Exemplo n.º 1
0
 def get_median(graph):
     """
     Returns the median
     :param graph <dict> - the input graph
     :return random_median <dict> - the median
     """
     median_graph, n_meds, median_roots = DTLMedian.get_median_graph(
         graph, gene_tree, species_tree, gene_root, best_roots)
     med_counts = DTLMedian.get_med_counts(median_graph, median_roots)
     random_median = DTLMedian.choose_random_median_wrapper(
         median_graph, median_roots, med_counts)
     return random_median
Exemplo n.º 2
0
def event_support_hist(species_tree, gene_tree, gene_root, graph):
    """
    Compute the event support histogram (x-axis is event support, y-axis is fraction of events
    with that support)
    :param species_tree <tree>
    :param gene_tree <tree>
    :param gene_root <node>
    :param graph <recon_graph>
    :return hist <array float> - fraction of events for each bin
    :return bins <array float> - RHS of each bin (see numpy.histogram)
    """
    preorder_mapping_nodes = DTLMedian.mapping_node_sort(gene_tree, species_tree, list(graph.keys()))
    event_support, count = \
        DTLMedian.generate_scores(list(reversed(preorder_mapping_nodes)), graph, gene_root)
    supports = list(event_support.values())
    hist, bins = np.histogram(supports, bins=20, range=(0,1))
    total = np.sum(hist)
    return hist / float(total), bins
Exemplo n.º 3
0
def avg_event_support(species_tree, gene_tree, g, gene_root):
    """
    Compute the average event support for a graph.
    :param species_tree <tree>
    :param gene_tree <tree>
    :param g <recon_graph>
    :param gene_root <node>
    :return <float> - the average event support in g
    """
    # Compute the event support for each event
    preorder_mapping_nodes = DTLMedian.mapping_node_sort(gene_tree, species_tree, list(g.keys()))
    event_support, count = \
        DTLMedian.generate_scores(list(reversed(preorder_mapping_nodes)), g, gene_root)
    # Take the average over each event
    total_support = 0
    for support in event_support.values():
        total_support += support
    return total_support / len(event_support)