def get_both_hands(midi_file, time_step=0.05):

    """
    Encodes the two hands of a MIDI file and
    Stacks them together on horizontally
    Components [0:89] will be left hand
    And components [89:] will be right hand
    :param midi_file: path to the file
    :param time_step: Duration of each vector
    :return: Encoded matrix with both hands on it
    """

    # Reads the file and encodes each hand separately
    hands = ms.converter.parse(midi_file)
    voice = False  # If there is more than one voice on
    for idx, nt in enumerate(hands[0]):  # the right hand (first part), just
        if type(nt) == ms.stream.Voice:  # takes the first voice
            voice = True
            break
    if voice:
        right_notes = encode(hands[0][idx], time_step=time_step)
    else:
        right_notes = encode(hands[0], time_step=time_step)
    for idx, nt in enumerate(hands[1]):  # the left hand (second part), just
        if type(nt) == ms.stream.Voice:  # takes the first voice
            voice = True
            break
    if voice:
        left_notes = encode(hands[1][idx], time_step=time_step)
    else:
        left_notes = encode(hands[1], time_step=time_step)

    # Gets rid of the tempo component
    right_notes, left_notes = right_notes[:, :-1], left_notes[:, :-1]

    # Stacks both hands together
    both = np.empty((max([right_notes.shape[0], left_notes.shape[0]]), 178))
    left, right = False, False
    rest_shortest = np.zeros(89)
    rest_shortest[87] = 1
    if left_notes.shape[0] > right_notes.shape[0]:
        longest = np.copy(left_notes)
        left = True
    elif right_notes.shape[0] > left_notes.shape[0]:
        longest = np.copy(right_notes)
        right = True
    for idx in range(both.shape[0]):
        try:
            both[idx, :] = np.hstack((left_notes[idx, :], right_notes[idx, :]))
        except IndexError:
            if left:
                both[idx, :] = np.hstack((longest[idx, :], rest_shortest))
            if right:
                both[idx, :] = np.hstack((rest_shortest, longest[idx, :]))

    return both
Exemplo n.º 2
0
def get_right_hand(midi_file, time_step=0.05):
    hands = ms.converter.parse(midi_file)
    voice = False  # If there is more than one voice on
    for idx, nt in enumerate(hands[0]):  # the right hand (first part), just
        if type(nt) == ms.stream.Voice:  # takes the first voice
            voice = True
            break
    if voice:
        right_notes = encode(hands[0][idx], time_step=time_step)
    else:
        right_notes = encode(hands[0], time_step=time_step)

    return right_notes
def multi_many_hot_encode(midi_file):
    """ Multi-many-hot-encodes two hands """

    hands = ms.converter.parse(midi_file)

    voice = False  # If there is more than one voice on
    for idx, nt in enumerate(hands[0]):  # the right hand (first part), just
        if type(nt) == ms.stream.Voice:  # takes the first voice
            voice = True
            break
    if voice:
        right_notes = encode(hands[0][idx])
    else:
        right_notes = encode(hands[0])
    voice = False  # And the same for the left hand
    for idx, nt in enumerate(hands[1]):
        if type(nt) == ms.stream.Voice:
            voice = True
            break
    if voice:
        left_notes = encode(hands[1][idx])
    else:
        left_notes = encode(hands[1])

    # Combines both encoded hands
    if right_notes.shape >= left_notes.shape:
        notes_combined = np.zeros(right_notes.shape)
        for idx, left_note in enumerate(left_notes):
            notes_combined[idx] = left_note
        notes_combined += right_notes
    else:
        notes_combined = np.zeros(left_notes.shape)
        for idx, right_note in enumerate(right_notes):
            notes_combined[idx] = right_note
        notes_combined += left_notes

    # In case there is a rest or a hold
    # on both hands at the same time
    for idx, nt in enumerate(notes_combined):
        if nt[88] == 2:
            notes_combined[idx][88] = 1
        if nt[87] == 2:
            notes_combined[idx][87] = 1

    return notes_combined
Exemplo n.º 4
0
def get_right_hand(midi_file, time_step=0.05):
    """
    Gets the encoded right hand of a midi file
    :param midi_file: path to the file
    :param time_step: Duration of each vector
    :return: Encoded right hand without the tempo
    """

    hands = ms.converter.parse(midi_file)
    voice = False  # If there is more than one voice on
    for idx, nt in enumerate(hands[0]):  # the right hand (first part), just
        if type(nt) == ms.stream.Voice:  # takes the first voice
            voice = True
            break
    if voice:
        right_notes = encode(hands[0][idx], time_step=time_step)
    else:
        right_notes = encode(hands[0], time_step=time_step)

    return right_notes[:, :-1]
Exemplo n.º 5
0
def encode_solutions(file):
    locations = []
    orders = []

    outputs = np.genfromtxt('./data/y_raw.csv', delimiter=',')

    for index, permutation in enumerate(outputs):
        print(f'Encoding solution {index + 1}')

        encoded = encode(permutation[:-1].astype('int'))

        with open('./data/y_encoded.csv', 'a', newline = '') as csvfile:
            writer = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)
            writer.writerow(np.append(encoded, permutation[-1]))
Exemplo n.º 6
0
def train(protein,clf,dim_red=None,encoding=False,single_frame=False):
    '''
    Args:
        - protein: "bpti" or "alanine", name of the protein
        - clf: classifier to use
        - dim_red: int or None. 
                    if not None, it's the reduced dimension for PCA 
        - encode: if False, classify on coordinates; 
                    if True, classify on encoded hidden states
        - single_frame: classify as single frames or sequences. 
    '''
    
