Exemplo n.º 1
0
class WavelengthCalibrationRecipe(EmirRecipe):
    """Recipe to calibrate the spectral response.

    **Observing modes:**

        * Wavelength calibration (4.5)

    **Inputs:**

     * List of line positions
     * Calibrations up to spectral flatfielding

    **Outputs:**

     * Wavelength calibration structure

    **Procedure:**

     * TBD
    """

    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()
    master_spectral_ff = reqs.MasterSpectralFlatFieldRequirement()

    cal = Result(prods.WavelengthCalibration)

    def run(self, rinput):
        return self.create_result(cal=prods.WavelengthCalibration())
Exemplo n.º 2
0
class TestSkyCorrectRecipe(EmirRecipe):

    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()
    master_sky = Requirement(prods.MasterIntensityFlat,
                             'Master Sky calibration')

    frame = Result(prods.ProcessedImage)

    def run(self, rinput):
        self.logger.info('starting simple sky reduction')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput,
                                                    flow,
                                                    method=median)
        hdr = hdulist[0].header
        self.set_base_headers(hdr)
        # Update SEC to 0
        hdr['SEC'] = 0

        result = self.create_result(frame=hdulist)

        return result
Exemplo n.º 3
0
class StareSpectraRecipe(EmirRecipe):
    """Process images in Stare spectra mode"""

    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterSpectralFlatFieldRequirement()
    master_sky = reqs.SpectralSkyRequirement(optional=True)

    stare = Result(prods.ProcessedMOS)

    def run(self, rinput):
        self.logger.info('starting stare spectra reduction')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput,
                                                    flow,
                                                    method=median)
        hdr = hdulist[0].header
        self.set_base_headers(hdr)
        # Update EXP to 0
        hdr['EXP'] = 0

        self.logger.info('end stare spectra reduction')
        result = self.create_result(stare=hdulist)
        return result
Exemplo n.º 4
0
class DitherSkyRecipe(EmirRecipe):
    """Recipe to process data taken in dither sky mode.

    """

    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()

    skyframe = Result(prods.MasterSky)

    def run(self, rinput):
        _logger.debug('instrument %s, mode %s', rinput.obresult.instrument,
                      rinput.obresult.mode)
        _logger.info('starting sky reduction with dither')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_segmentation(rinput,
                                                     flow,
                                                     method=median,
                                                     errors=True)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)
        _logger.info('end sky reduction with dither')

        result = self.create_result(skyframe=hdulist)

        return result
Exemplo n.º 5
0
class SimpleSkyRecipe(EmirRecipe):
    """Recipe to process data taken in intensity flat-field mode.

    """

    master_bpm = reqs.MasterBadPixelMaskRequirement()
    obresult = reqs.ObservationResultRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()

    skyframe = Result(prods.MasterSky)

    def run(self, rinput):
        _logger.info('starting sky reduction')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput,
                                                    flow,
                                                    method=median,
                                                    errors=True)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        result = self.create_result(skyframe=hdulist)

        return result
Exemplo n.º 6
0
class SkySpecRecipe(EmirRecipe):
    """Recipe to process data taken in spectral sky mode.

    """

    obresult = ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterSpectralFlatFieldRequirement()

    skyspec = Product(prods.SkySpectrum)

    def run(self, rinput):
        self.logger.info('starting spectral sky reduction')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput,
                                                    flow,
                                                    method=median,
                                                    errors=True)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)
        self.logger.info('end sky spectral reduction')

        result = self.create_result(skyspec=hdulist)

        return result
Exemplo n.º 7
0
class TelescopeFineFocusRecipe(EmirRecipe):
    """
    Recipe to compute the telescope focus.

    **Observing modes:**

        * Telescope fine focus

    **Inputs:**

     * A list of images
     * A list of sky images
     * Bias, dark, flat
     * A model of the detector
     * List of focii

    **Outputs:**
     * Best focus

    """

    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()
    objects = Parameter([], 'List of x-y pair of object coordinates'),

    focus = Product(TelescopeFocus)

    def run(self, rinput):
        return self.create_result(focus=TelescopeFocus())
Exemplo n.º 8
0
class DTUFocusRecipe(EmirRecipe):
    """
    Recipe to compute the DTU focus.

    **Observing modes:**

        * EMIR focus control

    **Inputs:**

     * A list of images
     * A list of sky images
     * Bias, dark, flat
     * A model of the detector
     * List of focii

    **Outputs:**
     * Best focus

    """

    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()
    objects = Parameter([], 'List of x-y pair of object coordinates'),
    msm_pattern = Parameter([], 'List of x-y pair of slit coordinates'),
    dtu_focus_range = Parameter(
        'dtu_focus_range', [], 'Focus range of the DTU: begin, end and step')

    focus = Product(DTUFocus)


    def run(self, rinput):
        return self.create_result(focus=DTUFocus())
Exemplo n.º 9
0
class SlitTransmissionRecipe(EmirRecipe):
    """Recipe to calibrate the slit transmission.

    **Observing modes:**

        * Slit transmission calibration (4.4)

    **Inputs:**

        * A list of uniformly illuminated images of MSM

    **Outputs:**

     * A list of slit transmission functions

    **Procedure:**

     * TBD

    """

    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()

    slit = Result(prods.SlitTransmissionCalibration)

    def run(self, rinput):
        return self.create_result(slit=prods.SlitTransmissionCalibration())
Exemplo n.º 10
0
class TelescopeRoughFocusRecipe(EmirRecipe):
    """Recipe to compute the telescope focus.

    **Observing modes:**

     * Telescope rough focus
     * Emir focus control

    **Inputs:**

     * A list of images
     * A list of sky images
     * Bias, dark, flat
     * A model of the detector
     * List of focii

    **Outputs:**
     * Best focus
    """

    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()
    objects = Parameter([], 'List of x-y pair of object coordinates'),
    focus_range = Parameter([], 'Focus range: begin, end and step')

    focus = Result(prods.TelescopeFocus)

    def run(self, rinput):
        return self.create_result(focus=prods.TelescopeFocus())
Exemplo n.º 11
0
class BiasRecipe(EmirRecipe):
    """
    Recipe to process data taken in Bias image Mode.

    Bias images only appear in Simple Readout mode.

    **Observing modes:**

     * Bias Image (3.1)

    **Inputs:**

    **Outputs:**

     * A combined bias frame, with variance extension.
     * Statistics of the final image per channel (mean, median, variance)

    **Procedure:**

    The list of images can be readly processed by
    combining them with a median algorithm.

    """

    master_bpm = reqs.MasterBadPixelMaskRequirement()
    obresult = reqs.ObservationResultRequirement()

    biasframe = Result(prods.MasterBias)

    def run(self, rinput):
        _logger.info('starting bias reduction')

        iinfo = gather_info_frames(rinput.obresult.frames)

        if iinfo:
            mode = iinfo[0]['readmode']
            if mode.lower() not in EMIR_BIAS_MODES:
                msg = 'readmode %s, is not a bias mode' % mode
                _logger.error(msg)
                raise RecipeError(msg)

        flow = lambda x: x
        hdulist = basic_processing_with_combination(rinput,
                                                    flow,
                                                    method=median,
                                                    errors=False)

        pdata = hdulist[0].data

        # update hdu header with
        # reduction keywords
        hdr = hdulist[0].header
        self.set_base_headers(hdr)
        hdr['CCDMEAN'] = pdata.mean()

        _logger.info('bias reduction ended')

        result = self.create_result(biasframe=DataFrame(hdulist))
        return result
Exemplo n.º 12
0
class IntensityFlatRecipe(EmirRecipe):
    """Recipe to process data taken in intensity flat-field mode.

    Recipe to process intensity flat-fields. The flat-on and
    flat-off images are combined (method?) separately and the subtracted
    to obtain a thermal subtracted flat-field.

    **Observing modes:**

     * Intensity Flat-Field

    **Inputs:**

      * A master dark frame
      * Non linearity
      * A model of the detector.

    **Outputs:**

     * TBD

    **Procedure:**

     * A combined thermal subtracted flat field, normalized to median 1,
       with with variance extension and quality flag.

    """

    master_bpm = reqs.MasterBadPixelMaskRequirement()
    obresult = reqs.ObservationResultRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()

    flatframe = Result(prods.MasterIntensityFlat)

    def run(self, rinput):
        _logger.info('starting flat reduction')

        errors = True

        flow = self.init_filters(rinput)
        hdulist = basic_processing_with_combination(rinput,
                                                    flow,
                                                    method=median,
                                                    errors=errors)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)
        mm = hdulist[0].data.mean()
        hdr['CCDMEAN'] = mm

        hdulist[0].data /= mm
        if errors:
            hdulist['variance'].data /= (mm * mm)

        result = self.create_result(flatframe=hdulist)

        return result
Exemplo n.º 13
0
class SkySpecRecipe(EmirRecipe):
    """Recipe to process data taken in spectral sky mode.

    """

    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterSpectralFlatFieldRequirement()
    master_rectwv = reqs.MasterRectWaveRequirement()
    skyspec = Result(prods.SkySpectrum)
    reduced_image = Result(prods.ProcessedMOS)

    def run(self, rinput):
        self.logger.info('starting spectral sky reduction')

        flow = self.init_filters(rinput)

        reduced_image = basic_processing_with_combination(
            rinput, flow,
            method=median,
            errors=True
        )

        hdr = reduced_image[0].header
        self.set_base_headers(hdr)

        # save intermediate image in work directory
        self.save_intermediate_img(reduced_image, 'reduced_image.fits')

        # RectWaveCoeff object with rectification and wavelength calibration
        # coefficients for the particular CSU configuration
        rectwv_coeff = rectwv_coeff_from_mos_library(
            reduced_image,
            rinput.master_rectwv
        )
        # save as JSON file in work directory
        self.save_structured_as_json(rectwv_coeff, 'rectwv_coeff.json')

        # generate associated ds9 region files and save them in work directory
        if self.intermediate_results:
            save_four_ds9(rectwv_coeff)

        # apply rectification and wavelength calibration
        skyspec = apply_rectwv_coeff(
            reduced_image,
            rectwv_coeff
        )

        self.logger.info('end sky spectral reduction')

        result = self.create_result(
            reduced_image=reduced_image,
            skyspec=skyspec
        )

        return result
Exemplo n.º 14
0
class DarkRecipe(EmirRecipe):
    """Recipe to process data taken in Dark current image Mode.

    Recipe to process dark images. The dark images will be combined
    using the median.
    They do have to be of the same exposure time t.

    **Observing mode:**

     * Dark current Image (3.2)

    **Inputs:**

    **Outputs:**

     * A combined dark frame, with variance extension.
    """

    master_bpm = reqs.MasterBadPixelMaskRequirement()
    obresult = reqs.ObservationResultRequirement()
    master_bias = reqs.MasterBiasRequirement()

    darkframe = Result(prods.MasterDark)

    def run(self, rinput):

        _logger.info('starting dark reduction')

        flow = self.init_filters(rinput)

        iinfo = gather_info_frames(rinput.obresult.frames)
        ref_exptime = 0.0
        for el in iinfo[1:]:
            if abs(el['texp'] - ref_exptime) > 1e-4:
                _logger.error('image with wrong exposure time')
                raise RecipeError('image with wrong exposure time')

        hdulist = basic_processing_with_combination(rinput,
                                                    flow,
                                                    method=median,
                                                    errors=True)

        pdata = hdulist[0].data

        # update hdu header with
        # reduction keywords

        hdr = hdulist[0].header
        self.set_base_headers(hdr)
        hdr['CCDMEAN'] = pdata.mean()

        _logger.info('dark reduction ended')
        result = self.create_result(darkframe=hdulist)
        return result
Exemplo n.º 15
0
class StareImageRecipe2(EmirRecipe):
    """Process images in Stare Image Mode"""

    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()

    result_image = Result(prods.ProcessedImage)

    def run(self, rinput):
        self.logger.info('starting stare image reduction (offline)')

        frames = rinput.obresult.frames
        datamodel = self.datamodel

        with extra.manage_frame(frames) as list_of:
            c_img = extra.combine_frames(list_of, datamodel, method=combine.mean, errors=False)

        flow = self.init_filters(rinput)

        # Correct Bias if needed
        # Correct Dark if needed
        # Correct FF

        processed_img = flow(c_img)

        hdr = processed_img[0].header
        self.set_base_headers(hdr)

        self.logger.debug('append BPM')
        if rinput.master_bpm is not None:
            self.logger.debug('using BPM from inputs')
            hdul_bpm = rinput.master_bpm.open()
            hdu_bpm = extra.generate_bpm_hdu(hdul_bpm[0])
        else:
            self.logger.debug('using empty BPM')
            hdu_bpm = extra.generate_empty_bpm_hdu(processed_img[0])

        # Append the BPM to the result
        processed_img.append(hdu_bpm)
        self.logger.info('end stare image (off) reduction')
        result = self.create_result(result_image=processed_img)

        return result


    def set_base_headers(self, hdr):
        """Set metadata in FITS headers."""
        hdr = super(StareImageRecipe2, self).set_base_headers(hdr)
        # Set EXP to 0
        hdr['EXP'] = 0
        return hdr
Exemplo n.º 16
0
class IntensityFlatRecipe2(EmirRecipe):
    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()

    master_flatframe = Result(prods.MasterIntensityFlat)

    def run(self, rinput):
        import emirdrp.core.extra as extra
        from numina.array import combine

