integer_offset_y_pix += \
        args.delta_global_integer_offset_y_pix

    # read FITS image and its corresponding header
    hdulist = fits.open(args.fitsfile)
    header = hdulist[0].header
    image2d = hdulist[0].data
    hdulist.close()

    # apply global offsets
    image2d = apply_integer_offsets(
        image2d=image2d,
        offx=rectwv_coeff.global_integer_offset_x_pix,
        offy=rectwv_coeff.global_integer_offset_y_pix
    )

    # protections
    naxis2, naxis1 = image2d.shape
    if naxis1 != header['naxis1'] or naxis2 != header['naxis2']:
        print('>>> NAXIS1:', naxis1)
        print('>>> NAXIS2:', naxis2)
        raise ValueError('Something is wrong with NAXIS1 and/or NAXIS2')
    if abs(args.debugplot) >= 10:
        print('>>> NAXIS1:', naxis1)
        print('>>> NAXIS2:', naxis2)

    # check that the input FITS file grism and filter match
    filter_name = header['filter']
    if filter_name != rectwv_coeff.tags['filter']:
        raise ValueError("Filter name does not match!")
    grism_name = header['grism']
    if grism_name != rectwv_coeff.tags['grism']:
        raise ValueError("Filter name does not match!")
    if abs(args.debugplot) >= 10:
        print('>>> grism.......:', grism_name)
        print('>>> filter......:', filter_name)

    # check that the DTU configurations are compatible
    dtu_conf_fitsfile = DtuConfiguration.define_from_fits(args.fitsfile)
    dtu_conf_jsonfile = DtuConfiguration.define_from_dictionary(
        rectwv_coeff.meta_info['dtu_configuration'])
    if dtu_conf_fitsfile != dtu_conf_jsonfile:
        print('DTU configuration (FITS file):\n\t', dtu_conf_fitsfile)
        print('DTU configuration (JSON file):\n\t', dtu_conf_jsonfile)
        if args.ignore_DTUconf:
            print('WARNING: DTU configuration differences found!')
        else:
            raise ValueError('DTU configurations do not match')
    else:
        if abs(args.debugplot) >= 10:
            print('>>> DTU Configuration match!')
            print(dtu_conf_fitsfile)

    # load CSU configuration
    csu_conf_fitsfile = CsuConfiguration.define_from_fits(args.fitsfile)
    if abs(args.debugplot) >= 10:
        print(csu_conf_fitsfile)

    # valid slitlet numbers
    list_valid_islitlets = list(range(1, EMIR_NBARS + 1))
    for idel in rectwv_coeff.missing_slitlets:
        print('-> Removing slitlet (not defined):', idel)
        list_valid_islitlets.remove(idel)
    # filter out slitlets with widths outside valid range
    list_outside_valid_width = []
    for islitlet in list_valid_islitlets:
        slitwidth = csu_conf_fitsfile.csu_bar_slit_width(islitlet)
        if (slitwidth < args.minimum_slitlet_width_mm) or \
                (slitwidth > args.maximum_slitlet_width_mm):
            list_outside_valid_width.append(islitlet)
            print('-> Removing slitlet (invalid width):', islitlet)
    if len(list_outside_valid_width) > 0:
        for idel in list_outside_valid_width:
            list_valid_islitlets.remove(idel)
    print('>>> valid slitlet numbers:\n', list_valid_islitlets)

    # ---

    # initialize rectified image
    image2d_flatfielded = np.zeros((EMIR_NAXIS2, EMIR_NAXIS1))

    # main loop
    for islitlet in list(range(1, EMIR_NBARS + 1)):
        if islitlet in list_valid_islitlets:
            if args.debugplot == 0:
                islitlet_progress(islitlet, EMIR_NBARS, ignore=False)
            # define Slitlet2D object
            slt = Slitlet2D(islitlet=islitlet,
                            rectwv_coeff=rectwv_coeff,
                            debugplot=args.debugplot)

            if abs(args.debugplot) >= 10:
                print(slt)

            # extract (distorted) slitlet from the initial image
            slitlet2d = slt.extract_slitlet2d(
                image_2k2k=image2d,
                subtitle='original image'
            )

            # rectify slitlet
            slitlet2d_rect = slt.rectify(
                slitlet2d=slitlet2d,
                resampling=args.resampling,
                subtitle='original rectified'
            )
            naxis2_slitlet2d, naxis1_slitlet2d = slitlet2d_rect.shape

            if naxis1_slitlet2d != EMIR_NAXIS1:
                print('naxis1_slitlet2d: ', naxis1_slitlet2d)
                print('EMIR_NAXIS1.....: ', EMIR_NAXIS1)
                raise ValueError("Unexpected naxis1_slitlet2d")

            # get useful slitlet region (use boundaries instead of frontiers;
            # note that the nscan_minmax_frontiers() works well independently
            # of using frontiers of boundaries as arguments)
            nscan_min, nscan_max = nscan_minmax_frontiers(
                slt.y0_reference_lower,
                slt.y0_reference_upper,
                resize=False
            )
            ii1 = nscan_min - slt.bb_ns1_orig
            ii2 = nscan_max - slt.bb_ns1_orig + 1

            # median spectrum
            sp_collapsed = np.median(slitlet2d_rect[ii1:(ii2 + 1), :], axis=0)

            # smooth median spectrum along the spectral direction
            # sp_median = ndimage.median_filter(
            #     sp_collapsed,
            #     args.nwindow_median,
            #     mode='nearest'
            # )
            xaxis1 = np.arange(1, naxis1_slitlet2d + 1)
            nremove = 5
            spl = AdaptiveLSQUnivariateSpline(
                x=xaxis1[nremove:-nremove],
                y=sp_collapsed[nremove:-nremove],
                t=11,
                adaptive=True
            )
            xknots = spl.get_knots()
            yknots = spl(xknots)
            sp_median = spl(xaxis1)

            # compute rms within each knot interval
            nknots = len(xknots)
            rms_array = np.zeros(nknots - 1, dtype=float)
            for iknot in range(nknots - 1):
                residuals = []
                for xdum, ydum, yydum in \
                        zip(xaxis1, sp_collapsed, sp_median):
                    if xknots[iknot] <= xdum <= xknots[iknot + 1]:
                        residuals.append(abs(ydum - yydum))
                if len(residuals) > 5:
                    rms_array[iknot] = np.std(residuals)
                else:
                    rms_array[iknot] = 0

            # determine in which knot interval falls each pixel
            iknot_array = np.zeros(len(xaxis1), dtype=int)
            for idum, xdum in enumerate(xaxis1):
                for iknot in range(nknots - 1):
                    if xknots[iknot] <= xdum <= xknots[iknot + 1]:
                        iknot_array[idum] = iknot

            # compute new fit removing deviant points (with fixed knots)
            xnewfit = []
            ynewfit = []
            for idum in range(len(xaxis1)):
                delta_sp = abs(sp_collapsed[idum] - sp_median[idum])
                rms_tmp = rms_array[iknot_array[idum]]
                if idum == 0 or idum == (len(xaxis1) - 1):
                    lok = True
                elif rms_tmp > 0:
                    if delta_sp < 3.0 * rms_tmp:
                        lok = True
                    else:
                        lok = False
                else:
                    lok = True
                if lok:
                    xnewfit.append(xaxis1[idum])
                    ynewfit.append(sp_collapsed[idum])
            nremove = 5
            splnew = AdaptiveLSQUnivariateSpline(
                x=xnewfit[nremove:-nremove],
                y=ynewfit[nremove:-nremove],
                t=xknots[1:-1],
                adaptive=False
            )
            sp_median = splnew(xaxis1)

            ymax_spmedian = sp_median.max()
            y_threshold = ymax_spmedian * args.minimum_fraction
            sp_median[np.where(sp_median < y_threshold)] = 0.0

            if abs(args.debugplot) > 10:
                title = 'Slitlet#' + str(islitlet) + ' (median spectrum)'
                ax = ximplotxy(xaxis1, sp_collapsed,
                               title=title,
                               show=False, **{'label' : 'collapsed spectrum'})
                ax.plot(xaxis1, sp_median, label='fitted spectrum')
                ax.plot([1, naxis1_slitlet2d], 2*[y_threshold],
                        label='threshold')
                ax.plot(xknots, yknots, 'o', label='knots')
                ax.legend()
                ax.set_ylim(-0.05*ymax_spmedian, 1.05*ymax_spmedian)
                pause_debugplot(args.debugplot,
                                pltshow=True, tight_layout=True)