    # get features
    if encoding==False:
        # get flattened coordinates of each frame
        traj = dr.load_traj(protein)
        coords = traj.xyz
        coords = np.reshape(coords,(len(coords),-1))
        X = coords      
#        print coords  
    else:
        # get encoded hidden states
        X = encode()
    
    # use PCA to reduce dimension
    if dim_red != None:
        pca = PCA(dim_red)
        X = pca.fit(X).transform(X)
#        print X[0]

    # get labels
    with open("/output/"+protein+"/labels"+suffix,"r") as lb:
#    with open("/protein/data/"+protein+"-labels"+suffix) as lb:
        Y = np.asarray(pickle.load(lb))
    if encoding==True and single_frame==True:
        # need to match the number of sequences 
        end = -seq_size*window_size+1
        if end == 0:
            end = Y.size
        Y = Y[0:end:sliding*window_size] # compare with the first frame
#        Y = Y[-end::sliding*window_size] # compare with the last frame
#  print Y

    # training and cross validation
    data_scores = cross_val_score(clf,X,Y,cv=int(fold))
    print("Accuracy with %s folds: %0.2f (+/- %0.2f)" % 
        (fold, data_scores.mean(), data_scores.std()))
Exemplo n.º 7
0
import music21 as ms
from encoder_decoder import encode


def combine(left, right, filepath='test.mid'):
    """
    Input: left - the stream of notes played by the 
                pianist with his left hand
            right - the stream of notes played by the 
                pianist with his right hand
            filepath - path to the file in which o/p
                midi stream is to be stored
    Output: N/A

    The combines the streams from the left stream and right 
    stream and outputs a single stream object
    """
    sc = ms.stream.Stream()
    sc.append(right)
    sc.append(left)
    left.offset = 0.0
    sc.write("midi", filepath)
<<<<<<< HEAD
    return encode(sc)
=======
>>>>>>> a701de4d8db7678434481736b05f2e4d15101c57
# Get Threat coeff. from input
for k in range(noftargets):
    threat_list.append(int(input()))

#print(threat_coeff)
# Initializing probability matrix
prob_matrix = []
print("Enter Success probability matrix : ")
for i in range(0, len(weapon_names)):
    a = []
    for j in range(0, noftargets):
        a.append(float(input()))
    prob_matrix.append(a)

# Encoding Dictionary
enc = ed.encode(weapon_names, weapon_instances)

best_chrom = []
best_sol = sum(threat_list)

# Main Loop

for f in range(50):
    m.initialize(chrom_list, 5, sum(weapon_instances))
    #print("hromList: "+str(chrom_list))
    assign_all = m.assigne_all(chrom_list, threat_list)

    #print ("Assign All : " + str(assign_all))
    selected_chroms = m.select(assign_all, threat_list, enc, weapon_names,
                               prob_matrix)
import numpy as np
import encoder_decoder

#this is success probability matrix and it's valid only for 3-types of weapons and 3 targets
probability_matrix = [[0.3, 0.6, 0.5], [0.4, 0.5, 0.4], [0.1, 0.2, 0.2]]

weapons_type = ['tank', 'aircraft', 'grenade']

enc = encoder_decoder.encode(weapons_type, [2, 1, 2])


#the chrom size is equal to sum of weapons inctances
def initialize(List, List_size, chrom_size):
    for i in range(List_size):
        arr = np.random.randint(0, 2, chrom_size)
        #this if statment in case the generated array is full of zeros which is wrong cuz this solution will not reduce the total threat
        if not arr.__contains__(1):
            i -= 1
            continue
        List.append(arr)


#this function is to assigne each inctance of the weapons to a specific target via roulette wheel
#it returns a dictionary with keys are the weapon type and number and the value is the assigned target
def assigne(List, threat_list):
    dictionary = {}
    Sum = sum(threat_list)
    wheel_range = [x / Sum for x in threat_list]
    for i in range(len(List)):
        if List[i] == 0:
            #dictionary.update({'weapon #'+str((i+1)):'not assigned'})
Exemplo n.º 10
0
import numpy as np
import crossover as c
import encoder_decoder as ed

channels_list = []  # List of channels names
channels_ROI = []  # List of channels of roi to be transformed into %
chrom_list = []  # population list
lu_list = []  # lower and upper list

budget = int(input("Enter the Marketing budget in thousands : \n"))
Nofchannels = int(input("Enter The number of marketing channels : \n"))

for _ in range(Nofchannels):
    c_name, c_value = input("Enter name and ROI of each channel : \n").split(
        " ")
    channels_list.append(c_name)
    channels_ROI.append(c_value)

for __ in range(Nofchannels):
    l, u = input(
        "Enter the lower (k) and upper bounds (%) of investment in each channel:\n(enter x if there is no bound)\n"
    ).split(" ")
    if (l != "x"):
        lu_list.append((float((float(l) * 1000) / (budget * 1000) * 100), u))
    else:
        lu_list.append((l, u))

print(ed.encode(channels_list))
print(ed.decode(3))