        _logger.info('starting flat reduction')

        frames = rinput.obresult.frames
        datamodel = self.datamodel

        with extra.manage_frame(frames) as list_of:
            c_img = extra.combine_frames2(list_of,
                                          datamodel,
                                          method=combine.mean,
                                          errors=False)

        self.save_intermediate_img(c_img, 'p0.fits')

        flow = self.init_filters(rinput)

        processed_img = flow(c_img)

        self.save_intermediate_img(processed_img, 'p1.fits')

        hdr = processed_img[0].header
        self.set_base_headers(hdr)

        import scipy.ndimage.filters

        _logger.info('median filter')
        data_smooth = scipy.ndimage.filters.median_filter(
            processed_img[0].data, size=11)

        self.save_intermediate_array(data_smooth, 'smooth.fits')

        mm = processed_img[0].data.mean()
        hdr['CCDMEAN'] = mm

        processed_img[0].data /= data_smooth

        self.save_intermediate_img(processed_img, 'p2.fits')

        result = self.create_result(master_flatframe=processed_img)

        return result
Exemplo n.º 17
0
class SpectralFlatRecipe(EmirRecipe):
    """Recipe to process data taken in intensity flat-field mode."""

    master_bpm = reqs.MasterBadPixelMaskRequirement()
    obresult = reqs.ObservationResultRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()

    flatframe = Result(prods.MasterSpectralFlat)

    def run(self, rinput):
        return self.create_result(flatframe=prods.MasterSpectralFlat())
Exemplo n.º 18
0
class StareImageBaseRecipe(EmirRecipe):
    """Process images in Stare Image Mode"""

    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()
    master_sky = reqs.MasterSkyRequirement(optional=True)

    frame = Result(prods.ProcessedImage)

    def __init__(self, *args, **kwargs):
        super(StareImageBaseRecipe, self).__init__(*args, **kwargs)
        if False:
            self.query_options['master_sky'] = Ignore()

    @emirdrp.decorators.loginfo
    @timeit
    def run(self, rinput):
        self.logger.info('starting stare image reduction')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(
            rinput,
            flow,
            method=combine.median
        )
        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        if rinput.master_bpm:
            hdul_bpm = rinput.master_bpm.open()
            hdu_bpm = extra.generate_bpm_hdu(hdul_bpm[0])
        else:
            hdu_bpm = extra.generate_empty_bpm_hdu(hdulist[0])

        # Append the BPM to the result
        hdulist.append(hdu_bpm)
        self.logger.info('end stare image reduction')
        result = self.create_result(frame=hdulist)

        return result

    def set_base_headers(self, hdr):
        """Set metadata in FITS headers."""
        hdr = super(StareImageBaseRecipe, self).set_base_headers(hdr)
        # Update EXP to 0
        hdr['EXP'] = 0
        return hdr
Exemplo n.º 19
0
class TestBiasCorrectRecipe(EmirRecipe):

    obresult = ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    frame = Result(prods.ProcessedImage)

    def run(self, rinput):
        _logger.info('starting simple bias reduction')

        flow = self.init_filters(rinput)
        hdu = basic_processing_with_combination(rinput, flow, method=median)
        hdr = hdu[0].header
        hdr['NUMRNAM'] = (self.__class__.__name__, 'Numina recipe name')
        hdr['NUMRVER'] = (self.__version__, 'Numina recipe version')
        hdulist = fits.HDUList([hdu])

        result = self.create_result(frame=hdulist)
        return result
Exemplo n.º 20
0
class MaskCheckRecipe(EmirRecipe):
    """
    Acquire a target.

    Recipe for the processing of multi-slit/long-slit check images.

    **Observing modes:**

        * MSM and LSM check

    """

    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()

    def run(self, rinput):
        self.logger.info("Start MaskCheckRecipe")
        self.logger.info("End MaskCheckRecipe")
        return self.create_result()
Exemplo n.º 21
0
class TestSlitMaskDetectionRecipe(EmirRecipe):

    # Recipe Requirements
    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()
    master_sky = reqs.MasterSkyRequirement()

    median_filter_size = Parameter(5, 'Size of the median box')
    canny_sigma = Parameter(3.0, 'Sigma for the Canny algorithm')
    canny_high_threshold = Parameter(0.04, 'High threshold for the Canny algorithm')
    canny_low_threshold = Parameter(0.01, 'High threshold for the Canny algorithm')
    obj_min_size = Parameter(200, 'Minimum size of the slit')
    obj_max_size = Parameter(3000, 'Maximum size of the slit')
    slit_size_ratio = Parameter(4.0, 'Minimum ratio between height and width for slits')

    # Recipe Results
    frame = Result(prods.DataFrameType)
    slitstable = Result(tarray.ArrayType)
    DTU = Result(tarray.ArrayType)
    ROTANG = Result(float)
    DETPA = Result(float)
    DTUPA = Result(float)

    def run(self, rinput):
        self.logger.info('starting slit processing')

        self.logger.info('basic image reduction')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput, flow=flow)
        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        try:
            rotang = hdr['ROTANG']
            detpa = hdr['DETPA']
            dtupa = hdr['DTUPA']
            dtub, dtur = datamodel.get_dtur_from_header(hdr)

        except KeyError as error:
            self.logger.error(error)
            raise RecipeError(error)

        self.logger.debug('finding slits')

        # First, prefilter with median
        median_filter_size = rinput.median_filter_size
        canny_sigma = rinput.canny_sigma
        obj_min_size = rinput.obj_min_size
        obj_max_size = rinput.obj_max_size

        data1 = hdulist[0].data
        self.logger.debug('Median filter with box %d', median_filter_size)
        data2 = median_filter(data1, size=median_filter_size)

        # Grey level image
        img_grey = normalize_raw(data2)

        # Find edges with Canny
        self.logger.debug('Find edges with Canny, sigma %f', canny_sigma)
        # These thresholds corespond roughly with
        # value x (2**16 - 1)
        high_threshold = rinput.canny_high_threshold
        low_threshold = rinput.canny_low_threshold
        self.logger.debug('Find edges, Canny high threshold %f', high_threshold)
        self.logger.debug('Find edges, Canny low threshold %f', low_threshold)
        edges = canny(img_grey, sigma=canny_sigma,
                      high_threshold=high_threshold,
                      low_threshold=low_threshold)
        # Fill edges
        self.logger.debug('Fill holes')
        fill_slits =  ndimage.binary_fill_holes(edges)

        self.logger.debug('Label objects')
        label_objects, nb_labels = ndimage.label(fill_slits)
        self.logger.debug('%d objects found', nb_labels)
        # Filter on the area of the labeled region
        # Perhaps we could ignore this filtering and
        # do it later?
        self.logger.debug('Filter objects by size')
        # Sizes of regions
        sizes = numpy.bincount(label_objects.ravel())

        self.logger.debug('Min size is %d', obj_min_size)
        self.logger.debug('Max size is %d', obj_max_size)

        mask_sizes = (sizes > obj_min_size) & (sizes < obj_max_size)

        # Filter out regions
        nids, = numpy.where(mask_sizes)

        mm = numpy.in1d(label_objects, nids)
        mm.shape = label_objects.shape

        fill_slits_clean = numpy.where(mm, 1, 0)
        #plt.imshow(fill_slits_clean)

        # and relabel
        self.logger.debug('Label filtered objects')
        relabel_objects, nb_labels = ndimage.label(fill_slits_clean)
        self.logger.debug('%d objects found after filtering', nb_labels)
        ids = list(six.moves.range(1, nb_labels + 1))

        self.logger.debug('Find regions and centers')
        regions = ndimage.find_objects(relabel_objects)
        centers = ndimage.center_of_mass(data2, labels=relabel_objects,
                                         index=ids
                                         )

        table = char_slit(data2, regions,
                          slit_size_ratio=rinput.slit_size_ratio
                          )

        result = self.create_result(frame=hdulist, slitstable=table,
                                    DTU=dtub,
                                    ROTANG=rotang,
                                    DETPA=detpa,
                                    DTUPA=dtupa
                                    )

        return result
Exemplo n.º 22
0
class TestSlitDetectionRecipe(EmirRecipe):

    # Recipe Requirements
    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()
    master_sky = reqs.MasterSkyRequirement()

    median_filter_size = Parameter(5, 'Size of the median box')
    canny_sigma = Parameter(3.0, 'Sigma for the canny algorithm')
    canny_high_threshold = Parameter(0.04, 'High threshold for the Canny algorithm')
    canny_low_threshold = Parameter(0.01, 'High threshold for the Canny algorithm')

    # Recipe Results
    frame = Result(prods.ProcessedImage)
    slitstable = Result(tarray.ArrayType)
    DTU = Result(tarray.ArrayType)
    ROTANG = Result(float)
    DETPA = Result(float)
    DTUPA = Result(float)

    def run(self, rinput):
        self.logger.info('starting slit processing')

        self.logger.info('basic image reduction')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput, flow=flow)
        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        try:
            rotang = hdr['ROTANG']
            detpa = hdr['DETPA']
            dtupa = hdr['DTUPA']
            dtub, dtur = datamodel.get_dtur_from_header(hdr)

        except KeyError as error:
            self.logger.error(error)
            raise RecipeError(error)

        self.logger.debug('finding slits')


        # Filter values below 0.0
        self.logger.debug('Filter values below 0')
        data1 = hdulist[0].data[:]

        data1[data1 < 0.0] = 0.0
        # First, prefilter with median
        median_filter_size = rinput.median_filter_size
        canny_sigma = rinput.canny_sigma

        self.logger.debug('Median filter with box %d', median_filter_size)
        data2 = median_filter(data1, size=median_filter_size)

        # Grey level image
        img_grey = normalize_raw(data2)

        # Find edges with Canny
        self.logger.debug('Find edges, Canny sigma %f', canny_sigma)
        # These thresholds corespond roughly with
        # value x (2**16 - 1)
        high_threshold = rinput.canny_high_threshold
        low_threshold = rinput.canny_low_threshold
        self.logger.debug('Find edges, Canny high threshold %f', high_threshold)
        self.logger.debug('Find edges, Canny low threshold %f', low_threshold)
        edges = canny(img_grey, sigma=canny_sigma,
                      high_threshold=high_threshold,
                      low_threshold=low_threshold)
        
        # Fill edges
        self.logger.debug('Fill holes')
        # I do a dilation and erosion to fill
        # possible holes in 'edges'
        fill = ndimage.binary_dilation(edges)
        fill2 = ndimage.binary_fill_holes(fill)
        fill_slits = ndimage.binary_erosion(fill2)

        self.logger.debug('Label objects')
        label_objects, nb_labels = ndimage.label(fill_slits)
        self.logger.debug('%d objects found', nb_labels)
        ids = list(six.moves.range(1, nb_labels + 1))

        self.logger.debug('Find regions and centers')
        regions = ndimage.find_objects(label_objects)
        centers = ndimage.center_of_mass(data2, labels=label_objects,
                                         index=ids
                                         )

        table = char_slit(data2, regions,
                          slit_size_ratio=-1.0
                          )

        result = self.create_result(frame=hdulist,
                                    slitstable=table,
                                    DTU=dtub,
                                    ROTANG=rotang,
                                    DETPA=detpa,
                                    DTUPA=dtupa
                                    )

        return result
Exemplo n.º 23
0
class CosmeticsRecipe(EmirRecipe):
    """Detector Cosmetics.

    Recipe to find and tag bad pixels in the detector.
    """

    obresult = ObservationResultRequirement()
    insconf = InstrumentConfigurationRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    lowercut = Parameter(
        4.0, 'Values below this sigma level are flagged as dead pixels')
    uppercut = Parameter(
        4.0, 'Values above this sigma level are flagged as hot pixels')
    maxiter = Parameter(30, 'Maximum number of iterations')

    ratioframe = Result(prods.ProcessedImage)
    maskframe = Result(prods.MasterBadPixelMask)

    def run(self, rinput):

        # FIXME:
        # We need 2 flats
        # Of different exposure times
        #
        # And their calibrations
        #

        if len(rinput.obresult.frames) < 2:
            raise RecipeError('The recipe requires 2 flat frames')

        iinfo = []
        for frame in rinput.obresult.frames:
            with frame.open() as hdulist:
                iinfo.append(gather_info(hdulist))

        # Loading calibrations
        with rinput.master_bias.open() as hdul:
            readmode = hdul[0].header.get('READMODE', 'undefined')
            if readmode.lower() in ['simple', 'bias']:
                self.logger.debug('loading bias')
                mbias = hdul[0].data
                bias_corrector = proc.BiasCorrector(mbias)
            else:
                self.logger.debug('ignoring bias')
                bias_corrector = numina.util.node.IdNode()

        with rinput.master_dark.open() as mdark_hdul:
            self.logger.debug('loading dark')
            mdark = mdark_hdul[0].data
            dark_corrector = proc.DarkCorrector(mdark)

        flow = numina.util.flow.SerialFlow([bias_corrector, dark_corrector])

        self.logger.info('processing flat #1')
        with rinput.obresult.frames[0].open() as hdul:
            other = flow(hdul)
            f1 = other[0].data.copy() * iinfo[0]['texp'] * 1e-3

        self.logger.info('processing flat #2')
        with rinput.obresult.frames[1].open() as hdul:
            other = flow(hdul)
            f2 = other[0].data.copy() * iinfo[1]['texp'] * 1e-3