            # generate rectified slitlet region filled with the median spectrum
            slitlet2d_rect_spmedian = np.tile(sp_median, (naxis2_slitlet2d, 1))
            if abs(args.debugplot) > 10:
                slt.ximshow_rectified(
                    slitlet2d_rect=slitlet2d_rect_spmedian,
                    subtitle='rectified, filled with median spectrum'
                )

            # unrectified image
            slitlet2d_unrect_spmedian = slt.rectify(
                slitlet2d=slitlet2d_rect_spmedian,
                resampling=args.resampling,
                inverse=True,
                subtitle='unrectified, filled with median spectrum'
            )

            # normalize initial slitlet image (avoid division by zero)
            slitlet2d_norm = np.zeros_like(slitlet2d)
            for j in range(naxis1_slitlet2d):
                for i in range(naxis2_slitlet2d):
                    den = slitlet2d_unrect_spmedian[i, j]
                    if den == 0:
                        slitlet2d_norm[i, j] = 1.0
                    else:
                        slitlet2d_norm[i, j] = slitlet2d[i, j] / den

            if abs(args.debugplot) > 10:
                slt.ximshow_unrectified(
                    slitlet2d=slitlet2d_norm,
                    subtitle='unrectified, pixel-to-pixel'
                )

            # check for pseudo-longslit with previous slitlet
            if islitlet > 1:
                if (islitlet - 1) in list_valid_islitlets:
                    c1 = csu_conf_fitsfile.csu_bar_slit_center(islitlet - 1)
                    w1 = csu_conf_fitsfile.csu_bar_slit_width(islitlet - 1)
                    c2 = csu_conf_fitsfile.csu_bar_slit_center(islitlet)
                    w2 = csu_conf_fitsfile.csu_bar_slit_width(islitlet)
                    if abs(w1-w2)/w1 < 0.25:
                        wmean = (w1 + w2) / 2.0
                        if abs(c1 - c2) < wmean/4.0:
                            same_slitlet_below = True
                        else:
                            same_slitlet_below = False
                    else:
                        same_slitlet_below = False
                else:
                    same_slitlet_below = False
            else:
                same_slitlet_below = False

            # check for pseudo-longslit with previous slitlet
            if islitlet < EMIR_NBARS:
                if (islitlet + 1) in list_valid_islitlets:
                    c1 = csu_conf_fitsfile.csu_bar_slit_center(islitlet)
                    w1 = csu_conf_fitsfile.csu_bar_slit_width(islitlet)
                    c2 = csu_conf_fitsfile.csu_bar_slit_center(islitlet + 1)
                    w2 = csu_conf_fitsfile.csu_bar_slit_width(islitlet + 1)
                    if abs(w1-w2)/w1 < 0.25:
                        wmean = (w1 + w2) / 2.0
                        if abs(c1 - c2) < wmean/4.0:
                            same_slitlet_above = True
                        else:
                            same_slitlet_above = False
                    else:
                        same_slitlet_above = False
                else:
                    same_slitlet_above = False
            else:
                same_slitlet_above = False

            for j in range(EMIR_NAXIS1):
                xchannel = j + 1
                y0_lower = slt.list_frontiers[0](xchannel)
                y0_upper = slt.list_frontiers[1](xchannel)
                n1, n2 = nscan_minmax_frontiers(y0_frontier_lower=y0_lower,
                                                y0_frontier_upper=y0_upper,
                                                resize=True)
                # note that n1 and n2 are scans (ranging from 1 to NAXIS2)
                nn1 = n1 - slt.bb_ns1_orig + 1
                nn2 = n2 - slt.bb_ns1_orig + 1
                image2d_flatfielded[(n1 - 1):n2, j] = \
                    slitlet2d_norm[(nn1 - 1):nn2, j]

                # force to 1.0 region around frontiers
                if not same_slitlet_below:
                    image2d_flatfielded[(n1 - 1):(n1 + 2), j] = 1
                if not same_slitlet_above:
                    image2d_flatfielded[(n2 - 5):n2, j] = 1
        else:
            if args.debugplot == 0:
                islitlet_progress(islitlet, EMIR_NBARS, ignore=True)

    if args.debugplot == 0:
        print('OK!')

    # restore global offsets
    image2d_flatfielded = apply_integer_offsets(
        image2d=image2d_flatfielded ,
        offx=-rectwv_coeff.global_integer_offset_x_pix,
        offy=-rectwv_coeff.global_integer_offset_y_pix
    )

    # set pixels below minimum value to 1.0
    filtered = np.where(image2d_flatfielded < args.minimum_value_in_output)
    image2d_flatfielded[filtered] = 1.0

    # set pixels above maximum value to 1.0
    filtered = np.where(image2d_flatfielded > args.maximum_value_in_output)
    image2d_flatfielded[filtered] = 1.0

    # save output file
    save_ndarray_to_fits(
        array=image2d_flatfielded,
        file_name=args.outfile,
        main_header=header,
        overwrite=True
    )
    print('>>> Saving file ' + args.outfile.name)
Exemplo n.º 13
0
def rectwv_coeff_from_arc_image(reduced_image,
                                bound_param,
                                lines_catalog,
                                args_nbrightlines=None,
                                args_ymargin_bb=2,
                                args_remove_sp_background=True,
                                args_times_sigma_threshold=10,
                                args_order_fmap=2,
                                args_sigma_gaussian_filtering=2,
                                args_margin_npix=50,
                                args_poldeg_initial=3,
                                args_poldeg_refined=5,
                                args_interactive=False,
                                args_threshold_wv=0,
                                args_ylogscale=False,
                                args_pdf=None,
                                args_geometry=(0,0,640,480),
                                debugplot=0):
    """Evaluate rect.+wavecal. coefficients from arc image

    Parameters
    ----------
    reduced_image : HDUList object
        Image with preliminary basic reduction: bpm, bias, dark and
        flatfield.
    bound_param : RefinedBoundaryModelParam instance
        Refined boundary model.
    lines_catalog : Numpy array
        2D numpy array with the contents of the master file with the
        expected arc line wavelengths.
    args_nbrightlines : int
        TBD
    args_ymargin_bb : int
        TBD
    args_remove_sp_background : bool
        TBD
    args_times_sigma_threshold : float
        TBD
    args_order_fmap : int
        TBD
    args_sigma_gaussian_filtering : float
        TBD
    args_margin_npix : int
        TBD
    args_poldeg_initial : int
        TBD
    args_poldeg_refined : int
        TBD
    args_interactive : bool
        TBD
    args_threshold_wv : float
        TBD
    args_ylogscale : bool
        TBD
    args_pdf : TBD
    args_geometry : TBD
    debugplot : int
            Debugging level for messages and plots. For details see
            'numina.array.display.pause_debugplot.py'.

    Returns
    -------
    rectwv_coeff : RectWaveCoeff instance
        Rectification and wavelength calibration coefficients for the
        particular CSU configuration of the input arc image.
    reduced_55sp : HDUList object
        Image with 55 spectra corresponding to the median spectrum for
        each slitlet, employed to derived the wavelength calibration
        polynomial.

    """

    logger = logging.getLogger(__name__)

    # protections
    if args_interactive and args_pdf is not None:
        logger.error('--interactive and --pdf are incompatible options')
        raise ValueError('--interactive and --pdf are incompatible options')

    # header and data array
    header = reduced_image[0].header
    image2d = reduced_image[0].data

    # check grism and filter
    filter_name = header['filter']
    logger.info('Filter: ' + filter_name)
    if filter_name != bound_param.tags['filter']:
        raise ValueError('Filter name does not match!')
    grism_name = header['grism']
    logger.info('Grism: ' + grism_name)
    if grism_name != bound_param.tags['grism']:
        raise ValueError('Grism name does not match!')

