def detect_and_draw(img, cascade): # allocate temporary images global var2 gray = cv.CreateImage((img.width,img.height), 8, 1) small_img = cv.CreateImage((cv.Round(img.width / image_scale), cv.Round (img.height / image_scale)), 8, 1) # convert color input image to grayscale cv.CvtColor(img, gray, cv.CV_BGR2GRAY) # scale input image for faster processing cv.Resize(gray, small_img, cv.CV_INTER_LINEAR) cv.EqualizeHist(small_img, small_img) if(cascade): t = cv.GetTickCount() faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0), haar_scale, min_neighbors, haar_flags, min_size) t = cv.GetTickCount() - t # print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.)) if faces: for ((x, y, w, h), n) in faces: # the input to cv.HaarDetectObjects was resized, so scale the # bounding box of each face and convert it to two CvPoints pt1 = (int(x * image_scale), int(y * image_scale)) pt2 = (int((x + w) * image_scale), int((y + h) * image_scale)) cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0) print pt1 var2=var2+1 if (var2==10): led.face() var2=0 emotion.happy() cv.ShowImage("result", img)
def detect_and_draw(img, cascade): # allocate temporary images global var2 gray = cv.CreateImage((img.width, img.height), 8, 1) small_img = cv.CreateImage((cv.Round( img.width / image_scale), cv.Round(img.height / image_scale)), 8, 1) # convert color input image to grayscale cv.CvtColor(img, gray, cv.CV_BGR2GRAY) # scale input image for faster processing cv.Resize(gray, small_img, cv.CV_INTER_LINEAR) cv.EqualizeHist(small_img, small_img) if (cascade): t = cv.GetTickCount() faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0), haar_scale, min_neighbors, haar_flags, min_size) t = cv.GetTickCount() - t # print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.)) if faces: for ((x, y, w, h), n) in faces: # the input to cv.HaarDetectObjects was resized, so scale the # bounding box of each face and convert it to two CvPoints pt1 = (int(x * image_scale), int(y * image_scale)) pt2 = (int((x + w) * image_scale), int((y + h) * image_scale)) cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0) print pt1 var2 = var2 + 1 if (var2 == 10): led.face() var2 = 0 emotion.happy() cv.ShowImage("result", img)
elif data.startswith("red"): data="i found a red object" no_words=len(data) no_char=0 sa.stmt=data sa.speak=True speech.say(data) elif data.startswith("blue"): data="i found a blue object" no_words=len(data.split()) no_char=0 sa.stmt=data sa.speak=True speech.say(data) elif data.startswith("love"): emotion.happy() #while 1: # data = raw_input ( "SEND( TYPE q or Q to Quit):" ) # if (data == 'Q' or data == 'q'): # client_socket.send (data) # client_socket.close() # break; # else: # client_socket.send(data) # data = client_socket.recv(512) # if ( data == 'q' or data == 'Q'): # client_socket.close() # break;