        # Preprocess...

        maxiter = rinput.maxiter
        lowercut = rinput.lowercut
        uppercut = rinput.uppercut

        ninvalid = 0
        mask = None

        if mask:
            m = fits.getdata(mask)
            ninvalid = numpy.count_nonzero(m)
        else:
            m = numpy.zeros_like(f1, dtype='int')

        for niter in range(1, maxiter + 1):
            self.logger.debug('iter %d', niter)
            ratio, m, sigma = cosmetics(f1,
                                        f2,
                                        m,
                                        lowercut=lowercut,
                                        uppercut=uppercut)

            if self.intermediate_results:
                with warnings.catch_warnings():
                    warnings.simplefilter('ignore')
                    fits.writeto('numina-cosmetics-i%02d.fits' % niter,
                                 ratio,
                                 overwrite=True)
                    fits.writeto('numina-mask-i%02d.fits' % niter,
                                 m,
                                 overwrite=True)
                    fits.writeto('numina-sigma-i%02d.fits' % niter,
                                 m * 0.0 + sigma,
                                 overwrite=True)
            self.logger.debug('iter %d, invalid points in input mask: %d',
                              niter, ninvalid)
            self.logger.debug('iter %d, estimated sigma is %f', niter, sigma)
            n_ninvalid = numpy.count_nonzero(m)

            # Probably there is something wrong here
            # too much defective pixels
            if ninvalid / m.size >= 0.10:
                # This should set a flag in the output
                msg = 'defective pixels are greater than 10%'
                self.logger.warning(msg)

            if n_ninvalid == ninvalid:
                self.logger.info('convergence reached after %d iterations',
                                 niter)
                break
            self.logger.info('new invalid points: %d', n_ninvalid - ninvalid)
            ninvalid = n_ninvalid
        else:
            # This should set a flag in the output
            msg = 'convergence not reached after %d iterations' % maxiter
            self.logger.warning(msg)

        self.logger.info('number of dead pixels %d',
                         numpy.count_nonzero(m == PIXEL_DEAD))
        self.logger.info('number of hot pixels %d',
                         numpy.count_nonzero(m == PIXEL_HOT))

        if self.intermediate_results:
            with warnings.catch_warnings():
                warnings.simplefilter('ignore')
                fits.writeto('numina-cosmetics.fits', ratio, overwrite=True)
                fits.writeto('numina-mask.fits', m, overwrite=True)
                fits.writeto('numina-sigma.fits',
                             sigma * numpy.ones_like(m),
                             overwrite=True)

        hdu = fits.PrimaryHDU(ratio)
        hdr = hdu.header
        hdr['NUMXVER'] = (__version__, 'Numina package version')
        hdr['NUMRNAM'] = (self.__class__.__name__, 'Numina recipe name')
        hdr['NUMRVER'] = (self.__version__, 'Numina recipe version')
        ratiohdl = fits.HDUList([hdu])

        maskhdu = fits.PrimaryHDU(m)
        hdr = maskhdu.header
        hdr['NUMXVER'] = (__version__, 'Numina package version')
        hdr['NUMRNAM'] = (self.__class__.__name__, 'Numina recipe name')
        hdr['NUMRVER'] = (self.__version__, 'Numina recipe version')
        maskhdl = fits.HDUList([maskhdu])

        res = self.create_result(ratioframe=ratiohdl, maskframe=maskhdl)
        return res
Exemplo n.º 24
0
class MaskCheckRecipe(EmirRecipe):

    """
    Acquire a target.

    Recipe for the processing of multi-slit/long-slit check images.

    **Observing modes:**

        * MSM and LSM check

    """

    # Recipe Requirements
    #
    obresult = ObservationResultRequirement(
        query_opts=qmod.ResultOf(
            'STARE_IMAGE.frame',
            node='children',
            id_field="resultsIds"
        )
    )
    master_bpm = reqs.MasterBadPixelMaskRequirement()

    bars_nominal_positions = Requirement(
        prods.NominalPositions,
        'Nominal positions of the bars'
    )

    # Recipe Products
    slit_image = Result(prods.ProcessedImage)
    object_image = Result(prods.ProcessedImage)
    offset = Result(tarray.ArrayType)
    angle = Result(float)

    def run(self, rinput):
        self.logger.info('starting processing for image acquisition')
        # Combine and masking
        flow = self.init_filters(rinput)

        # count frames
        frames = rinput.obresult.frames

        nframes = len(frames)
        if nframes not in [1, 2, 4]:
            raise ValueError("expected 1, 2 or 4 frames, got {}".format(nframes))

        interm = basic_processing_(frames, flow, self.datamodel)

        if nframes == 1:
            hdulist_slit = combine_images(interm[:], self.datamodel)
            hdulist_object = hdulist_slit
            # background_subs = False
        elif nframes == 2:
            hdulist_slit = combine_images(interm[0:], self.datamodel)
            hdulist_object = process_ab(interm, self.datamodel)
            # background_subs = True
        elif nframes == 4:
            hdulist_slit = combine_images(interm[0::3], self.datamodel)
            hdulist_object = process_abba(interm, self.datamodel)
            # background_subs = True
        else:
            raise ValueError("expected 1, 2 or 4 frames, got {}".format(nframes))

        self.set_base_headers(hdulist_slit[0].header)
        self.set_base_headers(hdulist_object[0].header)

        self.save_intermediate_img(hdulist_slit, 'slit_image.fits')

        self.save_intermediate_img(hdulist_object, 'object_image.fits')

        # Get slits
        # Rotation around (0,0)
        # For other axis, offset is changed
        # (Off - raxis) = Rot * (Offnew - raxis)
        crpix1 = hdulist_slit[0].header['CRPIX1']
        crpix2 = hdulist_slit[0].header['CRPIX2']

        rotaxis = np.array((crpix1 - 1, crpix2 - 1))

        self.logger.debug('center of rotation (from CRPIX) is %s', rotaxis)

        csu_conf = self.load_csu_conf(hdulist_slit, rinput.bars_nominal_positions)

        # IF CSU is completely open OR there are no refereces,
        # this is not needed
        if not csu_conf.is_open():
            self.logger.info('CSU is configured, detecting slits')
            slits_bb = self.compute_slits(hdulist_slit, csu_conf)

            image_sep = hdulist_object[0].data.astype('float32')

            self.logger.debug('center of rotation (from CRPIX) is %s', rotaxis)

            offset, angle, qc = compute_off_rotation(
                image_sep, csu_conf, slits_bb,
                rotaxis=rotaxis, logger=self.logger,
                debug_plot=False, intermediate_results=self.intermediate_results
            )
        else:
            self.logger.info('CSU is open, not detecting slits')
            offset = [0.0, 0.0]
            angle = 0.0
            qc = QC.GOOD

        # Convert mm to m
        offset_out = np.array(offset) / 1000.0
        # Convert DEG to RAD
        angle_out = np.deg2rad(angle)
        result = self.create_result(
            slit_image=hdulist_slit,
            object_image=hdulist_object,
            offset=offset_out,
            angle=angle_out,
            qc=qc
        )
        self.logger.info('end processing for image acquisition')
        return result

    def load_csu_conf(self, hdulist, bars_nominal_positions):
        # Get slits
        hdr = hdulist[0].header
        # Extract DTU and CSU information from headers

        dtuconf = self.datamodel.get_dtur_from_header(hdr)

        # coordinates transformation from DTU coordinates
        # to image coordinates
        # Y inverted
        # XY switched
        # trans1 = [[1, 0, 0], [0,-1, 0], [0,0,1]]
        # trans2 = [[0,1,0], [1,0,0], [0,0,1]]
        trans3 = [[0, -1, 0], [1, 0, 0], [0, 0, 1]]  # T3 = T2 * T1

        vec = np.dot(trans3, dtuconf.coor_r) / EMIR_PIXSCALE
        self.logger.debug('DTU shift is %s', vec)

        self.logger.debug('create bar model')
        barmodel = csuconf.create_bar_models(bars_nominal_positions)
        csu_conf = csuconf.read_csu_2(hdr, barmodel)

        if self.intermediate_results:
            # FIXME: coordinates are in VIRT pixels
            self.logger.debug('create bar mask from predictions')
            mask = np.ones_like(hdulist[0].data)
            for i in itertools.chain(csu_conf.lbars, csu_conf.rbars):
                bar = csu_conf.bars[i]
                mask[bar.bbox().slice] = 0
            self.save_intermediate_array(mask, 'mask_bars.fits')

            self.logger.debug('create slit mask from predictions')
            mask = np.zeros_like(hdulist[0].data)
            for slit in csu_conf.slits.values():
                mask[slit.bbox().slice] = slit.idx
            self.save_intermediate_array(mask, 'mask_slit.fits')

            self.logger.debug('create slit reference mask from predictions')
            mask1 = np.zeros_like(hdulist[0].data)
            for slit in csu_conf.slits.values():
                if slit.target_type == TargetType.REFERENCE:
                    mask1[slit.bbox().slice] = slit.idx
            self.save_intermediate_array(mask1, 'mask_slit_ref.fits')

        return csu_conf

    def compute_slits(self, hdulist, csu_conf):

        self.logger.debug('finding borders of slits')
        self.logger.debug('not strictly necessary...')
        data = hdulist[0].data
        self.logger.debug('dtype of data %s', data.dtype)

        self.logger.debug('median filter (3x3)')
        image_base = ndi.filters.median_filter(data, size=3)

        # Cast as original type for skimage
        self.logger.debug('casting image to unit16 (for skimage)')
        iuint16 = np.iinfo(np.uint16)
        image = np.clip(image_base, iuint16.min, iuint16.max).astype(np.uint16)

        self.logger.debug('compute Sobel filter')
        # FIXME: compute sob and sob_v is redundant
        sob = filt.sobel(image)
        self.save_intermediate_array(sob, 'sobel_image.fits')
        sob_v = filt.sobel_v(image)
        self.save_intermediate_array(sob_v, 'sobel_v_image.fits')

        # Compute detector coordinates of bars
        all_coords_virt = np.empty((110, 2))
        all_coords_real = np.empty((110, 2))

        # Origin of coordinates is 1
        for bar in csu_conf.bars.values():
            all_coords_virt[bar.idx - 1] = bar.xpos, bar.y0

        # Origin of coordinates is 1 for this function
        _x, _y = dist.exvp(all_coords_virt[:, 0], all_coords_virt[:, 1])
        all_coords_real[:, 0] = _x
        all_coords_real[:, 1] = _y

        # FIXME: hardcoded value
        h = 16
        slit_h_virt = 16.242
        slit_h_tol = 3
        slits_bb = {}

        mask1 = np.zeros_like(hdulist[0].data)

        for idx in range(EMIR_NBARS):
            lbarid = idx + 1
            rbarid = lbarid + EMIR_NBARS
            ref_x_l_v, ref_y_l_v = all_coords_virt[lbarid - 1]
            ref_x_r_v, ref_y_r_v = all_coords_virt[rbarid - 1]

            ref_x_l_d, ref_y_l_d = all_coords_real[lbarid - 1]
            ref_x_r_d, ref_y_r_d = all_coords_real[rbarid - 1]

            width_v = ref_x_r_v - ref_x_l_v
            # width_d = ref_x_r_d - ref_x_l_d

            if (ref_y_l_d >= 2047 + h) or (ref_y_l_d <= 1 - h):
                # print('reference y position is outlimits, skipping')
                continue

            if width_v < 5:
                # print('width is less than 5 pixels, skipping')
                continue

            plot = False
            regionw = 12
            px1 = coor_to_pix_1d(ref_x_l_d) - 1
            px2 = coor_to_pix_1d(ref_x_r_d) - 1
            prow = coor_to_pix_1d(ref_y_l_d) - 1

            comp_l, comp_r = calc0(image, sob_v, prow, px1, px2, regionw, h=h,
                                   plot=plot, lbarid=lbarid, rbarid=rbarid,
                                   plot2=False)
            if np.any(np.isnan([comp_l, comp_r])):
                self.logger.warning("converting NaN value, border of=%d", idx + 1)
                self.logger.warning("skipping bar=%d", idx + 1)
                continue
            elif comp_l > comp_r:
                # Not refining
                self.logger.warning("computed left border of=%d greater than right border", idx + 1)
                comp2_l, comp2_r = px1, px2
            else:
                region2 = 5
                px21 = coor_to_pix_1d(comp_l)
                px22 = coor_to_pix_1d(comp_r)

                comp2_l, comp2_r = calc0(image, sob_v, prow, px21, px22, region2,
                                         refine=True,
                                         plot=plot, lbarid=lbarid, rbarid=rbarid,
                                         plot2=False)

                if np.any(np.isnan([comp2_l, comp2_r])):
                    self.logger.warning("converting NaN value, border of=%d", idx + 1)
                    comp2_l, comp2_r = comp_l, comp_r
                elif comp2_l > comp2_r:
                    # Not refining
                    self.logger.warning("computed left border of=%d greater than right border", idx + 1)
                    comp2_l, comp2_r = comp_l, comp_r

            # print('slit', lbarid, '-', rbarid, comp_l, comp_r)
            # print('pos1', comp_l, comp_r)
            # print('pos2', comp2_l, comp2_r)

            xpos1_virt, _ = dist.pvex(comp2_l + 1, ref_y_l_d)
            xpos2_virt, _ = dist.pvex(comp2_r + 1, ref_y_r_d)

            y1_virt = ref_y_l_v - slit_h_virt - slit_h_tol
            y2_virt = ref_y_r_v + slit_h_virt + slit_h_tol
            _, y1 = dist.exvp(xpos1_virt + 1, y1_virt)
            _, y2 = dist.exvp(xpos2_virt + 1, y2_virt)
            # print(comp2_l, comp2_r, y1 - 1, y2 - 1)
            cbb = BoundingBox.from_coordinates(comp2_l, comp2_r, y1 - 1, y2 - 1)
            slits_bb[lbarid] = cbb
            mask1[cbb.slice] = lbarid

        self.save_intermediate_array(mask1, 'mask_slit_computed.fits')
        return slits_bb
Exemplo n.º 25
0
class BarDetectionRecipe(EmirRecipe):