    # read the CSU configuration from the image header
    csu_conf = CsuConfiguration.define_from_header(header)
    logger.debug(csu_conf)

    # read the DTU configuration from the image header
    dtu_conf = DtuConfiguration.define_from_header(header)
    logger.debug(dtu_conf)

    # set boundary parameters
    parmodel = bound_param.meta_info['parmodel']
    params = bound_params_from_dict(bound_param.__getstate__())
    if abs(debugplot) >= 10:
        print('-' * 83)
        print('* FITTED BOUND PARAMETERS')
        params.pretty_print()
        pause_debugplot(debugplot)

    # determine parameters according to grism+filter combination
    wv_parameters = set_wv_parameters(filter_name, grism_name)
    islitlet_min = wv_parameters['islitlet_min']
    islitlet_max = wv_parameters['islitlet_max']
    if args_nbrightlines is None:
        nbrightlines = wv_parameters['nbrightlines']
    else:
        nbrightlines = [int(idum) for idum in args_nbrightlines.split(',')]
    poly_crval1_linear = wv_parameters['poly_crval1_linear']
    poly_cdelt1_linear = wv_parameters['poly_cdelt1_linear']
    wvmin_expected = wv_parameters['wvmin_expected']
    wvmax_expected = wv_parameters['wvmax_expected']
    wvmin_useful = wv_parameters['wvmin_useful']
    wvmax_useful = wv_parameters['wvmax_useful']

    # list of slitlets to be computed
    logger.info('list_slitlets: [' + str(islitlet_min) + ',... ' +
                str(islitlet_max) + ']')

    # read master arc line wavelengths (only brightest lines)
    wv_master = read_wv_master_from_array(
        master_table=lines_catalog, lines='brightest', debugplot=debugplot
    )

    # read master arc line wavelengths (whole data set)
    wv_master_all = read_wv_master_from_array(
        master_table=lines_catalog, lines='all', debugplot=debugplot
    )

    # check that the arc lines in the master file are properly sorted
    # in ascending order
    for i in range(len(wv_master_all) - 1):
        if wv_master_all[i] >= wv_master_all[i + 1]:
            logger.error('>>> wavelengths: ' +
                         str(wv_master_all[i]) + '  ' +
                         str(wv_master_all[i+1]))
            raise ValueError('Arc lines are not sorted in master file')

    # ---

    image2d_55sp = np.zeros((EMIR_NBARS, EMIR_NAXIS1))

    # compute rectification transformation and wavelength calibration
    # polynomials

    measured_slitlets = []

    cout = '0'
    for islitlet in range(1, EMIR_NBARS + 1):

        if islitlet_min <= islitlet <= islitlet_max:

            # define Slitlet2dArc object
            slt = Slitlet2dArc(
                islitlet=islitlet,
                csu_conf=csu_conf,
                ymargin_bb=args_ymargin_bb,
                params=params,
                parmodel=parmodel,
                debugplot=debugplot
            )

            # extract 2D image corresponding to the selected slitlet, clipping
            # the image beyond the unrectified slitlet (in order to isolate
            # the arc lines of the current slitlet; otherwise there are
            # problems with arc lines from neighbour slitlets)
            image2d_tmp = select_unrectified_slitlet(
                image2d=image2d,
                islitlet=islitlet,
                csu_bar_slit_center=csu_conf.csu_bar_slit_center(islitlet),
                params=params,
                parmodel=parmodel,
                maskonly=False
            )
            slitlet2d = slt.extract_slitlet2d(image2d_tmp)

            # subtract smooth background computed as follows:
            # - median collapsed spectrum of the whole slitlet2d
            # - independent median filtering of the previous spectrum in the
            #   two halves in the spectral direction
            if args_remove_sp_background:
                spmedian = np.median(slitlet2d, axis=0)
                naxis1_tmp = spmedian.shape[0]
                jmidpoint = naxis1_tmp // 2
                sp1 = medfilt(spmedian[:jmidpoint], [201])
                sp2 = medfilt(spmedian[jmidpoint:], [201])
                spbackground = np.concatenate((sp1, sp2))
                slitlet2d -= spbackground

            # locate unknown arc lines
            slt.locate_unknown_arc_lines(
                slitlet2d=slitlet2d,
                times_sigma_threshold=args_times_sigma_threshold)

            # continue working with current slitlet only if arc lines have
            # been detected
            if slt.list_arc_lines is not None:

                # compute intersections between spectrum trails and arc lines
                slt.xy_spectrail_arc_intersections(slitlet2d=slitlet2d)

                # compute rectification transformation
                slt.estimate_tt_to_rectify(order=args_order_fmap,
                                           slitlet2d=slitlet2d)

                # rectify image
                slitlet2d_rect = slt.rectify(slitlet2d,
                                             resampling=2,
                                             transformation=1)

                # median spectrum and line peaks from rectified image
                sp_median, fxpeaks = slt.median_spectrum_from_rectified_image(
                    slitlet2d_rect,
                    sigma_gaussian_filtering=args_sigma_gaussian_filtering,
                    nwinwidth_initial=5,
                    nwinwidth_refined=5,
                    times_sigma_threshold=5,
                    npix_avoid_border=6,
                    nbrightlines=nbrightlines
                )

                image2d_55sp[islitlet - 1, :] = sp_median

                # determine expected wavelength limits prior to the wavelength
                # calibration
                csu_bar_slit_center = csu_conf.csu_bar_slit_center(islitlet)
                crval1_linear = poly_crval1_linear(csu_bar_slit_center)
                cdelt1_linear = poly_cdelt1_linear(csu_bar_slit_center)
                expected_wvmin = crval1_linear - \
                                 args_margin_npix * cdelt1_linear
                naxis1_linear = sp_median.shape[0]
                crvaln_linear = crval1_linear + \
                                (naxis1_linear - 1) * cdelt1_linear
                expected_wvmax = crvaln_linear + \
                                 args_margin_npix * cdelt1_linear
                # override previous estimates when necessary
                if wvmin_expected is not None:
                    expected_wvmin = wvmin_expected
                if wvmax_expected is not None:
                    expected_wvmax = wvmax_expected

                # clip initial master arc line list with bright lines to
                # the expected wavelength range
                lok1 = expected_wvmin <= wv_master
                lok2 = wv_master <= expected_wvmax
                lok = lok1 * lok2
                wv_master_eff = wv_master[lok]

                # perform initial wavelength calibration
                solution_wv = wvcal_spectrum(
                    sp=sp_median,
                    fxpeaks=fxpeaks,
                    poly_degree_wfit=args_poldeg_initial,
                    wv_master=wv_master_eff,
                    wv_ini_search=expected_wvmin,
                    wv_end_search=expected_wvmax,
                    wvmin_useful=wvmin_useful,
                    wvmax_useful=wvmax_useful,
                    geometry=args_geometry,
                    debugplot=slt.debugplot
                )
                # store initial wavelength calibration polynomial in current
                # slitlet instance
                slt.wpoly = np.polynomial.Polynomial(solution_wv.coeff)
                pause_debugplot(debugplot)

                # clip initial master arc line list with all the lines to
                # the expected wavelength range
                lok1 = expected_wvmin <= wv_master_all
                lok2 = wv_master_all <= expected_wvmax
                lok = lok1 * lok2
                wv_master_all_eff = wv_master_all[lok]

                # clip master arc line list to useful region
                if wvmin_useful is not None:
                    lok = wvmin_useful <= wv_master_all_eff
                    wv_master_all_eff  = wv_master_all_eff[lok]
                if wvmax_useful is not None:
                    lok = wv_master_all_eff <= wvmax_useful
                    wv_master_all_eff  = wv_master_all_eff[lok]

                # refine wavelength calibration
                if args_poldeg_refined > 0:
                    plottitle = '[slitlet#{}, refined]'.format(islitlet)
                    poly_refined, yres_summary = refine_arccalibration(
                        sp=sp_median,
                        poly_initial=slt.wpoly,
                        wv_master=wv_master_all_eff,
                        poldeg=args_poldeg_refined,
                        ntimes_match_wv=1,
                        interactive=args_interactive,
                        threshold=args_threshold_wv,
                        plottitle=plottitle,
                        ylogscale=args_ylogscale,
                        geometry=args_geometry,
                        pdf=args_pdf,
                        debugplot=slt.debugplot
                    )
                    # store refined wavelength calibration polynomial in
                    # current slitlet instance
                    slt.wpoly = poly_refined

                # compute approximate linear values for CRVAL1 and CDELT1
                naxis1_linear = sp_median.shape[0]
                crmin1_linear = slt.wpoly(1)
                crmax1_linear = slt.wpoly(naxis1_linear)
                slt.crval1_linear = crmin1_linear
                slt.cdelt1_linear = \
                    (crmax1_linear - crmin1_linear) / (naxis1_linear - 1)

                # check that the trimming of wv_master and wv_master_all has
                # preserved the wavelength range [crmin1_linear, crmax1_linear]
                if crmin1_linear < expected_wvmin:
                    logger.warning(">>> islitlet: " +str(islitlet))
                    logger.warning("expected_wvmin: " + str(expected_wvmin))
                    logger.warning("crmin1_linear.: " + str(crmin1_linear))
                    logger.warning("WARNING: Unexpected crmin1_linear < "
                                   "expected_wvmin")
                if crmax1_linear > expected_wvmax:
                    logger.warning(">>> islitlet: " +str(islitlet))
                    logger.warning("expected_wvmax: " + str(expected_wvmax))
                    logger.warning("crmax1_linear.: " + str(crmax1_linear))
                    logger.warning("WARNING: Unexpected crmax1_linear > "
                                   "expected_wvmax")

                cout += '.'

