def testSurv(self): # if the quantities are not numeric, you can use [] but not () surv = Surv.from_seq(list('allen')) self.assertAlmostEqual(surv['a'], 0.8) self.assertAlmostEqual(surv['e'], 0.6) self.assertAlmostEqual(surv['l'], 0.2) self.assertAlmostEqual(surv['n'], 0) # test unnormalized t = [1, 2, 2, 3, 5] surv = Surv.from_seq(t, normalize=False) self.assertListEqual(list(surv), [4, 2, 1, 0]) res = surv([0, 1, 2, 3, 4, 5, 6]) self.assertListEqual(list(res), [5., 4., 2., 1., 1., 0., 0.]) res = surv.inverse([0, 1, 2, 3, 4, 5]) self.assertListEqual(list(res), [5, 3, 2, 2, 1, -np.inf]) # test normalized # () uses forward to interpolate surv = Surv.from_seq(t) self.assertEqual(surv(0), 1) self.assertAlmostEqual(surv(1), 0.8) self.assertAlmostEqual(surv(2), 0.4) self.assertAlmostEqual(surv(3), 0.2) self.assertAlmostEqual(surv(4), 0.2) self.assertAlmostEqual(surv(5), 0) self.assertAlmostEqual(surv(6), 0) xs = range(-1, 7) ps = surv(xs) for p1, p2 in zip(ps, [1, 1, 0.8, 0.4, 0.2, 0.2, 0, 0]): self.assertAlmostEqual(p1, p2) self.assertTrue(np.isnan(surv.inverse(-0.1))) self.assertEqual(surv.inverse(0), 5) self.assertEqual(surv.inverse(0.1), 5) self.assertEqual(surv.inverse(0.2), 3) self.assertEqual(surv.inverse(0.3), 3) self.assertEqual(surv.inverse(0.4), 2) self.assertEqual(surv.inverse(0.5), 2) self.assertEqual(surv.inverse(0.6), 2) self.assertEqual(surv.inverse(0.7), 2) self.assertEqual(surv.inverse(0.8), 1) self.assertEqual(surv.inverse(0.9), 1) self.assertEqual(surv.inverse(1), -np.inf) ps = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] qs = surv.inverse(ps) self.assertTrue((qs == [5, 5, 3, 3, 2, 2, 2, 2, 1, 1, -np.inf]).all()) np.random.seed(42) xs = surv.choice(7, replace=True) self.assertListEqual(xs.tolist(), [2, 5, 3, 2, 1, 1, 1])
def testHazard(self): t = [1, 2, 2, 3, 5] haz = Hazard.from_seq(t) # () uses forward to interpolate self.assertAlmostEqual(haz(1), 0.2) self.assertAlmostEqual(haz(2), 0.5) self.assertAlmostEqual(haz(3), 0.5) self.assertAlmostEqual(haz(4), 0) self.assertAlmostEqual(haz(5), 1.0) self.assertAlmostEqual(haz(6), 0) xs = [0, 1, 2, 3, 4, 5, 6] res = haz(xs) for x, y in zip(res, [0, 0.2, 0.5, 0.5, 0, 1, 0]): self.assertAlmostEqual(x, y) cdf = Cdf.from_seq(t) haz2 = cdf.make_hazard() res = haz2(xs) for x, y in zip(res, [0, 0.2, 0.5, 0.5, 0, 1, 0]): self.assertAlmostEqual(x, y) surv = Surv.from_seq(t) haz3 = surv.make_hazard() res = haz3(xs) for x, y in zip(res, [0, 0.2, 0.5, 0.5, 0, 1, 0]): self.assertAlmostEqual(x, y)
def testSurvSampling(self): surv = Surv.from_seq([1, 2, 3, 4, 5, 6]) expected = [2, 4, 2, 1, 5, 4, 4, 4, 1, 3] np.random.seed(17) a = surv.choice(10) self.assertTrue(np.all((a == expected))) a = surv.sample(10, replace=True, random_state=17) self.assertTrue(np.all((a == expected)))
def testSurvComparison(self): d4 = Surv.from_seq(range(1,5)) self.assertEqual(d4.gt_dist(2), 0.5) self.assertEqual(d4.gt_dist(d4), 0.375) self.assertEqual(d4.lt_dist(2), 0.25) self.assertEqual(d4.lt_dist(d4), 0.375) self.assertEqual(d4.ge_dist(2), 0.75) self.assertEqual(d4.ge_dist(d4), 0.625) self.assertEqual(d4.le_dist(2), 0.5) self.assertEqual(d4.le_dist(d4), 0.625) self.assertEqual(d4.eq_dist(2), 0.25) self.assertEqual(d4.eq_dist(d4), 0.25) self.assertEqual(d4.ne_dist(2), 0.75) self.assertEqual(d4.ne_dist(d4), 0.75)
def testConversionFunctions(self): t = [1, 2, 2, 3, 5, 5, 7, 10] pmf = Pmf.from_seq(t) cdf = Cdf.from_seq(t) surv = Surv.from_seq(t) haz = Hazard.from_seq(t) cdf2 = pmf.make_cdf() self.almost_equal_dist(cdf, cdf2) surv2 = pmf.make_surv() self.almost_equal_dist(surv, surv2) haz2 = pmf.make_hazard() self.almost_equal_dist(haz, haz2) surv3 = haz2.make_surv() self.almost_equal_dist(surv, surv3) cdf3 = haz2.make_cdf() self.almost_equal_dist(cdf, cdf3) pmf3 = haz2.make_pmf() self.almost_equal_dist(pmf, pmf3)