    # Recipe Requirements
    #
    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()
    master_sky = reqs.MasterSkyRequirement()

    bars_nominal_positions = Requirement(prods.CoordinateList2DType,
                                         'Nominal positions of the bars')
    median_filter_size = Parameter(5, 'Size of the median box')
    canny_sigma = Parameter(3.0, 'Sigma for the canny algorithm')
    canny_high_threshold = Parameter(0.04,
                                     'High threshold for the canny algorithm')
    canny_low_threshold = Parameter(0.01,
                                    'High threshold for the canny algorithm')

    # Recipe Results
    frame = Result(prods.ProcessedImage)
    positions = Result(tarray.ArrayType)
    DTU = Result(tarray.ArrayType)
    ROTANG = Result(float)
    csupos = Result(tarray.ArrayType)
    csusens = Result(tarray.ArrayType)
    param_median_filter_size = Result(float)
    param_canny_high_threshold = Result(float)
    param_canny_low_threshold = Result(float)

    def run(self, rinput):

        logger = logging.getLogger('numina.recipes.emir')

        logger.info('starting processing for bars detection')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput, flow=flow)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        try:
            rotang = hdr['ROTANG']
            dtub, dtur = datamodel.get_dtur_from_header(hdr)
            csupos = datamodel.get_csup_from_header(hdr)
            csusens = datamodel.get_cs_from_header(hdr)

        except KeyError as error:
            logger.error(error)
            raise numina.exceptions.RecipeError(error)

        logger.debug('finding bars')

        arr = hdulist[0].data

        # Median filter
        logger.debug('median filtering')
        mfilter_size = rinput.median_filter_size

        arr_median = median_filter(arr, size=mfilter_size)

        # Image is mapped between 0 and 1
        # for the full range [0: 2**16]
        logger.debug('image scaling to 0-1')
        arr_grey = normalize_raw(arr_median)

        # Find borders
        logger.debug('find borders')
        canny_sigma = rinput.canny_sigma
        # These threshols corespond roughly with
        # value x (2**16 - 1)
        high_threshold = rinput.canny_high_threshold
        low_threshold = rinput.canny_low_threshold

        edges = canny(arr_grey,
                      sigma=canny_sigma,
                      high_threshold=high_threshold,
                      low_threshold=low_threshold)

        # Number or rows used
        # These other parameters cab be tuned also
        total = 5
        maxdist = 1.0
        bstart = 100
        bend = 1900

        positions = []
        nt = total // 2

        xfac = dtur[0] / EMIR_PIXSCALE
        yfac = -dtur[1] / EMIR_PIXSCALE

        vec = [yfac, xfac]
        logger.debug('DTU shift is %s', vec)

        # Based on the 'edges image'
        # and the table of approx positions of the slits
        barstab = rinput.bars_nominal_positions

        # Currently, we only use fields 0 and 2
        # of the nominal positions file

        for coords in barstab:
            lbarid = int(coords[0])
            rbarid = lbarid + 55
            ref_y_coor = coords[2] + vec[1]
            prow = coor_to_pix_1d(ref_y_coor) - 1
            fits_row = prow + 1  # FITS pixel index

            logger.debug('looking for bars with ids %d - %d', lbarid, rbarid)
            logger.debug('reference y position is Y %7.2f', ref_y_coor)
            # Find the position of each bar

            bpos = find_position(edges, prow, bstart, bend, total)

            nbars_found = len(bpos)

            # If no bar is found, append and empty token
            if nbars_found == 0:
                logger.debug('bars %d, %d not found at row %d', lbarid, rbarid,
                             fits_row)
                thisres1 = (lbarid, fits_row, 0, 0, 1)
                thisres2 = (rbarid, fits_row, 0, 0, 1)

            elif nbars_found == 2:

                # Order values by increasing X
                centl, centr = sorted(bpos, key=lambda cen: cen[0])
                c1 = centl[0]
                c2 = centr[0]

                logger.debug('bars found  at row %d between %7.2f - %7.2f',
                             fits_row, c1, c2)
                # Compute FWHM of the collapsed profile

                cslit = arr_grey[prow - nt:prow + nt + 1, :]
                pslit = cslit.mean(axis=0)

                # Add 1 to return FITS coordinates
                epos, epos_f, error = locate_bar_l(pslit, c1)
                thisres1 = lbarid, fits_row, epos + 1, epos_f + 1, error

                epos, epos_f, error = locate_bar_r(pslit, c2)
                thisres2 = rbarid, fits_row, epos + 1, epos_f + 1, error

            elif nbars_found == 1:
                logger.warning(
                    'only 1 edge found  at row %d, not yet implemented',
                    fits_row)
                thisres1 = (lbarid, fits_row, 0, 0, 1)
                thisres2 = (rbarid, fits_row, 0, 0, 1)

            else:
                logger.warning(
                    '3 or more edges found  at row %d, not yet implemented',
                    fits_row)
                thisres1 = (lbarid, fits_row, 0, 0, 1)
                thisres2 = (rbarid, fits_row, 0, 0, 1)

            positions.append(thisres1)
            positions.append(thisres2)

        logger.debug('end finding bars')
        result = self.create_result(
            frame=hdulist,
            positions=positions,
            DTU=dtub,
            ROTANG=rotang,
            csupos=csupos,
            csusens=csusens,
            param_median_filter_size=rinput.median_filter_size,
            param_canny_high_threshold=rinput.canny_high_threshold,
            param_canny_low_threshold=rinput.canny_low_threshold)
        return result
Exemplo n.º 26
0
class ArcCalibrationRecipe(EmirRecipe):
    """Process arc images applying wavelength calibration"""

    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    bound_param = reqs.RefinedBoundaryModelParamRequirement()
    lines_catalog = Requirement(LinesCatalog, 'Catalog of lines')

    reduced_image = Result(prods.ProcessedImage)
    rectwv_coeff = Result(prods.RectWaveCoeff)
    reduced_55sp = Result(prods.ProcessedMOS)
    reduced_arc = Result(prods.ProcessedMOS)

    @emirdrp.decorators.loginfo
    def run(self, rinput):
        self.logger.info('starting rect.+wavecal. reduction of arc spectra')

        # build object to proceed with bpm, bias, dark and flat
        flow = self.init_filters(rinput)

        # apply bpm, bias, dark and flat
        reduced_image = basic_processing_with_combination(rinput,
                                                          flow,
                                                          method=median)
        # update header con additional info
        hdr = reduced_image[0].header
        self.set_base_headers(hdr)

        # save intermediate image in work directory
        self.save_intermediate_img(reduced_image, 'reduced_image.fits')

        # RectWaveCoeff object (with rectification and wavelength calibration
        # coefficients for the particular CSU configuration of the arc image)
        # and HDUList object with the FITS image corresponding to 55 median
        # spectra of each slitlet
        rectwv_coeff, reduced_55sp = rectwv_coeff_from_arc_image(
            reduced_image,
            rinput.bound_param,
            rinput.lines_catalog,
        )

        # generate associated ds9 region files and save them in work directory
        if self.intermediate_results:
            save_four_ds9(rectwv_coeff)

        # apply rectification and wavelength calibration
        reduced_arc = apply_rectwv_coeff(reduced_image, rectwv_coeff)

        # save results in result directory
        self.logger.info('end rect.+wavecal. reduction of arc spectra')
        result = self.create_result(reduced_image=reduced_image,
                                    rectwv_coeff=rectwv_coeff,
                                    reduced_55sp=reduced_55sp,
                                    reduced_arc=reduced_arc)
        return result

    def set_base_headers(self, hdr):
        newhdr = super(ArcCalibrationRecipe, self).set_base_headers(hdr)
        # Update SEC to 0
        newhdr['SEC'] = 0
        return newhdr
Exemplo n.º 27
0
class TestPinholeRecipe(EmirRecipe):

    # Recipe Requirements
    #
    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()
    master_sky = reqs.MasterSkyRequirement()

    pinhole_nominal_positions = Requirement(
        prods.CoordinateList2DType, 'Nominal positions of the pinholes')
    shift_coordinates = Parameter(
        True, 'Use header information to'
        ' shift the pinhole positions from (0,0) '
        'to X_DTU, Y_DTU')
    box_half_size = Parameter(4, 'Half of the computation box size in pixels')
    recenter = Parameter(True, 'Recenter the pinhole coordinates')
    max_recenter_radius = Parameter(2.0, 'Maximum distance for recentering')

    # Recipe Results
    frame = Result(prods.ProcessedImage)
    positions = Result(tarray.ArrayType)
    positions_alt = Result(tarray.ArrayType)
    DTU = Result(tarray.ArrayType)
    filter = Result(str)
    readmode = Result(str)
    ROTANG = Result(float)
    DETPA = Result(float)
    DTUPA = Result(float)
    param_recenter = Result(bool)
    param_max_recenter_radius = Result(float)
    param_box_half_size = Result(float)

    def run(self, rinput):
        _logger.info('starting processing for slit detection')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput, flow=flow)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        _logger.debug('finding pinholes')

        try:
            filtername = hdr['FILTER']
            readmode = hdr['READMODE']
            rotang = hdr['ROTANG']
            detpa = hdr['DETPA']
            dtupa = hdr['DTUPA']
            dtub, dtur = datamodel.get_dtur_from_header(hdr)
        except KeyError as error:
            _logger.error(error)
            raise numina.exceptions.RecipeError(error)

        if rinput.shift_coordinates:
            xdtur, ydtur, zdtur = dtur
            xfac = xdtur / EMIR_PIXSCALE
            yfac = -ydtur / EMIR_PIXSCALE

            vec = numpy.array([yfac, xfac])
            _logger.info('shift is %s', vec)
            ncenters = rinput.pinhole_nominal_positions + vec
        else:
            _logger.info('using pinhole coordinates as they are')
            ncenters = rinput.pinhole_nominal_positions

        _logger.info('pinhole characterization')
        positions = pinhole_char(hdulist[0].data,
                                 ncenters,
                                 box=rinput.box_half_size,
                                 recenter_pinhole=rinput.recenter,
                                 maxdist=rinput.max_recenter_radius)

        _logger.info('alternate pinhole characterization')
        positions_alt = pinhole_char2(
            hdulist[0].data,
            ncenters,
            recenter_pinhole=rinput.recenter,
            recenter_half_box=rinput.box_half_size,
            recenter_maxdist=rinput.max_recenter_radius)

        result = self.create_result(
            frame=hdulist,
            positions=positions,
            positions_alt=positions_alt,
            filter=filtername,
            DTU=dtub,
            readmode=readmode,
            ROTANG=rotang,
            DETPA=detpa,
            DTUPA=dtupa,
            param_recenter=rinput.recenter,
            param_max_recenter_radius=rinput.max_recenter_radius,
            param_box_half_size=rinput.box_half_size)
        return result
Exemplo n.º 28
0
class FullDitheredImagesRecipe(EmirRecipe):
    """Recipe for the reduction of imaging mode observations.

    Recipe to reduce observations obtained in imaging mode, considering
    different possibilities depending on the size of the offsets
    between individual images.
    In particular, the following observing modes are considered: stare imaging,
    nodded beamswitched imaging, and dithered imaging.

    A critical piece of information here is a table that clearly specifies
    which images can be labeled as *science*, and which ones as *sky*.
    Note that some images are used both as *science* and *sky*
    (when the size of the targets is small compared to the offsets).

    **Observing modes:**

     * StareImage
     * Nodded/Beam-switched images
     * Dithered images


    **Inputs:**

     * Science frames + [Sky Frames]
     * Observing mode name: **stare image**, **nodded beamswitched image**,
       or **dithered imaging**
     * A table relating each science image with its sky image(s) (TBD if
       it's in the FITS header and/or in other format)
     * Offsets between them (Offsets must be integer)
     * Master Dark
     * Bad pixel mask (BPM)
     * Non-linearity correction polynomials
     * Master flat (twilight/dome flats)
     * Master background (thermal background, only in K band)
     * Exposure Time (must be the same in all the frames)
     * Airmass for each frame
     * Detector model (gain, RN, lecture mode)
     * Average extinction in the filter
     * Astrometric calibration (TBD)

    **Outputs:**

     * Image with three extensions: final image scaled to the individual
       exposure time, variance  and exposure time map OR number of images
       combined (TBD)

    **Procedure:**

    Images are corrected from dark, non-linearity and flat. Then, an iterative
    process starts:

     * Sky is computed from each frame, using the list of sky images of each
       science frame. The objects are avoided using a mask (from the second
       iteration on).

     * The relative offsets are the nominal from the telescope. From the second
       iteration on, we refine them using objects of appropriate brightness
       (not too bright, not to faint).

     * We combine the sky-subtracted images, output is: a new image, a variance
       image and a exposure map/number of images used map.

     * An object mask is generated.

     * We recompute the sky map, using the object mask as an additional input.
       From here we iterate (typically 4 times).

     * Finally, the images are corrected from atmospheric extinction and flux
       calibrated.