            else:

                cout += 'x'

            if islitlet % 10 == 0:
                if cout != 'x':
                    cout = str(islitlet // 10)

            if debugplot != 0:
                pause_debugplot(debugplot)

        else:

            # define Slitlet2dArc object
            slt = Slitlet2dArc(
                islitlet=islitlet,
                csu_conf=csu_conf,
                ymargin_bb=args_ymargin_bb,
                params=None,
                parmodel=None,
                debugplot=debugplot
            )

            cout += 'i'

        # store current slitlet in list of measured slitlets
        measured_slitlets.append(slt)

        logger.info(cout)

    # ---

    # generate FITS file structure with 55 spectra corresponding to the
    # median spectrum for each slitlet
    reduced_55sp = fits.PrimaryHDU(data=image2d_55sp)
    reduced_55sp.header['crpix1'] = (0.0, 'reference pixel')
    reduced_55sp.header['crval1'] = (0.0, 'central value at crpix2')
    reduced_55sp.header['cdelt1'] = (1.0, 'increment')
    reduced_55sp.header['ctype1'] = 'PIXEL'
    reduced_55sp.header['cunit1'] = ('Pixel', 'units along axis2')
    reduced_55sp.header['crpix2'] = (0.0, 'reference pixel')
    reduced_55sp.header['crval2'] = (0.0, 'central value at crpix2')
    reduced_55sp.header['cdelt2'] = (1.0, 'increment')
    reduced_55sp.header['ctype2'] = 'PIXEL'
    reduced_55sp.header['cunit2'] = ('Pixel', 'units along axis2')

    # ---

    # Generate structure to store intermediate results
    outdict = {}
    outdict['instrument'] = 'EMIR'
    outdict['meta_info'] = {}
    outdict['meta_info']['creation_date'] = datetime.now().isoformat()
    outdict['meta_info']['description'] = \
        'computation of rectification and wavelength calibration polynomial ' \
        'coefficients for a particular CSU configuration'
    outdict['meta_info']['recipe_name'] = 'undefined'
    outdict['meta_info']['origin'] = {}
    outdict['meta_info']['origin']['bound_param_uuid'] = \
        bound_param.uuid
    outdict['meta_info']['origin']['arc_image_uuid'] = 'undefined'
    outdict['tags'] = {}
    outdict['tags']['grism'] = grism_name
    outdict['tags']['filter'] = filter_name
    outdict['tags']['islitlet_min'] = islitlet_min
    outdict['tags']['islitlet_max'] = islitlet_max
    outdict['dtu_configuration'] = dtu_conf.outdict()
    outdict['uuid'] = str(uuid4())
    outdict['contents'] = {}

    missing_slitlets = []
    for slt in measured_slitlets:

        islitlet = slt.islitlet

        if islitlet_min <= islitlet <= islitlet_max:

            # avoid error when creating a python list of coefficients from
            # numpy polynomials when the polynomials do not exist (note that
            # the JSON format doesn't handle numpy arrays and such arrays must
            # be transformed into native python lists)
            if slt.wpoly is None:
                wpoly_coeff = None
            else:
                wpoly_coeff = slt.wpoly.coef.tolist()
            if slt.wpoly_longslit_model is None:
                wpoly_coeff_longslit_model = None
            else:
                wpoly_coeff_longslit_model = \
                    slt.wpoly_longslit_model.coef.tolist()

            # avoid similar error when creating a python list of coefficients
            # when the numpy array does not exist; note that this problem
            # does not happen with tt?_aij_longslit_model and
            # tt?_bij_longslit_model because the latter have already been
            # created as native python lists
            if slt.ttd_aij is None:
                ttd_aij = None
            else:
                ttd_aij = slt.ttd_aij.tolist()
            if slt.ttd_bij is None:
                ttd_bij = None
            else:
                ttd_bij = slt.ttd_bij.tolist()
            if slt.tti_aij is None:
                tti_aij = None
            else:
                tti_aij = slt.tti_aij.tolist()
            if slt.tti_bij is None:
                tti_bij = None
            else:
                tti_bij = slt.tti_bij.tolist()

            # creating temporary dictionary with the information corresponding
            # to the current slitlett that will be saved in the JSON file
            tmp_dict = {
                'csu_bar_left': slt.csu_bar_left,
                'csu_bar_right': slt.csu_bar_right,
                'csu_bar_slit_center': slt.csu_bar_slit_center,
                'csu_bar_slit_width': slt.csu_bar_slit_width,
                'x0_reference': slt.x0_reference,
                'y0_reference_lower': slt.y0_reference_lower,
                'y0_reference_middle': slt.y0_reference_middle,
                'y0_reference_upper': slt.y0_reference_upper,
                'y0_reference_lower_expected':
                    slt.y0_reference_lower_expected,
                'y0_reference_middle_expected':
                    slt.y0_reference_middle_expected,
                'y0_reference_upper_expected':
                    slt.y0_reference_upper_expected,
                'y0_frontier_lower': slt.y0_frontier_lower,
                'y0_frontier_upper': slt.y0_frontier_upper,
                'y0_frontier_lower_expected': slt.y0_frontier_lower_expected,
                'y0_frontier_upper_expected': slt.y0_frontier_upper_expected,
                'corr_yrect_a': slt.corr_yrect_a,
                'corr_yrect_b': slt.corr_yrect_b,
                'min_row_rectified': slt.min_row_rectified,
                'max_row_rectified': slt.max_row_rectified,
                'ymargin_bb': slt.ymargin_bb,
                'bb_nc1_orig': slt.bb_nc1_orig,
                'bb_nc2_orig': slt.bb_nc2_orig,
                'bb_ns1_orig': slt.bb_ns1_orig,
                'bb_ns2_orig': slt.bb_ns2_orig,
                'spectrail': {
                    'poly_coef_lower':
                        slt.list_spectrails[
                            slt.i_lower_spectrail].poly_funct.coef.tolist(),
                    'poly_coef_middle':
                        slt.list_spectrails[
                            slt.i_middle_spectrail].poly_funct.coef.tolist(),
                    'poly_coef_upper':
                        slt.list_spectrails[
                            slt.i_upper_spectrail].poly_funct.coef.tolist(),
                },
                'frontier': {
                    'poly_coef_lower':
                        slt.list_frontiers[0].poly_funct.coef.tolist(),
                    'poly_coef_upper':
                        slt.list_frontiers[1].poly_funct.coef.tolist(),
                },
                'ttd_order': slt.ttd_order,
                'ttd_aij': ttd_aij,
                'ttd_bij': ttd_bij,
                'tti_aij': tti_aij,
                'tti_bij': tti_bij,
                'ttd_order_longslit_model': slt.ttd_order_longslit_model,
                'ttd_aij_longslit_model': slt.ttd_aij_longslit_model,
                'ttd_bij_longslit_model': slt.ttd_bij_longslit_model,
                'tti_aij_longslit_model': slt.tti_aij_longslit_model,
                'tti_bij_longslit_model': slt.tti_bij_longslit_model,
                'wpoly_coeff': wpoly_coeff,
                'wpoly_coeff_longslit_model': wpoly_coeff_longslit_model,
                'crval1_linear': slt.crval1_linear,
                'cdelt1_linear': slt.cdelt1_linear
            }
        else:
            missing_slitlets.append(islitlet)
            tmp_dict = {
                'csu_bar_left': slt.csu_bar_left,
                'csu_bar_right': slt.csu_bar_right,
                'csu_bar_slit_center': slt.csu_bar_slit_center,
                'csu_bar_slit_width': slt.csu_bar_slit_width,
                'x0_reference': slt.x0_reference,
                'y0_frontier_lower_expected': slt.y0_frontier_lower_expected,
                'y0_frontier_upper_expected': slt.y0_frontier_upper_expected
            }
        slitlet_label = "slitlet" + str(islitlet).zfill(2)
        outdict['contents'][slitlet_label] = tmp_dict

    # ---

    # OBSOLETE
    '''
    # save JSON file needed to compute the MOS model
    with open(args.out_json.name, 'w') as fstream:
        json.dump(outdict, fstream, indent=2, sort_keys=True)
        print('>>> Saving file ' + args.out_json.name)
    '''

    # ---

    # Create object of type RectWaveCoeff with coefficients for
    # rectification and wavelength calibration
    rectwv_coeff = RectWaveCoeff(instrument='EMIR')
    rectwv_coeff.quality_control = numina.types.qc.QC.GOOD
    rectwv_coeff.tags['grism'] = grism_name
    rectwv_coeff.tags['filter'] = filter_name
    rectwv_coeff.meta_info['origin']['bound_param'] = \
        'uuid' + bound_param.uuid
    rectwv_coeff.meta_info['dtu_configuration'] = outdict['dtu_configuration']
    rectwv_coeff.total_slitlets = EMIR_NBARS
    rectwv_coeff.missing_slitlets = missing_slitlets
    for i in range(EMIR_NBARS):
        islitlet = i + 1
        dumdict = {'islitlet': islitlet}
        cslitlet = 'slitlet' + str(islitlet).zfill(2)
        if cslitlet in outdict['contents']:
            dumdict.update(outdict['contents'][cslitlet])
        else:
            raise ValueError("Unexpected error")
        rectwv_coeff.contents.append(dumdict)
    # debugging __getstate__ and __setstate__
    # rectwv_coeff.writeto(args.out_json.name)
    # print('>>> Saving file ' + args.out_json.name)
    # check_setstate_getstate(rectwv_coeff, args.out_json.name)
    logger.info('Generating RectWaveCoeff object with uuid=' +
                rectwv_coeff.uuid)

    return rectwv_coeff, reduced_55sp
def main(args=None):
    # parse command-line options
    parser = argparse.ArgumentParser()
    # required arguments
    parser.add_argument("--input_rectwv_coeff", required=True,
                        help="Input JSON file with rectification and "
                             "wavelength calibration polynomials "
                             "corresponding to a longslit observation",
                        type=argparse.FileType('rt'))
    parser.add_argument("--output_rectwv_coeff", required=True,
                        help="Output JSON file with updated longslit_model "
                             "coefficients",
                        type=lambda x: arg_file_is_new(parser, x, mode='wt'))

    # optional arguments
    parser.add_argument("--geometry",
                        help="tuple x,y,dx,dy (default 0,0,640,480)",
                        default="0,0,640,480")
    parser.add_argument("--debugplot",
                        help="Integer indicating plotting & debugging options"
                             " (default=0)",
                        default=0, type=int,
                        choices=DEBUGPLOT_CODES)
    parser.add_argument("--echo",
                        help="Display full command line",
                        action="store_true")
    args = parser.parse_args(args)

    if args.echo:
        print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n')

    # ---

    logging_from_debugplot(args.debugplot)
    logger = logging.getLogger(__name__)

    # geometry
    if args.geometry is None:
        geometry = None
    else:
        tmp_str = args.geometry.split(",")
        x_geom = int(tmp_str[0])
        y_geom = int(tmp_str[1])
        dx_geom = int(tmp_str[2])
        dy_geom = int(tmp_str[3])
        geometry = x_geom, y_geom, dx_geom, dy_geom

    # generate RectWaveCoeff object
    rectwv_coeff = RectWaveCoeff._datatype_load(
        args.input_rectwv_coeff.name)

    # update longslit_model parameters
    rectwv_coeff_updated = rectwv_coeff_add_longslit_model(
        rectwv_coeff=rectwv_coeff,
        geometry=geometry,
        debugplot=args.debugplot
    )

    # save updated RectWaveCoeff object into JSON file
    rectwv_coeff_updated.writeto(args.output_rectwv_coeff.name)
    logger.info('>>> Saving file ' + args.output_rectwv_coeff.name)
Exemplo n.º 15
0
def main(args=None):
    # parse command-line options
    parser = argparse.ArgumentParser(
        description='description: compute pixel-to-pixel flatfield'
    )

    # required arguments
    parser.add_argument("fitsfile",
                        help="Input FITS file (flat ON-OFF)",
                        type=argparse.FileType('rb'))
    parser.add_argument("--rectwv_coeff", required=True,
                        help="Input JSON file with rectification and "
                             "wavelength calibration coefficients",
                        type=argparse.FileType('rt'))
    parser.add_argument("--minimum_slitlet_width_mm", required=True,
                        help="Minimum slitlet width in mm",
                        type=float)
    parser.add_argument("--maximum_slitlet_width_mm", required=True,
                        help="Maximum slitlet width in mm",
                        type=float)
    parser.add_argument("--minimum_fraction", required=True,
                        help="Minimum allowed flatfielding value",
                        type=float, default=0.01)
    parser.add_argument("--minimum_value_in_output",
                        help="Minimum value allowed in output file: pixels "
                             "below this value are set to 1.0 (default=0.01)",
                        type=float, default=0.01)
    parser.add_argument("--maximum_value_in_output",
                        help="Maximum value allowed in output file: pixels "
                             "above this value are set to 1.0 (default=10.0)",
                        type=float, default=10.0)
    parser.add_argument("--nwindow_median",
                        help="Window size to smooth median spectrum in the "
                             "spectral direction",
                        type=int)
    parser.add_argument("--outfile", required=True,
                        help="Output FITS file",
                        type=lambda x: arg_file_is_new(parser, x, mode='wb'))

    # optional arguments
    parser.add_argument("--delta_global_integer_offset_x_pix",
                        help="Delta global integer offset in the X direction "
                             "(default=0)",
                        default=0, type=int)
    parser.add_argument("--delta_global_integer_offset_y_pix",
                        help="Delta global integer offset in the Y direction "
                             "(default=0)",
                        default=0, type=int)
    parser.add_argument("--resampling",
                        help="Resampling method: 1 -> nearest neighbor, "
                             "2 -> linear interpolation (default)",
                        default=2, type=int,
                        choices=(1, 2))
    parser.add_argument("--ignore_DTUconf",
                        help="Ignore DTU configurations differences between "
                             "model and input image",
                        action="store_true")
    parser.add_argument("--debugplot",
                        help="Integer indicating plotting & debugging options"
                             " (default=0)",
                        default=0, type=int,
                        choices=DEBUGPLOT_CODES)
    parser.add_argument("--echo",
                        help="Display full command line",
                        action="store_true")
    args = parser.parse_args(args)

    if args.echo:
        print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n')

    # This code is obsolete
    raise ValueError('This code is obsolete: use recipe in '
                     'emirdrp/recipes/spec/flatpix2pix.py')

    # read calibration structure from JSON file
    rectwv_coeff = RectWaveCoeff._datatype_load(args.rectwv_coeff.name)

    # modify (when requested) global offsets
    rectwv_coeff.global_integer_offset_x_pix += \
        args.delta_global_integer_offset_x_pix
    rectwv_coeff.global_integer_offset_y_pix += \
        args.delta_global_integer_offset_y_pix

    # read FITS image and its corresponding header
    hdulist = fits.open(args.fitsfile)
    header = hdulist[0].header
    image2d = hdulist[0].data
    hdulist.close()

    # apply global offsets
    image2d = apply_integer_offsets(
        image2d=image2d,
        offx=rectwv_coeff.global_integer_offset_x_pix,
        offy=rectwv_coeff.global_integer_offset_y_pix
    )

    # protections
    naxis2, naxis1 = image2d.shape
    if naxis1 != header['naxis1'] or naxis2 != header['naxis2']:
        print('>>> NAXIS1:', naxis1)
        print('>>> NAXIS2:', naxis2)
        raise ValueError('Something is wrong with NAXIS1 and/or NAXIS2')
    if abs(args.debugplot) >= 10:
        print('>>> NAXIS1:', naxis1)
        print('>>> NAXIS2:', naxis2)

    # check that the input FITS file grism and filter match
    filter_name = header['filter']
    if filter_name != rectwv_coeff.tags['filter']:
        raise ValueError("Filter name does not match!")
    grism_name = header['grism']
    if grism_name != rectwv_coeff.tags['grism']:
        raise ValueError("Filter name does not match!")
    if abs(args.debugplot) >= 10:
        print('>>> grism.......:', grism_name)
        print('>>> filter......:', filter_name)

    # check that the DTU configurations are compatible
    dtu_conf_fitsfile = DtuConfiguration.define_from_fits(args.fitsfile)
    dtu_conf_jsonfile = DtuConfiguration.define_from_dictionary(
        rectwv_coeff.meta_info['dtu_configuration'])
    if dtu_conf_fitsfile != dtu_conf_jsonfile:
        print('DTU configuration (FITS file):\n\t', dtu_conf_fitsfile)
        print('DTU configuration (JSON file):\n\t', dtu_conf_jsonfile)
        if args.ignore_DTUconf:
            print('WARNING: DTU configuration differences found!')
        else:
            raise ValueError('DTU configurations do not match')
    else:
        if abs(args.debugplot) >= 10:
            print('>>> DTU Configuration match!')
            print(dtu_conf_fitsfile)

    # load CSU configuration
    csu_conf_fitsfile = CsuConfiguration.define_from_fits(args.fitsfile)
    if abs(args.debugplot) >= 10:
        print(csu_conf_fitsfile)