     * A preliminary astrometric calibration can always be used (using
       the central coordinates of the pointing and the plate scale
       in the detector).
       A better calibration might be computed using available stars (TBD).

    """
    obresult = ObservationResultRequirement(
        query_opts=ResultOf('result_image', node='children'))

    master_bpm = reqs.MasterBadPixelMaskRequirement()

    offsets = Requirement(prods.CoordinateList2DType,
                          'List of pairs of offsets',
                          optional=True)
    refine_offsets = Parameter(False, 'Refine offsets by cross-correlation')
    iterations = Parameter(2, 'Iterations of the recipe')
    extinction = Parameter(0.0, 'Mean atmospheric extinction')

    sky_images = Parameter(
        5, 'Images used to estimate the '
        'background before and after current image')

    sky_images_sep_time = Parameter(
        10, 'Maximum time interval between target and sky images [minutes]')

    result_image = Result(prods.ProcessedImage)
    result_sky = Result(prods.ProcessedImage, optional=True)

    def run(self, rinput):

        target_is_sky = True
        obresult = rinput.obresult
        sky_images = rinput.sky_images
        sky_images_sep_time = rinput.sky_images_sep_time
        baseshape = (2048, 2048)
        user_offsets = rinput.offsets
        extinction = rinput.extinction

        images_info = self.initial_classification(obresult, target_is_sky)

        # Resizing target frames
        target_info = [iinfo for iinfo in images_info if iinfo.valid_target]
        finalshape, offsetsp, refpix, offset_fc0 = self.compute_size(
            target_info, baseshape, user_offsets)

        self.resize(target_info, baseshape, offsetsp, finalshape)

        result = self.process_basic(images_info,
                                    target_is_sky=target_is_sky,
                                    extinction=extinction)

        if rinput.refine_offsets:
            self.logger.debug("Compute cross-correlation of images")
            # regions_c = self.compute_regions(finalshape, box=200, corners=True)

            # Regions frm bright objects
            regions_c = self.compute_regions_from_objs(result[0].data,
                                                       finalshape,
                                                       box=40)

            try:

                offsets_xy_c = self.compute_offset_xy_crosscor_regions(
                    images_info, regions_c, refine=True, tol=1)
                #
                # Combined offsets
                # Offsets in numpy order, swaping
                offset_xy0 = numpy.fliplr(offset_fc0)
                offsets_xy_t = offset_xy0 - offsets_xy_c
                offsets_fc = numpy.fliplr(offsets_xy_t)
                offsets_fc_t = numpy.round(offsets_fc).astype('int')
                self.logger.debug('Total offsets: %s', offsets_xy_t)
                self.logger.info('Computing relative offsets from cross-corr')
                finalshape2, offsetsp2 = narray.combine_shape(
                    baseshape, offsets_fc_t)
                #
                self.logger.debug("Relative offsetsp (crosscorr) %s",
                                  offsetsp2)
                self.logger.info('Shape of resized array (crosscorr) is %s',
                                 finalshape2)

                # Resizing target imgs
                self.logger.debug("Resize to final offsets")
                self.resize(target_info, baseshape, offsetsp2, finalshape2)
            except Exception as error:
                self.logger.warning('Error during cross-correlation, %s',
                                    error)

        result = self.process_basic(images_info,
                                    target_is_sky=target_is_sky,
                                    extinction=extinction)

        step = 1

        while step <= rinput.iterations:
            result = self.process_advanced(images_info,
                                           result,
                                           step,
                                           target_is_sky,
                                           maxsep=sky_images_sep_time,
                                           nframes=sky_images,
                                           extinction=extinction)
            step += 1

        return self.create_result(result_image=result)

    def compute_offset_xy_crosscor_regions(self,
                                           iinfo,
                                           regions,
                                           refine=False,
                                           tol=0.5):

        names = [frame.lastname for frame in iinfo]
        print(names)
        print(regions)
        with nfcom.manage_fits(names) as imgs:
            arrs = [img[0].data for img in imgs]
            offsets_xy = offsets_from_crosscor_regions(arrs,
                                                       regions,
                                                       refine=refine,
                                                       order='xy',
                                                       tol=tol)
            self.logger.debug("offsets_xy cross-corr %s", offsets_xy)
            # Offsets in numpy order, swaping
        return offsets_xy

    def compute_size(self, images_info, baseshape, user_offsets=None):

        # Reference pixel in the center of the frame
        refpix = numpy.array([[baseshape[0] / 2.0, baseshape[1] / 2.0]])

        target_info = [iinfo for iinfo in images_info if iinfo.valid_target]

        if user_offsets is not None:
            self.logger.info('Using offsets from parameters')
            base_ref = numpy.asarray(user_offsets)
            list_of_offsets = -(base_ref - base_ref[0])
        else:
            self.logger.debug('Computing offsets from WCS information')
            with nfcom.manage_fits(img.origin
                                   for img in target_info) as images:
                list_of_offsets = offsets_from_wcs_imgs(images, refpix)

        # FIXME: I am using offsets in row/columns
        # the values are provided in XY so flip-lr
        list_of_offsets = numpy.fliplr(list_of_offsets)

        # Insert pixel offsets between frames
        for iinfo, off in zip(target_info, list_of_offsets):
            # Insert pixel offsets between frames
            iinfo.pix_offset = off

            self.logger.debug('Frame %s, offset=%s', iinfo.label, off)

        self.logger.info('Computing relative offsets')
        offsets = [iinfo.pix_offset for iinfo in target_info]
        offsets = numpy.round(offsets).astype('int')

        finalshape, offsetsp = narray.combine_shape(baseshape, offsets)
        self.logger.debug("Relative offsetsp %s", offsetsp)
        self.logger.info('Shape of resized array is %s', finalshape)
        return finalshape, offsetsp, refpix, list_of_offsets

    def process_basic(self, images_info, target_is_sky=True, extinction=0.0):

        step = 0

        target_info = [iinfo for iinfo in images_info if iinfo.valid_target]
        sky_info = [iinfo for iinfo in images_info if iinfo.valid_sky]

        self.logger.info("Step %d, SF: compute superflat", step)
        sf_arr = self.compute_superflat(images_info)

        # Apply superflat
        self.logger.info("Step %d, SF: apply superflat", step)
        for iinfo in images_info:
            self.correct_superflat(iinfo, sf_arr, step=step, save=True)

        self.logger.info('Simple sky correction')
        if target_is_sky:
            # Each frame is the closest sky frame available
            for iinfo in images_info:
                self.compute_simple_sky_for_frame(iinfo, iinfo)
        else:
            # Not implemented
            self.compute_simple_sky(target_info, sky_info)

        # Combining the frames
        self.logger.info("Step %d, Combining target frames", step)
        result = self.combine_frames(target_info, extinction=extinction)
        self.logger.info('Step %d, finished', step)

        return result

    def process_advanced(self,
                         images_info,
                         result,
                         step,
                         target_is_sky=True,
                         maxsep=5.0,
                         nframes=6,
                         extinction=0):

        seeing_fwhm = None
        baseshape = (2048, 2048)
        target_info = [iinfo for iinfo in images_info if iinfo.valid_target]
        sky_info = [iinfo for iinfo in images_info if iinfo.valid_sky]
        self.logger.info('Step %d, generating segmentation image', step)

        objmask, seeing_fwhm = self.create_mask(result, seeing_fwhm, step=step)

        for frame in target_info:
            frame.objmask = name_object_mask(frame.label, step)
            self.logger.info('Step %d, create object mask %s', step,
                             frame.objmask)
            frame.objmask_data = objmask[frame.valid_region]
            fits.writeto(frame.objmask, frame.objmask_data, overwrite=True)

        if not target_is_sky:
            # Empty object mask for sky frames
            bogus_objmask = numpy.zeros(baseshape, dtype='uint8')

            for frame in sky_info:
                frame.objmask_data = bogus_objmask

        self.logger.info("Step %d, SF: compute superflat", step)
        sf_arr = self.compute_superflat(sky_info, segmask=objmask, step=step)

        # Apply superflat
        self.logger.info("Step %d, SF: apply superflat", step)
        for iinfo in images_info:
            self.correct_superflat(iinfo, sf_arr, step=step, save=True)

        self.logger.info('Step %d, advanced sky correction (SC)', step)
        self.compute_advanced_sky(target_info,
                                  objmask,
                                  skyframes=sky_info,
                                  target_is_sky=target_is_sky,
                                  maxsep=maxsep,
                                  nframes=nframes,
                                  step=step)

        # Combining the images
        self.logger.info("Step %d, Combining the images", step)
        # FIXME: only for science
        result = self.combine_frames(target_info, extinction, step=step)
        return result

    def compute_simple_sky_for_frame(self, frame, skyframe, step=0, save=True):
        self.logger.info('Correcting sky in frame %s', frame.lastname)
        self.logger.info('with sky computed from frame %s', skyframe.lastname)

        if hasattr(skyframe, 'median_sky'):
            sky = skyframe.median_sky
        else:

            with fits.open(skyframe.lastname, mode='readonly') as hdulist:
                data = hdulist['primary'].data
                valid = data[frame.valid_region]

                if skyframe.objmask_data is not None:
                    self.logger.debug('object mask defined')
                    msk = frame.objmask_data
                    sky = numpy.median(valid[msk == 0])
                else:
                    self.logger.debug('object mask empty')
                    sky = numpy.median(valid)

            self.logger.debug('median sky value is %f', sky)
            skyframe.median_sky = sky

        dst = name_skysub_proc(frame.label, step)
        prev = frame.lastname

        if save:
            shutil.copyfile(prev, dst)
        else:
            os.rename(prev, dst)

        frame.lastname = dst

        with fits.open(frame.lastname, mode='update') as hdulist:
            data = hdulist['primary'].data
            valid = data[frame.valid_region]
            valid -= sky

    def compute_simple_sky(self, frame, skyframe, step=0, save=True):
        raise NotImplementedError

    def correct_superflat(self, frame, fitted, step=0, save=True):

        frame.flat_corrected = name_skyflat_proc(frame.label, step)
        if save:
            shutil.copyfile(frame.resized_base, frame.flat_corrected)
        else:
            os.rename(frame.resized_base, frame.flat_corrected)

        self.logger.info("Step %d, SF: apply superflat to frame %s", step,
                         frame.flat_corrected)
        with fits.open(frame.flat_corrected, mode='update') as hdulist:
            data = hdulist['primary'].data
            datar = data[frame.valid_region]
            data[frame.valid_region] = narray.correct_flatfield(datar, fitted)

            frame.lastname = frame.flat_corrected

    def initial_classification(self, obresult, target_is_sky=False):
        """Classify input frames, """
        # lists of targets and sky frames

        with obresult.frames[0].open() as baseimg:
            # Initial checks
            has_bpm_ext = 'BPM' in baseimg
            self.logger.debug('images have BPM extension: %s', has_bpm_ext)

        images_info = []
        for f in obresult.frames:
            with f.open() as img:
                # Getting some metadata from FITS header
                hdr = img[0].header

                iinfo = ImageInfo(f)

                finfo = {}
                iinfo.metadata = finfo

                finfo['uuid'] = hdr['UUID']
                finfo['exposure'] = hdr['EXPTIME']
                # frame.baseshape = get_image_shape(hdr)
                finfo['airmass'] = hdr['airmass']
                finfo['mjd'] = hdr['tstamp']

                iinfo.label = 'result_image_{}'.format(finfo['uuid'])
                iinfo.mask = nfcom.Extension("BPM")
                # Insert pixel offsets between frames
                iinfo.objmask_data = None
                iinfo.valid_target = False
                iinfo.valid_sky = False

                # FIXME: hardcode itype for the moment
                iinfo.itype = 'TARGET'
                if iinfo.itype == 'TARGET':
                    iinfo.valid_target = True
                    #targetframes.append(iinfo)
                    if target_is_sky:
                        iinfo.valid_sky = True
                        #skyframes.append(iinfo)
                if iinfo.itype == 'SKY':
                    iinfo.valid_sky = True
                    #skyframes.append(iinfo)
                images_info.append(iinfo)

        return images_info

    def compute_superflat(self, images_info, segmask=None, step=0):

        self.logger.info("Step %d, SF: combining the frames without offsets",
                         step)

        base_imgs = [img.resized_base for img in images_info]
        with nfcom.manage_fits(base_imgs) as imgs:

            data = []
            masks = []

            for img, img_info in zip(imgs, images_info):
                self.logger.debug('Step %d, opening resized frame %s', step,
                                  img_info.resized_base)
                data.append(img['primary'].data[img_info.valid_region])

            scales = [numpy.median(d) for d in data]

            if segmask is not None:
                masks = [segmask[frame.valid_region] for frame in images_info]
            else:
                for frame in images_info:
                    self.logger.debug('Step %d, opening resized mask %s', step,
                                      frame.resized_mask)
                    hdulist = fits.open(frame.resized_mask,
                                        memmap=True,
                                        mode='readonly')
                    #filelist.append(hdulist)
                    masks.append(hdulist['primary'].data[frame.valid_region])
                masks = None

            self.logger.debug('Step %d, combining %d frames', step, len(data))
            sf_data, _sf_var, sf_num = nacom.median(
                data,
                masks,
                scales=scales,
                dtype='float32',
                #blank=1.0 / scales[0]
            )

        # Normalize, flat has mean = 1
        sf_data[sf_data == 0] = 1e-5
        sf_data /= sf_data.mean()
        #sf_data[sf_data <= 0] = 1.0

        # Auxiliary data
        sfhdu = fits.PrimaryHDU(sf_data)
        self.save_intermediate_img(sfhdu, name_skyflat('comb', step))
        return sf_data

    def run_single(self, rinput):

        # FIXME: remove this, is deprecated

        obresult = rinput.obresult

        # just in case images are in result, instead of frames
        if not obresult.frames:
            frames = obresult.results
        else:
            frames = obresult.frames

        img_info = []
        data_hdul = []
        for f in frames:
            img = f.open()
            data_hdul.append(img)
            info = {}
            info['tstamp'] = img[0].header['tstamp']
            info['airmass'] = img[0].header['airmass']
            img_info.append(info)

        channels = FULL

        use_errors = True
        # Initial checks
        baseimg = data_hdul[0]
        has_num_ext = 'NUM' in baseimg
        has_bpm_ext = 'BPM' in baseimg
        baseshape = baseimg[0].shape
        subpixshape = baseshape
        base_header = baseimg[0].header
        compute_sky = 'NUM-SK' not in base_header
        compute_sky_advanced = False

        self.logger.debug('base image is: %s',
                          self.datamodel.get_imgid(baseimg))
        self.logger.debug('images have NUM extension: %s', has_num_ext)
        self.logger.debug('images have BPM extension: %s', has_bpm_ext)
        self.logger.debug('compute sky is needed: %s', compute_sky)

        if compute_sky:
            self.logger.info('compute sky simple')
            sky_result = self.compute_sky_simple(data_hdul, use_errors=False)
            self.save_intermediate_img(sky_result, 'sky_init.fits')
            sky_result.writeto('sky_init.fits', overwrite=True)
            sky_data = sky_result[0].data
            self.logger.debug('sky image has shape %s', sky_data.shape)

            self.logger.info('sky correction in individual images')
            corrector = proc.SkyCorrector(
                sky_data,
                self.datamodel,
                calibid=self.datamodel.get_imgid(sky_result))
            # If we do not update keyword SKYADD
            # there is no sky subtraction
            for m in data_hdul:
                m[0].header['SKYADD'] = True
            # this is a little hackish
            # sky corrected
            data_hdul_s = [corrector(m) for m in data_hdul]
            base_header = data_hdul_s[0][0].header
        else:
            sky_result = None
            data_hdul_s = data_hdul

        self.logger.info('Computing offsets from WCS information')

        finalshape, offsetsp, refpix, offset_xy0 = self.compute_offset_wcs_imgs(
            data_hdul_s, baseshape, subpixshape)

        self.logger.debug("Relative offsetsp %s", offsetsp)
        self.logger.info('Shape of resized array is %s', finalshape)

        # Resizing target imgs
        data_arr_sr, regions = narray.resize_arrays(
            [m[0].data for m in data_hdul_s],
            subpixshape,
            offsetsp,
            finalshape,
            fill=1)

        if has_num_ext:
            self.logger.debug('Using NUM extension')
            masks = [
                numpy.where(m['NUM'].data, 0, 1).astype('int16')
                for m in data_hdul
            ]
        elif has_bpm_ext:
            self.logger.debug('Using BPM extension')
            #
            masks = [
                numpy.where(m['BPM'].data, 1, 0).astype('int16')
                for m in data_hdul
            ]
        else:
            self.logger.warning('BPM missing, use zeros instead')
            false_mask = numpy.zeros(baseshape, dtype='int16')
            masks = [false_mask for _ in data_arr_sr]

        self.logger.debug('resize bad pixel masks')
        mask_arr_r, _ = narray.resize_arrays(masks,
                                             subpixshape,
                                             offsetsp,
                                             finalshape,
                                             fill=1)

        if self.intermediate_results:
            self.logger.debug('save resized intermediate img')
            for idx, arr_r in enumerate(data_arr_sr):
                self.save_intermediate_array(arr_r, 'interm1_%03d.fits' % idx)

        hdulist = self.combine2(data_arr_sr, mask_arr_r, data_hdul, offsetsp,
                                use_errors)

        self.save_intermediate_img(hdulist, 'result_initial1.fits')

        compute_cross_offsets = True
        if compute_cross_offsets:

            self.logger.debug("Compute cross-correlation of images")
            # regions_c = self.compute_regions(finalshape, box=200, corners=True)

            # Regions frm bright objects
            regions_c = self.compute_regions_from_objs(hdulist[0].data,
                                                       finalshape,
                                                       box=20)

            try:

                offsets_xy_c = self.compute_offset_xy_crosscor_regions(
                    data_arr_sr, regions_c, refine=True, tol=1)
                #
                # Combined offsets
                # Offsets in numpy order, swaping
                offsets_xy_t = offset_xy0 - offsets_xy_c
                offsets_fc = offsets_xy_t[:, ::-1]
                offsets_fc_t = numpy.round(offsets_fc).astype('int')
                self.logger.debug('Total offsets: %s', offsets_xy_t)
                self.logger.info('Computing relative offsets from cross-corr')
                finalshape, offsetsp = narray.combine_shape(
                    subpixshape, offsets_fc_t)
                #
                self.logger.debug("Relative offsetsp (crosscorr) %s", offsetsp)
                self.logger.info('Shape of resized array (crosscorr) is %s',
                                 finalshape)

                # Resizing target imgs
                self.logger.debug("Resize to final offsets")
                data_arr_sr, regions = narray.resize_arrays(
                    [m[0].data for m in data_hdul_s],
                    subpixshape,
                    offsetsp,
                    finalshape,
                    fill=1)

                if self.intermediate_results:
                    self.logger.debug('save resized intermediate2 img')
                    for idx, arr_r in enumerate(data_arr_sr):
                        self.save_intermediate_array(arr_r,
                                                     'interm2_%03d.fits' % idx)

                self.logger.debug('resize bad pixel masks')
                mask_arr_r, _ = narray.resize_arrays(masks,
                                                     subpixshape,
                                                     offsetsp,
                                                     finalshape,
                                                     fill=1)

                hdulist = self.combine2(data_arr_sr, mask_arr_r, data_hdul,
                                        offsetsp, use_errors)

                self.save_intermediate_img(hdulist, 'result_initial2.fits')
            except Exception as error:
                self.logger.warning('Error during cross-correlation, %s',
                                    error)

        catalog, objmask = self.create_object_catalog(hdulist[0].data,
                                                      border=50)

        data_arr_sky = [sky_result[0].data for _ in data_arr_sr]
        data_arr_0 = [(d[r] + s)
                      for d, r, s in zip(data_arr_sr, regions, data_arr_sky)]
        data_arr_r = [d.copy() for d in data_arr_sr]

        for inum in range(1, rinput.iterations + 1):
            # superflat
            sf_data = self.compute_superflat(data_arr_0, objmask, regions,
                                             channels)
            fits.writeto('superflat_%d.fits' % inum, sf_data, overwrite=True)
            # apply superflat
            data_arr_rf = data_arr_r
            for base, arr, reg in zip(data_arr_rf, data_arr_0, regions):
                arr_f = arr / sf_data
                #arr_f = arr
                base[reg] = arr_f

            # compute sky advanced
            data_arr_sky = []
            data_arr_rfs = []
            self.logger.info('Step %d, SC: computing advanced sky', inum)
            scale = rinput.sky_images_sep_time * 60
            tstamps = numpy.array([info['tstamp'] for info in img_info])
            for idx, hdu in enumerate(data_hdul):
                diff1 = tstamps - tstamps[idx]
                idxs1 = (diff1 > 0) & (diff1 < scale)
                idxs2 = (diff1 < 0) & (diff1 > -scale)
                l1, = numpy.nonzero(idxs1)
                l2, = numpy.nonzero(idxs2)
                limit1 = l1[-rinput.sky_images:]
                limit2 = l2[:rinput.sky_images]
                len_l1 = len(limit1)
                len_l2 = len(limit2)
                self.logger.info('For image %s, using %d-%d images)', idx,
                                 len_l1, len_l2)
                if len_l1 + len_l2 == 0:
                    self.logger.error('No sky image available for frame %d',
                                      idx)
                    raise ValueError('No sky image')
                skydata = []
                skymasks = []
                skyscales = []
                my_region = regions[idx]
                my_sky_scale = numpy.median(data_arr_rf[idx][my_region])
                for i in numpy.concatenate((limit1, limit2)):
                    region_s = regions[i]
                    data_s = data_arr_rf[i][region_s]
                    mask_s = objmask[region_s]
                    scale_s = numpy.median(data_s)
                    skydata.append(data_s)
                    skymasks.append(mask_s)
                    skyscales.append(scale_s)
                self.logger.debug('computing background with %d frames',
                                  len(skydata))
                sky, _, num = nacom.median(skydata, skymasks, scales=skyscales)
                # rescale
                sky *= my_sky_scale

                binmask = num == 0

                if numpy.any(binmask):
                    # We have pixels without
                    # sky background information
                    self.logger.warn(
                        'pixels without sky information when correcting %d',
                        idx)

                    # FIXME: during development, this is faster
                    # sky[binmask] = sky[num != 0].mean()
                    # To continue we interpolate over the patches
                    narray.fixpix2(sky, binmask, out=sky, iterations=1)

                name = 'sky_%d_%03d.fits' % (inum, idx)
                fits.writeto(name, sky, overwrite=True)
                name = 'sky_binmask_%d_%03d.fits' % (inum, idx)
                fits.writeto(name, binmask.astype('int16'), overwrite=True)

                data_arr_sky.append(sky)
                arr = numpy.copy(data_arr_rf[idx])
                arr[my_region] = data_arr_rf[idx][my_region] - sky
                data_arr_rfs.append(arr)
                # subtract sky advanced

            if self.intermediate_results:
                self.logger.debug('save resized intermediate img')
                for idx, arr_r in enumerate(data_arr_rfs):
                    self.save_intermediate_array(
                        arr_r, 'interm_%d_%03d.fits' % (inum, idx))

            hdulist = self.combine2(data_arr_rfs, mask_arr_r, data_hdul,
                                    offsetsp, use_errors)

            self.save_intermediate_img(hdulist, 'result_%d.fits' % inum)

            # For next step
            catalog, objmask = self.create_object_catalog(hdulist[0].data,
                                                          border=50)

            data_arr_0 = [
                (d[r] + s)
                for d, r, s in zip(data_arr_rfs, regions, data_arr_sky)
            ]
            data_arr_r = [d.copy() for d in data_arr_rfs]

        result = self.create_result(frame=hdulist)
        self.logger.info('end of dither recipe')
        return result

    def compute_sky_advanced(self, data_hdul, omasks, base_header, use_errors):
        method = narray.combine.mean

        self.logger.info('recombine images with segmentation mask')
        sky_data = method([m[0].data for m in data_hdul],
                          masks=omasks,
                          dtype='float32')

        hdu = fits.PrimaryHDU(sky_data[0], header=base_header)
        points_no_data = (sky_data[2] == 0).sum()

        self.logger.debug('update created sky image result header')
        skyid = str(uuid.uuid1())
        hdu.header['UUID'] = skyid
        hdu.header['history'] = "Combined {} images using '{}'".format(
            len(data_hdul), method.__name__)
        hdu.header['history'] = 'Combination time {}'.format(
            datetime.datetime.utcnow().isoformat())
        for img in data_hdul:
            hdu.header['history'] = "Image {}".format(
                self.datamodel.get_imgid(img))

        msg = "missing pixels, total: {}, fraction: {:3.1f}".format(
            points_no_data, points_no_data / sky_data[2].size)
        hdu.header['history'] = msg
        self.logger.debug(msg)

        if use_errors:
            varhdu = fits.ImageHDU(sky_data[1], name='VARIANCE')
            num = fits.ImageHDU(sky_data[2], name='MAP')
            sky_result = fits.HDUList([hdu, varhdu, num])
        else:
            sky_result = fits.HDUList([hdu])

        return sky_result

    def combine_frames(self, frames, extinction, out=None, step=0):
        self.logger.debug('Step %d, opening sky-subtracted frames', step)

        def fits_open(name):
            """Open FITS with memmap in readonly mode"""
            return fits.open(name, mode='readonly', memmap=True)

        frameslll = [
            fits_open(frame.lastname) for frame in frames if frame.valid_target
        ]
        self.logger.debug('Step %d, opening mask frames', step)
        mskslll = [
            fits_open(frame.resized_mask) for frame in frames
            if frame.valid_target
        ]

        self.logger.debug('Step %d, combining %d frames', step, len(frameslll))
        try:
            extinc = [
                pow(10, -0.4 * frame.metadata['airmass'] * extinction)
                for frame in frames if frame.valid_target
            ]
            data = [i['primary'].data for i in frameslll]
            masks = [i['primary'].data for i in mskslll]
            headers = [i['primary'].header for i in frameslll]

            out = nacom.median(data,
                               masks,
                               scales=extinc,
                               dtype='float32',
                               out=out)

            base_header = headers[0]
            hdu = fits.PrimaryHDU(out[0], header=base_header)
            hdu.header['history'] = "Combined %d images using '%s'" % (
                len(frameslll), 'median')
            hdu.header['history'] = 'Combination time {}'.format(
                datetime.datetime.utcnow().isoformat())
            for img in frameslll:
                hdu.header['history'] = "Image {}".format(
                    img[0].header['uuid'])
            prevnum = base_header.get('NUM-NCOM', 1)
            hdu.header['NUM-NCOM'] = prevnum * len(frameslll)
            hdu.header['NUMRNAM'] = 'FullDitheredImagesRecipe'
            hdu.header['UUID'] = str(uuid.uuid1())
            hdu.header['OBSMODE'] = 'FULL_DITHERED_IMAGE'
            # Headers of last image
            hdu.header['TSUTC2'] = headers[-1]['TSUTC2']