    # valid slitlet numbers
    list_valid_islitlets = list(range(1, EMIR_NBARS + 1))
    for idel in rectwv_coeff.missing_slitlets:
        print('-> Removing slitlet (not defined):', idel)
        list_valid_islitlets.remove(idel)
    # filter out slitlets with widths outside valid range
    list_outside_valid_width = []
    for islitlet in list_valid_islitlets:
        slitwidth = csu_conf_fitsfile.csu_bar_slit_width(islitlet)
        if (slitwidth < args.minimum_slitlet_width_mm) or \
                (slitwidth > args.maximum_slitlet_width_mm):
            list_outside_valid_width.append(islitlet)
            print('-> Removing slitlet (invalid width):', islitlet)
    if len(list_outside_valid_width) > 0:
        for idel in list_outside_valid_width:
            list_valid_islitlets.remove(idel)
    print('>>> valid slitlet numbers:\n', list_valid_islitlets)

    # ---

    # compute and store median spectrum (and masked region) for each
    # individual slitlet
    image2d_sp_median = np.zeros((EMIR_NBARS, EMIR_NAXIS1))
    image2d_sp_mask = np.zeros((EMIR_NBARS, EMIR_NAXIS1), dtype=bool)
    for islitlet in list(range(1, EMIR_NBARS + 1)):
        if islitlet in list_valid_islitlets:
            if args.debugplot == 0:
                islitlet_progress(islitlet, EMIR_NBARS, ignore=False)
            # define Slitlet2D object
            slt = Slitlet2D(islitlet=islitlet,
                            rectwv_coeff=rectwv_coeff,
                            debugplot=args.debugplot)

            if abs(args.debugplot) >= 10:
                print(slt)

            # extract (distorted) slitlet from the initial image
            slitlet2d = slt.extract_slitlet2d(
                image_2k2k=image2d,
                subtitle='original image'
            )

            # rectify slitlet
            slitlet2d_rect = slt.rectify(
                slitlet2d=slitlet2d,
                resampling=args.resampling,
                subtitle='original rectified'
            )
            naxis2_slitlet2d, naxis1_slitlet2d = slitlet2d_rect.shape

            if naxis1_slitlet2d != EMIR_NAXIS1:
                print('naxis1_slitlet2d: ', naxis1_slitlet2d)
                print('EMIR_NAXIS1.....: ', EMIR_NAXIS1)
                raise ValueError("Unexpected naxis1_slitlet2d")

            sp_mask = np.zeros(naxis1_slitlet2d, dtype=bool)

            # for grism LR set to zero data beyond useful wavelength range
            if grism_name == 'LR':
                wv_parameters = set_wv_parameters(filter_name, grism_name)
                x_pix = np.arange(1, naxis1_slitlet2d + 1)
                wl_pix = polyval(x_pix, slt.wpoly)
                lremove = wl_pix < wv_parameters['wvmin_useful']
                sp_mask[lremove] = True
                slitlet2d_rect[:, lremove] = 0.0
                lremove = wl_pix > wv_parameters['wvmax_useful']
                slitlet2d_rect[:, lremove] = 0.0
                sp_mask[lremove] = True

            # get useful slitlet region (use boundaries instead of frontiers;
            # note that the nscan_minmax_frontiers() works well independently
            # of using frontiers of boundaries as arguments)
            nscan_min, nscan_max = nscan_minmax_frontiers(
                slt.y0_reference_lower,
                slt.y0_reference_upper,
                resize=False
            )
            ii1 = nscan_min - slt.bb_ns1_orig
            ii2 = nscan_max - slt.bb_ns1_orig + 1

            # median spectrum
            sp_collapsed = np.median(slitlet2d_rect[ii1:(ii2 + 1), :], axis=0)

            # smooth median spectrum along the spectral direction
            sp_median = ndimage.median_filter(
                sp_collapsed,
                args.nwindow_median,
                mode='nearest'
            )

            """
                nremove = 5
                spl = AdaptiveLSQUnivariateSpline(
                    x=xaxis1[nremove:-nremove],
                    y=sp_collapsed[nremove:-nremove],
                    t=11,
                    adaptive=True
                )
                xknots = spl.get_knots()
                yknots = spl(xknots)
                sp_median = spl(xaxis1)

                # compute rms within each knot interval
                nknots = len(xknots)
                rms_array = np.zeros(nknots - 1, dtype=float)
                for iknot in range(nknots - 1):
                    residuals = []
                    for xdum, ydum, yydum in \
                            zip(xaxis1, sp_collapsed, sp_median):
                        if xknots[iknot] <= xdum <= xknots[iknot + 1]:
                            residuals.append(abs(ydum - yydum))
                    if len(residuals) > 5:
                        rms_array[iknot] = np.std(residuals)
                    else:
                        rms_array[iknot] = 0

                # determine in which knot interval falls each pixel
                iknot_array = np.zeros(len(xaxis1), dtype=int)
                for idum, xdum in enumerate(xaxis1):
                    for iknot in range(nknots - 1):
                        if xknots[iknot] <= xdum <= xknots[iknot + 1]:
                            iknot_array[idum] = iknot

                # compute new fit removing deviant points (with fixed knots)
                xnewfit = []
                ynewfit = []
                for idum in range(len(xaxis1)):
                    delta_sp = abs(sp_collapsed[idum] - sp_median[idum])
                    rms_tmp = rms_array[iknot_array[idum]]
                    if idum == 0 or idum == (len(xaxis1) - 1):
                        lok = True
                    elif rms_tmp > 0:
                        if delta_sp < 3.0 * rms_tmp:
                            lok = True
                        else:
                            lok = False
                    else:
                        lok = True
                    if lok:
                        xnewfit.append(xaxis1[idum])
                        ynewfit.append(sp_collapsed[idum])
                nremove = 5
                splnew = AdaptiveLSQUnivariateSpline(
                    x=xnewfit[nremove:-nremove],
                    y=ynewfit[nremove:-nremove],
                    t=xknots[1:-1],
                    adaptive=False
                )
                sp_median = splnew(xaxis1)
            """

            ymax_spmedian = sp_median.max()
            y_threshold = ymax_spmedian * args.minimum_fraction
            lremove = np.where(sp_median < y_threshold)
            sp_median[lremove] = 0.0
            sp_mask[lremove] = True

            image2d_sp_median[islitlet - 1, :] = sp_median
            image2d_sp_mask[islitlet - 1, :] = sp_mask

            if abs(args.debugplot) % 10 != 0:
                xaxis1 = np.arange(1, naxis1_slitlet2d + 1)
                title = 'Slitlet#' + str(islitlet) + ' (median spectrum)'
                ax = ximplotxy(xaxis1, sp_collapsed,
                               title=title,
                               show=False, **{'label' : 'collapsed spectrum'})
                ax.plot(xaxis1, sp_median, label='fitted spectrum')
                ax.plot([1, naxis1_slitlet2d], 2*[y_threshold],
                        label='threshold')
                # ax.plot(xknots, yknots, 'o', label='knots')
                ax.legend()
                ax.set_ylim(-0.05*ymax_spmedian, 1.05*ymax_spmedian)
                pause_debugplot(args.debugplot,
                                pltshow=True, tight_layout=True)
        else:
            if args.debugplot == 0:
                islitlet_progress(islitlet, EMIR_NBARS, ignore=True)

    # ToDo: compute "average" spectrum for each pseudo-longslit, scaling
    #       with the median signal in each slitlet; derive a particular
    #       spectrum for each slitlet (scaling properly)

    image2d_sp_median_masked = np.ma.masked_array(
        image2d_sp_median,
        mask=image2d_sp_mask
    )
    ycut_median = np.ma.median(image2d_sp_median_masked, axis=1).data
    ycut_median_2d = np.repeat(ycut_median, EMIR_NAXIS1).reshape(
        EMIR_NBARS, EMIR_NAXIS1)
    image2d_sp_median_eq = image2d_sp_median_masked / ycut_median_2d
    image2d_sp_median_eq = image2d_sp_median_eq.data

    if True:
        ximshow(image2d_sp_median, title='sp_median', debugplot=12)
        ximplotxy(np.arange(1, EMIR_NBARS + 1), ycut_median, 'ro',
                  title='median value of each spectrum', debugplot=12)
        ximshow(image2d_sp_median_eq, title='sp_median_eq', debugplot=12)

    csu_conf_fitsfile.display_pseudo_longslits(
        list_valid_slitlets=list_valid_islitlets)
    dict_longslits = csu_conf_fitsfile.pseudo_longslits()