            varhdu = fits.ImageHDU(out[1], name='VARIANCE')
            num = fits.ImageHDU(out[2].astype('uint8'), name='MAP')

            result = fits.HDUList([hdu, varhdu, num])
            # saving the three extensions
            fits.writeto('result_i%0d.fits' % step, out[0], overwrite=True)
            fits.writeto('result_i%0d_var.fits' % step, out[1], overwrite=True)
            fits.writeto('result_i%0d_npix.fits' % step,
                         out[2],
                         overwrite=True)

            result.writeto('result_i%0d_full.fits' % step, overwrite=True)
            return result

        finally:
            self.logger.debug('Step %d, closing sky-subtracted frames', step)
            for f in frameslll:
                f.close()
            self.logger.debug('Step %d, closing mask frames', step)
            for f in mskslll:
                f.close()

    def resize(self,
               frames,
               shape,
               offsetsp,
               finalshape,
               window=None,
               scale=1,
               step=0):
        self.logger.info('Resizing frames and masks')
        for frame, rel_offset in zip(frames, offsetsp):
            if frame.valid_target:
                region, _ = narray.subarray_match(finalshape, rel_offset,
                                                  shape)
                # Valid region
                frame.valid_region = region
                # Relative offset
                frame.rel_offset = rel_offset
                # names of frame and mask
                framen, maskn = name_redimensioned_frames(frame.label, step)
                frame.resized_base = framen
                frame.resized_mask = maskn
                self.logger.debug(
                    '%s, valid region is %s, relative offset is %s',
                    frame.label, custom_region_to_str(region), rel_offset)
                self.resize_frame_and_mask(frame, finalshape, framen, maskn,
                                           window, scale)

    def resize_frame_and_mask(self, frame, finalshape, framen, maskn, window,
                              scale):
        self.logger.info('Resizing frame %s', frame.label)
        with frame.origin.open() as hdul:
            baseshape = hdul[0].data.shape

            # FIXME: Resize_fits saves the resized image in framen
            resize_fits(hdul,
                        framen,
                        finalshape,
                        frame.valid_region,
                        window=window,
                        scale=scale,
                        dtype='float32')

        self.logger.info('Resizing mask %s', frame.label)
        # We don't conserve the sum of the values of the frame here, just
        # expand the mask

        if frame.mask is None:
            self.logger.warning('BPM missing, use zeros instead')
            false_mask = numpy.zeros(baseshape, dtype='int16')
            hdum = fits.HDUList(fits.PrimaryHDU(false_mask))
            frame.mask = hdum  #DataFrame(frame=hdum)
        elif isinstance(frame.mask, nfcom.Extension):
            ename = frame.mask.name
            with frame.origin.open() as hdul:
                frame.mask = fits.HDUList(hdul[ename].copy())

        resize_fits(frame.mask,
                    maskn,
                    finalshape,
                    frame.valid_region,
                    fill=1,
                    window=window,
                    scale=scale,
                    conserve=False)

    def create_mask(self, img, seeing_fwhm, step=0):

        #
        remove_border = True

        # sextractor takes care of bad pixels

        # if seeing_fwhm is not None and seeing_fwhm > 0:
        #    sex.config['SEEING_FWHM'] = seeing_fwhm * sex.config['PIXEL_SCALE']

        if remove_border:
            weigthmap = 'weights4rms.fits'

            # Create weight map, remove n pixs from either side
            # using a Hannig filter
            # npix = 90
            # w1 = npix
            # w2 = npix
            # wmap = numpy.ones_like(sf_data[0])

            # cos_win1 = numpy.hanning(2 * w1)
            # cos_win2 = numpy.hanning(2 * w2)

            # wmap[:,:w1] *= cos_win1[:w1]
            # wmap[:,-w1:] *= cos_win1[-w1:]
            # wmap[:w2,:] *= cos_win2[:w2, numpy.newaxis]
            # wmap[-w2:,:] *= cos_win2[-w2:, numpy.newaxis]

            # Take the number of combined images from the combined image
            wm = img[2].data.copy()
            # Dont search objects where nimages < lower
            # FIXME: this is a magic number
            # We ignore objects in regions where we have less
            # than 10% of the images
            lower = wm.max() // 10
            border = (wm < lower)
            fits.writeto(weigthmap, border.astype('uint8'), overwrite=True)

            # sex.config['WEIGHT_TYPE'] = 'MAP_WEIGHT'
            # FIXME: this is a magic number
            # sex.config['WEIGHT_THRESH'] = 50
            # sex.config['WEIGHT_IMAGE'] = weigthmap
        else:
            border = None

        data_res = img[0].data
        bkg = sep.Background(data_res)
        data_sub = data_res - bkg

        self.logger.info('Runing source extraction in previous result')
        objects, objmask = sep.extract(data_sub,
                                       1.5,
                                       err=bkg.globalrms,
                                       mask=border,
                                       segmentation_map=True)
        fits.writeto(name_segmask(step), objmask, overwrite=True)

        # # Plot objects
        # # FIXME, plot sextractor objects on top of image
        # patches = []
        # fwhms = []
        # nfirst = 0
        # catalog_f = sopen(sex.config['CATALOG_NAME'])
        # try:
        #     star = catalog_f.readline()
        #     while star:
        #         flags = star['FLAGS']
        #         # ignoring those objects with corrupted apertures
        #         if flags & sexcatalog.CORRUPTED_APER:
        #             star = catalog_f.readline()
        #             continue
        #         center = (star['X_IMAGE'], star['Y_IMAGE'])
        #         wd = 10 * star['A_IMAGE']
        #         hd = 10 * star['B_IMAGE']
        #         color = 'red'
        #         e = Ellipse(center, wd, hd, star['THETA_IMAGE'], color=color)
        #         patches.append(e)
        #         fwhms.append(star['FWHM_IMAGE'])
        #         nfirst += 1
        #         # FIXME Plot a ellipse
        #         star = catalog_f.readline()
        # finally:
        #     catalog_f.close()
        #
        # p = PatchCollection(patches, alpha=0.4)
        # ax = self._figure.gca()
        # ax.add_collection(p)
        # self._figure.canvas.draw()
        # self._figure.savefig('figure-segmentation-overlay_%01d.png' % step)
        #
        # self.figure_fwhm_histogram(fwhms, step=step)
        #
        # # mode with an histogram
        # hist, edges = numpy.histogram(fwhms, 50)
        # idx = hist.argmax()
        #
        # seeing_fwhm = 0.5 * (edges[idx] + edges[idx + 1])
        # if seeing_fwhm <= 0:
        #     _logger.warning(
        #         'Seeing FHWM %f pixels is negative, reseting', seeing_fwhm)
        #     seeing_fwhm = None
        # else:
        #     _logger.info('Seeing FHWM %f pixels (%f arcseconds)',
        #                  seeing_fwhm, seeing_fwhm * sex.config['PIXEL_SCALE'])
        # objmask = fits.getdata(name_segmask(step))

        return objmask, seeing_fwhm

    def compute_advanced_sky(self,
                             targetframes,
                             objmask,
                             skyframes=None,
                             target_is_sky=False,
                             maxsep=5.0,
                             nframes=10,
                             step=0,
                             save=True):

        if target_is_sky:
            skyframes = targetframes
            # Each frame is its closest sky frame
            nframes += 1
        elif skyframes is None:
            raise ValueError('skyframes not defined')

        # build kdtree
        sarray = numpy.array([frame.metadata['mjd'] for frame in skyframes])
        # shape must be (n, 1)
        sarray = numpy.expand_dims(sarray, axis=1)

        # query
        tarray = numpy.array([frame.metadata['mjd'] for frame in targetframes])
        # shape must be (n, 1)
        tarray = numpy.expand_dims(tarray, axis=1)

        kdtree = KDTree(sarray)

        # 1 / minutes in a Julian day
        SCALE = 60.0
        # max_time_sep = ri.sky_images_sep_time / 1440.0
        _dis, idxs = kdtree.query(tarray,
                                  k=nframes,
                                  distance_upper_bound=maxsep * SCALE)

        nsky = len(sarray)

        for tid, idss in enumerate(idxs):
            try:
                tf = targetframes[tid]
                self.logger.info('Step %d, SC: computing advanced sky for %s',
                                 step, tf.label)
                # filter(lambda x: x < nsky, idss)
                locskyframes = []
                for si in idss:
                    if tid == si:
                        # this sky frame it is the current frame, reject
                        continue
                    if si < nsky:
                        self.logger.debug('Step %d, SC: %s is a sky frame',
                                          step, skyframes[si].label)
                        locskyframes.append(skyframes[si])
                self.compute_advanced_sky_for_frame(tf,
                                                    locskyframes,
                                                    step=step,
                                                    save=save)
            except IndexError:
                self.logger.error('No sky image available for frame %s',
                                  tf.lastname)
                raise

    def compute_advanced_sky_for_frame(self,
                                       frame,
                                       skyframes,
                                       step=0,
                                       save=True):
        self.logger.info('Correcting sky in frame %s', frame.lastname)
        self.logger.info('with sky computed from frames')
        for i in skyframes:
            self.logger.info('%s', i.flat_corrected)

        data = []
        scales = []
        masks = []
        # handle the FITS file to close it finally
        desc = []
        try:
            for i in skyframes:
                filename = i.flat_corrected
                hdulist = fits.open(filename, mode='readonly', memmap=True)

                data.append(hdulist['primary'].data[i.valid_region])
                desc.append(hdulist)
                #scales.append(numpy.median(data[-1]))
                if i.objmask_data is not None:
                    masks.append(i.objmask_data)
                    self.logger.debug('object mask is shared')
                elif i.objmask is not None:
                    hdulistmask = fits.open(i.objmask,
                                            mode='readonly',
                                            memmap=True)
                    masks.append(hdulistmask['primary'].data)
                    desc.append(hdulistmask)
                    self.logger.debug('object mask is particular')
                else:
                    self.logger.warn('no object mask for %s', filename)

            self.logger.debug('computing background with %d frames', len(data))
            sky, _, num = nacom.median(data, masks)  #, scales=scales)

        finally:
            # Closing all FITS files
            for hdl in desc:
                hdl.close()

        if numpy.any(num == 0):
            # We have pixels without
            # sky background information
            self.logger.warn(
                'pixels without sky information when correcting %s',
                frame.flat_corrected)
            binmask = num == 0
            # FIXME: during development, this is faster
            # sky[binmask] = sky[num != 0].mean()

            # To continue we interpolate over the patches
            narray.fixpix2(sky, binmask, out=sky, iterations=1)

            name = name_skybackgroundmask(frame.label, step)
            fits.writeto(name, binmask.astype('int16'), overwrite=True)

        name_sky = name_skybackground(frame.label, step)
        fits.writeto(name_sky, sky, overwrite=True)

        dst = name_skysub_proc(frame.label, step)
        prev = frame.lastname
        shutil.copyfile(prev, dst)
        frame.lastname = dst

        with fits.open(frame.lastname, mode='update') as hdulist:
            data = hdulist['primary'].data
            valid = data[frame.valid_region]
            valid -= sky

    def compute_regions_from_objs(self, arr, finalshape, box=50, corners=True):
        regions = []
        catalog, mask = self.create_object_catalog(arr, border=300)

        self.save_intermediate_array(mask, 'objmask.fits')
        # with the catalog, compute 5 objects

        LIMIT_AREA = 5000
        NKEEP = 1
        idx_small = catalog['npix'] < LIMIT_AREA
        objects_small = catalog[idx_small]
        idx_flux = objects_small['flux'].argsort()
        objects_nth = objects_small[idx_flux][-NKEEP:]
        for obj in objects_nth:
            print('ref is', obj['x'], obj['y'])
            region = nautils.image_box2d(obj['x'], obj['y'], finalshape,
                                         (box, box))
            print(region)
            regions.append(region)
        return regions

    def create_object_catalog(self, arr, threshold=3.0, border=0):

        if border > 0:
            wmap = numpy.ones_like(arr)
            wmap[border:-border, border:-border] = 0
        else:
            wmap = None

        bkg = sep.Background(arr)
        data_sub = arr - bkg
        objects, objmask = sep.extract(data_sub,
                                       threshold,
                                       err=bkg.globalrms *
                                       numpy.ones_like(data_sub),
                                       mask=wmap,
                                       segmentation_map=True)
        return objects, objmask
Exemplo n.º 29
0
class TestPointSourceRecipe(EmirRecipe):

    # Recipe Requirements
    #
    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()
    master_sky = reqs.MasterSkyRequirement()

    shift_coordinates = Parameter(
        True, 'Use header information to'
        ' shift the pinhole positions from (0,0) '
        'to X_DTU, Y_DTU')
    box_half_size = Parameter(4, 'Half of the computation box size in pixels')
    recenter = Parameter(True, 'Recenter the pinhole coordinates')
    max_recenter_radius = Parameter(2.0, 'Maximum distance for recentering')

    # Recipe Results
    frame = Result(prods.ProcessedImage)
    positions = Result(tarray.ArrayType)
    positions_alt = Result(tarray.ArrayType)
    DTU = Result(tarray.ArrayType)
    filter = Result(str)
    readmode = Result(str)
    ROTANG = Result(float)
    DETPA = Result(float)
    DTUPA = Result(float)
    param_recenter = Result(bool)
    param_max_recenter_radius = Result(float)
    param_box_half_size = Result(float)

    def run(self, rinput):
        self.logger.info('starting processing for object detection')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput, flow=flow)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        self.logger.debug('finding point sources')

        try:
            filtername = hdr['FILTER']
            readmode = hdr['READMODE']
            rotang = hdr['ROTANG']
            detpa = hdr['DETPA']
            dtupa = hdr['DTUPA']
            dtub, dtur = datamodel.get_dtur_from_header(hdr)
        except KeyError as error:
            self.logger.error(error)
            raise RecipeError(error)

        data = hdulist[0].data

        # Copy needed in numpy 1.7
        # This seems already bitswapped??
        # FIXME: check this works offline/online
        # ndata = data.byteswap().newbyteorder()
        # data = data.byteswap(inplace=True).newbyteorder()

        snr_detect = 5.0
        fwhm = 4.0
        npixels = 15
        box_shape = [64, 64]
        self.logger.info('point source detection2')
        self.logger.info('using internal mask to remove corners')
        # Corners
        mask = numpy.zeros_like(data, dtype='int32')
        mask[2000:, 0:80] = 1
        mask[2028:, 2000:] = 1
        mask[:50, 1950:] = 1
        mask[:100, :50] = 1
        # Remove corner regions

        self.logger.info('compute background map, %s', box_shape)
        bkg = sep.Background(data)

        self.logger.info('reference fwhm is %5.1f pixels', fwhm)
        self.logger.info('detect threshold, %3.1f over background', snr_detect)
        self.logger.info('convolve with gaussian kernel, FWHM %3.1f pixels',
                         fwhm)
        sigma = fwhm * gaussian_fwhm_to_sigma
        #
        kernel = Gaussian2DKernel(sigma)
        kernel.normalize()

        thresh = snr_detect * bkg.globalrms
        data_s = data - bkg.back()
        objects, segmap = sep.extract(data - bkg.back(),
                                      thresh,
                                      minarea=npixels,
                                      filter_kernel=kernel.array,
                                      segmentation_map=True,
                                      mask=mask)
        fits.writeto('segmap.fits', segmap)
        self.logger.info('detected %d objects', len(objects))

        # Hardcoded values
        rs2 = 15.0
        fit_rad = 10.0
        flux_min = 1000.0
        flux_max = 30000.0
        self.logger.debug('Flux limit is %6.1f %6.1f', flux_min, flux_max)
        # FIXME: this should be a view, not a copy
        xall = objects['x']
        yall = objects['y']
        mm = numpy.array([xall, yall]).T
        self.logger.info('computing FWHM')
        # Find objects with pairs inside fit_rad
        kdtree = KDTree(mm)
        nearobjs = (kdtree.query_ball_tree(kdtree, r=fit_rad))
        positions = []
        for idx, obj in enumerate(objects):
            x0 = obj['x']
            y0 = obj['y']
            sl = image_box2d(x0, y0, data.shape, (fit_rad, fit_rad))
            # sl_sky = image_box2d(x0, y0, data.shape, (rs2, rs2))
            part_s = data_s[sl]
            # Logical coordinates
            xx0 = x0 - sl[1].start
            yy0 = y0 - sl[0].start

            _, fwhm_x, fwhm_y = compute_fwhm_2d_simple(part_s, xx0, yy0)

            if min(fwhm_x, fwhm_x) < 3:
                continue
            if flux_min > obj['peak'] or flux_max < obj['peak']:
                continue
            # nobjs is the number of object inside fit_rad
            nobjs = len(nearobjs[idx])

            flag = 0 if nobjs == 1 else 1

            positions.append([idx, x0, y0, obj['peak'], fwhm_x, fwhm_y, flag])

        self.logger.info('saving photometry')
        positions = numpy.array(positions)
        positions_alt = positions
        self.logger.info('end processing for object detection')

        result = self.create_result(
            frame=hdulist,
            positions=positions_alt,
            positions_alt=positions_alt,
            filter=filtername,
            DTU=dtub,
            readmode=readmode,
            ROTANG=rotang,
            DETPA=detpa,
            DTUPA=dtupa,
            param_recenter=rinput.recenter,
            param_max_recenter_radius=rinput.max_recenter_radius,
            param_box_half_size=rinput.box_half_size)
        return result
Exemplo n.º 30
0
class MaskImagingRecipe(EmirRecipe):

    # Recipe Requirements
    #
    obresult = reqs.ObservationResultRequirement()
    master_bpm = reqs.MasterBadPixelMaskRequirement()
    master_bias = reqs.MasterBiasRequirement()
    master_dark = reqs.MasterDarkRequirement()
    master_flat = reqs.MasterIntensityFlatFieldRequirement()
    master_sky = reqs.MasterSkyRequirement()

    bars_nominal_positions = Requirement(prods.CoordinateList2DType,
                                         'Nominal positions of the bars')
    median_filter_size = Parameter(5, 'Size of the median box')
    average_box_row_size = Parameter(
        7, 'Number of rows to average for fine centering (odd)')
    average_box_col_size = Parameter(
        21, 'Number of columns to extract for fine centering (odd)')
    fit_peak_npoints = Parameter(
        3, 'Number of points to use for fitting the peak (odd)')

    # Recipe Products
    frame = Result(prods.ProcessedImage)
    # derivative = Result(prods.ProcessedImage)
    slits = Result(tarray.ArrayType)
    positions3 = Result(tarray.ArrayType)
    positions5 = Result(tarray.ArrayType)
    positions7 = Result(tarray.ArrayType)
    positions9 = Result(tarray.ArrayType)
    DTU = Result(tarray.ArrayType)
    ROTANG = Result(float)
    TSUTC1 = Result(float)
    csupos = Result(tarray.ArrayType)
    csusens = Result(tarray.ArrayType)

    def run(self, rinput):
        self.logger.info('starting processing for bars detection')

        flow = self.init_filters(rinput)

        hdulist = basic_processing_with_combination(rinput, flow=flow)

        hdr = hdulist[0].header
        self.set_base_headers(hdr)

        try:
            rotang = hdr['ROTANG']
            tsutc1 = hdr['TSUTC1']
            dtub, dtur = datamodel.get_dtur_from_header(hdr)
            csupos = datamodel.get_csup_from_header(hdr)
            csusens = datamodel.get_cs_from_header(hdr)

        except KeyError as error:
            self.logger.error(error)
            raise numina.exceptions.RecipeError(error)

        self.logger.debug('finding bars')
        # Processed array
        arr = hdulist[0].data

        # Median filter of processed array (two times)
        mfilter_size = rinput.median_filter_size

        self.logger.debug('median filtering X, %d columns', mfilter_size)
        arr_median = median_filter(arr, size=(1, mfilter_size))
        self.logger.debug('median filtering X, %d rows', mfilter_size)
        arr_median = median_filter(arr_median, size=(mfilter_size, 1))

        # Median filter of processed array (two times) in the other direction
        # for Y coordinates
        self.logger.debug('median filtering Y, %d rows', mfilter_size)
        arr_median_alt = median_filter(arr, size=(mfilter_size, 1))
        self.logger.debug('median filtering Y, %d columns', mfilter_size)
        arr_median_alt = median_filter(arr_median_alt, size=(1, mfilter_size))

        xfac = dtur[0] / EMIR_PIXSCALE
        yfac = -dtur[1] / EMIR_PIXSCALE

        vec = [yfac, xfac]
        self.logger.debug('DTU shift is %s', vec)

        # and the table of approx positions of the slits
        barstab = rinput.bars_nominal_positions
        # Currently, we only use fields 0 and 2
        # of the nominal positions file

        # Number or rows used
        # These other parameters cab be tuned also
        bstart = 1
        bend = 2047
        self.logger.debug('ignoring columns outside %d - %d', bstart, bend - 1)

        # extract a region to average
        wy = (rinput.average_box_row_size // 2)
        wx = (rinput.average_box_col_size // 2)
        self.logger.debug('extraction window is %d rows, %d cols', 2 * wy + 1,
                          2 * wx + 1)
        # Fit the peak with these points
        wfit = 2 * (rinput.fit_peak_npoints // 2) + 1
        self.logger.debug('fit with %d points', wfit)

        # Minimum threshold
        threshold = 5 * EMIR_RON
        # Savitsky and Golay (1964) filter to compute the X derivative
        # scipy >= xx has a savgol_filter function
        # for compatibility we do it manually

        allpos = {}
        ypos3_kernel = None
        slits = numpy.zeros((EMIR_NBARS, 8), dtype='float')

        self.logger.info('start finding bars')
        for ks in [3, 5, 7, 9]:
            self.logger.debug('kernel size is %d', ks)
            # S and G kernel for derivative
            kw = ks * (ks * ks - 1) / 12.0
            coeffs_are = -numpy.arange((1 - ks) // 2, (ks - 1) // 2 + 1) / kw
            if ks == 3:
                ypos3_kernel = coeffs_are
            self.logger.debug('kernel weights are %s', coeffs_are)

            self.logger.debug('derive image in X direction')
            arr_deriv = convolve1d(arr_median, coeffs_are, axis=-1)
            # Axis 0 is
            #
            self.logger.debug('derive image in Y direction (with kernel=3)')
            arr_deriv_alt = convolve1d(arr_median_alt, ypos3_kernel, axis=0)

            positions = []
            for coords in barstab:
                lbarid = int(coords[0])
                rbarid = lbarid + EMIR_NBARS
                ref_y_coor = coords[1] + vec[1]
                poly_coeffs = coords[2:]
                prow = coor_to_pix_1d(ref_y_coor) - 1
                fits_row = prow + 1  # FITS pixel index

                # A function that returns the center of the bar
                # given its X position
                def center_of_bar(x):
                    # Pixel values are 0-based
                    return polyval(x + 1 - vec[0], poly_coeffs) + vec[1] - 1

                self.logger.debug('looking for bars with ids %d - %d', lbarid,
                                  rbarid)
                self.logger.debug('reference y position is Y %7.2f',
                                  ref_y_coor)

                # if ref_y_coor is outlimits, skip this bar
                # ref_y_coor is in FITS format
                if (ref_y_coor >= 2047) or (ref_y_coor <= 1):
                    self.logger.debug(
                        'reference y position is outlimits, skipping')
                    positions.append([lbarid, fits_row, fits_row, 1, 0, 3])
                    positions.append([rbarid, fits_row, fits_row, 1, 0, 3])
                    continue

                # Left bar
                self.logger.debug('measure left border (%d)', lbarid)

                centery, xpos, fwhm, st = char_bar_peak_l(arr_deriv,
                                                          prow,
                                                          bstart,
                                                          bend,
                                                          threshold,
                                                          center_of_bar,
                                                          wx=wx,
                                                          wy=wy,
                                                          wfit=wfit)
                xpos1 = xpos
                positions.append(
                    [lbarid, centery + 1, fits_row, xpos + 1, fwhm, st])

                # Right bar
                self.logger.debug('measure rigth border (%d)', rbarid)
                centery, xpos, fwhm, st = char_bar_peak_r(arr_deriv,
                                                          prow,
                                                          bstart,
                                                          bend,
                                                          threshold,
                                                          center_of_bar,
                                                          wx=wx,
                                                          wy=wy,
                                                          wfit=wfit)
                positions.append(
                    [rbarid, centery + 1, fits_row, xpos + 1, fwhm, st])
                xpos2 = xpos
                #
                if st == 0:
                    self.logger.debug('measure top-bottom borders')
                    try:
                        y1, y2, statusy = char_bar_height(arr_deriv_alt,
                                                          xpos1,
                                                          xpos2,
                                                          centery,
                                                          threshold,
                                                          wh=35,
                                                          wfit=wfit)
                    except Exception as error:
                        self.logger.warning('Error computing height: %s',
                                            error)
                        statusy = 44

                    if statusy in [0, 40]:
                        # Main border is detected
                        positions[-1][1] = y2 + 1
                        positions[-2][1] = y2 + 1
                    else:
                        # Update status
                        positions[-1][-1] = 4
                        positions[-2][-1] = 4
                else:
                    self.logger.debug('slit is not complete')
                    y1, y2 = 0, 0

                # Update positions

                self.logger.debug(
                    'bar %d centroid-y %9.4f, row %d x-pos %9.4f, FWHM %6.3f, status %d',
                    *positions[-2])
                self.logger.debug(
                    'bar %d centroid-y %9.4f, row %d x-pos %9.4f, FWHM %6.3f, status %d',
                    *positions[-1])

                if ks == 5:
                    slits[lbarid -
                          1] = [xpos1, y2, xpos2, y2, xpos2, y1, xpos1, y1]
                    # FITS coordinates
                    slits[lbarid - 1] += 1.0
                    self.logger.debug('inserting bars %d-%d into "slits"',
                                      lbarid, rbarid)

            allpos[ks] = numpy.asarray(
                positions, dtype='float')  # GCS doesn't like lists of lists

        self.logger.debug('end finding bars')
        result = self.create_result(
            frame=hdulist,
            slits=slits,
            positions9=allpos[9],
            positions7=allpos[7],
            positions5=allpos[5],
            positions3=allpos[3],
            DTU=dtub,
            ROTANG=rotang,
            TSUTC1=tsutc1,
            csupos=csupos,
            csusens=csusens,
        )
        return result