    # compute median spectrum for each longslit and insert (properly
    # scaled) that spectrum in each slitlet belonging to that longslit
    image2d_sp_median_longslit = np.zeros((EMIR_NBARS, EMIR_NAXIS1))
    islitlet = 1
    loop = True
    while loop:
        if islitlet in list_valid_islitlets:
            imin = dict_longslits[islitlet].imin()
            imax = dict_longslits[islitlet].imax()
            print('--> imin, imax: ', imin, imax)
            sp_median_longslit = np.median(
                image2d_sp_median_eq[(imin - 1):imax, :], axis=0)
            for i in range(imin, imax+1):
                print('----> i: ', i)
                image2d_sp_median_longslit[(i - 1), :] = \
                    sp_median_longslit * ycut_median[i - 1]
            islitlet = imax
        else:
            print('--> ignoring: ', islitlet)
        if islitlet == EMIR_NBARS:
            loop = False
        else:
            islitlet += 1
    if True:
        ximshow(image2d_sp_median_longslit, debugplot=12)

    # initialize rectified image
    image2d_flatfielded = np.zeros((EMIR_NAXIS2, EMIR_NAXIS1))

    # main loop
    for islitlet in list(range(1, EMIR_NBARS + 1)):
        if islitlet in list_valid_islitlets:
            if args.debugplot == 0:
                islitlet_progress(islitlet, EMIR_NBARS, ignore=False)
            # define Slitlet2D object
            slt = Slitlet2D(islitlet=islitlet,
                            rectwv_coeff=rectwv_coeff,
                            debugplot=args.debugplot)

            # extract (distorted) slitlet from the initial image
            slitlet2d = slt.extract_slitlet2d(
                image_2k2k=image2d,
                subtitle='original image'
            )

            # rectify slitlet
            slitlet2d_rect = slt.rectify(
                slitlet2d=slitlet2d,
                resampling=args.resampling,
                subtitle='original rectified'
            )
            naxis2_slitlet2d, naxis1_slitlet2d = slitlet2d_rect.shape

            sp_median = image2d_sp_median_longslit[islitlet - 1, :]

            # generate rectified slitlet region filled with the median spectrum
            slitlet2d_rect_spmedian = np.tile(sp_median, (naxis2_slitlet2d, 1))
            if abs(args.debugplot) > 10:
                slt.ximshow_rectified(
                    slitlet2d_rect=slitlet2d_rect_spmedian,
                    subtitle='rectified, filled with median spectrum'
                )

            # unrectified image
            slitlet2d_unrect_spmedian = slt.rectify(
                slitlet2d=slitlet2d_rect_spmedian,
                resampling=args.resampling,
                inverse=True,
                subtitle='unrectified, filled with median spectrum'
            )

            # normalize initial slitlet image (avoid division by zero)
            slitlet2d_norm = np.zeros_like(slitlet2d)
            for j in range(naxis1_slitlet2d):
                for i in range(naxis2_slitlet2d):
                    den = slitlet2d_unrect_spmedian[i, j]
                    if den == 0:
                        slitlet2d_norm[i, j] = 1.0
                    else:
                        slitlet2d_norm[i, j] = slitlet2d[i, j] / den

            if abs(args.debugplot) > 10:
                slt.ximshow_unrectified(
                    slitlet2d=slitlet2d_norm,
                    subtitle='unrectified, pixel-to-pixel'
                )

            # check for pseudo-longslit with previous slitlet
            if islitlet > 1:
                if (islitlet - 1) in list_valid_islitlets:
                    c1 = csu_conf_fitsfile.csu_bar_slit_center(islitlet - 1)
                    w1 = csu_conf_fitsfile.csu_bar_slit_width(islitlet - 1)
                    c2 = csu_conf_fitsfile.csu_bar_slit_center(islitlet)
                    w2 = csu_conf_fitsfile.csu_bar_slit_width(islitlet)
                    if abs(w1-w2)/w1 < 0.25:
                        wmean = (w1 + w2) / 2.0
                        if abs(c1 - c2) < wmean/4.0:
                            same_slitlet_below = True
                        else:
                            same_slitlet_below = False
                    else:
                        same_slitlet_below = False
                else:
                    same_slitlet_below = False
            else:
                same_slitlet_below = False

            # check for pseudo-longslit with next slitlet
            if islitlet < EMIR_NBARS:
                if (islitlet + 1) in list_valid_islitlets:
                    c1 = csu_conf_fitsfile.csu_bar_slit_center(islitlet)
                    w1 = csu_conf_fitsfile.csu_bar_slit_width(islitlet)
                    c2 = csu_conf_fitsfile.csu_bar_slit_center(islitlet + 1)
                    w2 = csu_conf_fitsfile.csu_bar_slit_width(islitlet + 1)
                    if abs(w1-w2)/w1 < 0.25:
                        wmean = (w1 + w2) / 2.0
                        if abs(c1 - c2) < wmean/4.0:
                            same_slitlet_above = True
                        else:
                            same_slitlet_above = False
                    else:
                        same_slitlet_above = False
                else:
                    same_slitlet_above = False
            else:
                same_slitlet_above = False

            for j in range(EMIR_NAXIS1):
                xchannel = j + 1
                y0_lower = slt.list_frontiers[0](xchannel)
                y0_upper = slt.list_frontiers[1](xchannel)
                n1, n2 = nscan_minmax_frontiers(y0_frontier_lower=y0_lower,
                                                y0_frontier_upper=y0_upper,
                                                resize=True)
                # note that n1 and n2 are scans (ranging from 1 to NAXIS2)
                nn1 = n1 - slt.bb_ns1_orig + 1
                nn2 = n2 - slt.bb_ns1_orig + 1
                image2d_flatfielded[(n1 - 1):n2, j] = \
                    slitlet2d_norm[(nn1 - 1):nn2, j]

                # force to 1.0 region around frontiers
                if not same_slitlet_below:
                    image2d_flatfielded[(n1 - 1):(n1 + 2), j] = 1
                if not same_slitlet_above:
                    image2d_flatfielded[(n2 - 5):n2, j] = 1
        else:
            if args.debugplot == 0:
                islitlet_progress(islitlet, EMIR_NBARS, ignore=True)

    if args.debugplot == 0:
        print('OK!')

    # restore global offsets
    image2d_flatfielded = apply_integer_offsets(
        image2d=image2d_flatfielded ,
        offx=-rectwv_coeff.global_integer_offset_x_pix,
        offy=-rectwv_coeff.global_integer_offset_y_pix
    )

    # set pixels below minimum value to 1.0
    filtered = np.where(image2d_flatfielded < args.minimum_value_in_output)
    image2d_flatfielded[filtered] = 1.0

    # set pixels above maximum value to 1.0
    filtered = np.where(image2d_flatfielded > args.maximum_value_in_output)
    image2d_flatfielded[filtered] = 1.0

    # save output file
    save_ndarray_to_fits(
        array=image2d_flatfielded,
        file_name=args.outfile,
        main_header=header,
        overwrite=True
    )
    print('>>> Saving file ' + args.outfile.name)
Exemplo n.º 16
0
def main(args=None):
    # parse command-line options
    parser = argparse.ArgumentParser(
        description='description: compute pixel-to-pixel flatfield'
    )

    # required arguments
    parser.add_argument("fitsfile",
                        help="Input FITS file (flat ON-OFF)",
                        type=argparse.FileType('rb'))
    parser.add_argument("--rectwv_coeff", required=True,
                        help="Input JSON file with rectification and "
                             "wavelength calibration coefficients",
                        type=argparse.FileType('rt'))
    parser.add_argument("--minimum_fraction", required=True,
                        help="Minimum allowed flatfielding value",
                        type=float, default=0.01)
    parser.add_argument("--minimum_value_in_output",
                        help="Minimum value allowed in output file: pixels "
                             "below this value are set to 1.0 (default=0.01)",
                        type=float, default=0.01)
    parser.add_argument("--nwindow_median", required=True,
                        help="Window size to smooth median spectrum in the "
                             "spectral direction",
                        type=int)
    parser.add_argument("--outfile", required=True,
                        help="Output FITS file",
                        type=lambda x: arg_file_is_new(parser, x, mode='wb'))

    # optional arguments
    parser.add_argument("--delta_global_integer_offset_x_pix",
                        help="Delta global integer offset in the X direction "
                             "(default=0)",
                        default=0, type=int)
    parser.add_argument("--delta_global_integer_offset_y_pix",
                        help="Delta global integer offset in the Y direction "
                             "(default=0)",
                        default=0, type=int)
    parser.add_argument("--resampling",
                        help="Resampling method: 1 -> nearest neighbor, "
                             "2 -> linear interpolation (default)",
                        default=2, type=int,
                        choices=(1, 2))
    parser.add_argument("--ignore_DTUconf",
                        help="Ignore DTU configurations differences between "
                             "model and input image",
                        action="store_true")
    parser.add_argument("--debugplot",
                        help="Integer indicating plotting & debugging options"
                             " (default=0)",
                        default=0, type=int,
                        choices=DEBUGPLOT_CODES)
    parser.add_argument("--echo",
                        help="Display full command line",
                        action="store_true")
    args = parser.parse_args(args)

    if args.echo:
        print('\033[1m\033[31m% ' + ' '.join(sys.argv) + '\033[0m\n')

    # read calibration structure from JSON file
    rectwv_coeff = RectWaveCoeff._datatype_load(args.rectwv_coeff.name)

    # modify (when requested) global offsets
    rectwv_coeff.global_integer_offset_x_pix += \
        args.delta_global_integer_offset_x_pix
    rectwv_coeff.global_integer_offset_y_pix += \
        args.delta_global_integer_offset_y_pix

    # read FITS image and its corresponding header
    hdulist = fits.open(args.fitsfile)
    header = hdulist[0].header
    image2d = hdulist[0].data
    hdulist.close()

    # apply global offsets
    image2d = apply_integer_offsets(
        image2d=image2d,
        offx=rectwv_coeff.global_integer_offset_x_pix,
        offy=rectwv_coeff.global_integer_offset_y_pix
    )

    # protections
    naxis2, naxis1 = image2d.shape
    if naxis1 != header['naxis1'] or naxis2 != header['naxis2']:
        print('>>> NAXIS1:', naxis1)
        print('>>> NAXIS2:', naxis2)
        raise ValueError('Something is wrong with NAXIS1 and/or NAXIS2')
    if abs(args.debugplot) >= 10:
        print('>>> NAXIS1:', naxis1)
        print('>>> NAXIS2:', naxis2)

    # check that the input FITS file grism and filter match
    filter_name = header['filter']
    if filter_name != rectwv_coeff.tags['filter']:
        raise ValueError("Filter name does not match!")
    grism_name = header['grism']
    if grism_name != rectwv_coeff.tags['grism']:
        raise ValueError("Filter name does not match!")
    if abs(args.debugplot) >= 10:
        print('>>> grism.......:', grism_name)
        print('>>> filter......:', filter_name)

    # check that the DTU configurations are compatible
    dtu_conf_fitsfile = DtuConfiguration.define_from_fits(args.fitsfile)
    dtu_conf_jsonfile = DtuConfiguration.define_from_dictionary(
        rectwv_coeff.meta_info['dtu_configuration'])
    if dtu_conf_fitsfile != dtu_conf_jsonfile:
        print('DTU configuration (FITS file):\n\t', dtu_conf_fitsfile)
        print('DTU configuration (JSON file):\n\t', dtu_conf_jsonfile)
        if args.ignore_DTUconf:
            print('WARNING: DTU configuration differences found!')
        else:
            raise ValueError('DTU configurations do not match')
    else:
        if abs(args.debugplot) >= 10:
            print('>>> DTU Configuration match!')
            print(dtu_conf_fitsfile)

    # valid slitlet numbers
    list_valid_islitlets = list(range(1, EMIR_NBARS + 1))
    for idel in rectwv_coeff.missing_slitlets:
        list_valid_islitlets.remove(idel)
    if abs(args.debugplot) >= 10:
        print('>>> valid slitlet numbers:\n', list_valid_islitlets)

    # ---

    # initialize rectified image
    image2d_flatfielded = np.zeros((EMIR_NAXIS2, EMIR_NAXIS1))

    # main loop
    for islitlet in list_valid_islitlets:
        if args.debugplot == 0:
            islitlet_progress(islitlet, EMIR_NBARS)

        # define Slitlet2D object
        slt = Slitlet2D(islitlet=islitlet,
                        rectwv_coeff=rectwv_coeff,
                        debugplot=args.debugplot)

        if abs(args.debugplot) >= 10:
            print(slt)

        # extract (distorted) slitlet from the initial image
        slitlet2d = slt.extract_slitlet2d(image2d)

        # rectify slitlet
        slitlet2d_rect = slt.rectify(
            slitlet2d,
            resampling=args.resampling
        )
        naxis2_slitlet2d, naxis1_slitlet2d = slitlet2d_rect.shape

        if naxis1_slitlet2d != EMIR_NAXIS1:
            print('naxis1_slitlet2d: ', naxis1_slitlet2d)
            print('EMIR_NAXIS1.....: ', EMIR_NAXIS1)
            raise ValueError("Unexpected naxis1_slitlet2d")

        # get useful slitlet region (use boundaires instead of frontiers;
        # note that the nscan_minmax_frontiers() works well independently
        # of using frontiers of boundaries as arguments)
        nscan_min, nscan_max = nscan_minmax_frontiers(
            slt.y0_reference_lower,
            slt.y0_reference_upper,
            resize=False
        )
        ii1 = nscan_min - slt.bb_ns1_orig
        ii2 = nscan_max - slt.bb_ns1_orig + 1

        # median spectrum
        sp_collapsed = np.median(slitlet2d_rect[ii1:(ii2 + 1), :], axis=0)

        # smooth median spectrum along the spectral direction
        sp_median = ndimage.median_filter(sp_collapsed, args.nwindow_median,
                                          mode='nearest')
        ymax_spmedian = sp_median.max()
        y_threshold = ymax_spmedian * args.minimum_fraction
        sp_median[np.where(sp_median < y_threshold)] = 0.0

        if abs(args.debugplot) > 10:
            title = 'Slitlet#' + str(islitlet) + '(median spectrum)'
            xdum = np.arange(1, naxis1_slitlet2d + 1)
            ax = ximplotxy(xdum, sp_collapsed,
                           title=title,
                           show=False, **{'label' : 'collapsed spectrum'})
            ax.plot(xdum, sp_median, label='filtered spectrum')
            ax.plot([1, naxis1_slitlet2d], 2*[y_threshold],
                    label='threshold')
            ax.legend()
            ax.set_ylim(-0.05*ymax_spmedian, 1.05*ymax_spmedian)
            pause_debugplot(args.debugplot,
                            pltshow=True, tight_layout=True)

        # generate rectified slitlet region filled with the median spectrum
        slitlet2d_rect_spmedian = np.tile(sp_median, (naxis2_slitlet2d, 1))
        if abs(args.debugplot) > 10:
            slt.ximshow_rectified(slitlet2d_rect_spmedian)

        # unrectified image
        slitlet2d_unrect_spmedian = slt.rectify(
            slitlet2d_rect_spmedian,
            resampling=args.resampling,
            inverse=True
        )

        # normalize initial slitlet image (avoid division by zero)
        slitlet2d_norm = np.zeros_like(slitlet2d)
        for j in range(naxis1_slitlet2d):
            for i in range(naxis2_slitlet2d):
                den = slitlet2d_unrect_spmedian[i, j]
                if den == 0:
                    slitlet2d_norm[i, j] = 1.0
                else:
                    slitlet2d_norm[i, j] = slitlet2d[i, j] / den

        if abs(args.debugplot) > 10:
            slt.ximshow_unrectified(slitlet2d_norm)

        for j in range(EMIR_NAXIS1):
            xchannel = j + 1
            y0_lower = slt.list_frontiers[0](xchannel)
            y0_upper = slt.list_frontiers[1](xchannel)
            n1, n2 = nscan_minmax_frontiers(y0_frontier_lower=y0_lower,
                                            y0_frontier_upper=y0_upper,
                                            resize=True)
            # note that n1 and n2 are scans (ranging from 1 to NAXIS2)
            nn1 = n1 - slt.bb_ns1_orig + 1
            nn2 = n2 - slt.bb_ns1_orig + 1
            image2d_flatfielded[(n1 - 1):n2, j] = \
                slitlet2d_norm[(nn1 - 1):nn2, j]

            # force to 1.0 region around frontiers
            image2d_flatfielded[(n1 - 1):(n1 + 2), j] = 1
            image2d_flatfielded[(n2 - 5):n2, j] = 1
    if args.debugplot == 0:
        print('OK!')

    # set pixels below minimum value to 1.0
    filtered = np.where(image2d_flatfielded < args.minimum_value_in_output)
    image2d_flatfielded[filtered] = 1.0

    # restore global offsets
    image2d_flatfielded = apply_integer_offsets(
        image2d=image2d_flatfielded ,
        offx=-rectwv_coeff.global_integer_offset_x_pix,
        offy=-rectwv_coeff.global_integer_offset_y_pix
    )

    # save output file
    save_ndarray_to_fits(
        array=image2d_flatfielded,
        file_name=args.outfile,
        main_header=header,
        overwrite=True
    )
    print('>>> Saving file ' + args.outfile.name)