Exemplo n.º 1
0
    def __init__(self,
                 shape,
                 wcs,
                 pattern,
                 offset,
                 site,
                 pad=2.0 * utils.degree):
        """This unskew operation assumes that equal spacing in
		dec corresponds to equal spacing in time, and that shifts in
		RA can be done in units of whole pixels. This is an approximation
		relative to UnskewCurved, but it is several times faster, uses
		less memory, and causes less smoothing."""
        ndec, nra = shape[-2:]
        info = calc_az_sweep(pattern, offset, site, pad=pad)
        sweep_ra, sweep_dec = info.sweep_cel
        # For each pixel in dec (that we hit for this scanning pattern), we
        # want to know how far we have been displaced in ra.
        # First get the dec of each pixel center.
        ysweep, xsweep = enmap.sky2pix(shape, wcs, [sweep_dec, sweep_ra])
        y1 = max(int(np.min(ysweep)), 0)
        y2 = min(int(np.max(ysweep)) + 1, shape[-2])
        # Make fft-friendly
        ny = y2 - y1
        ny2 = fft.fft_len(ny, "above", [2, 3, 5, 7])
        y1 = max(y1 - (ny2 - ny) / 2, 0)
        y2 = min(y1 + ny2, shape[-2])
        y = np.arange(y1, y2)
        dec, _ = enmap.pix2sky(shape, wcs, [y, y * 0])
        # Then interpolate the ra values corresponding to those decs.
        # InterpolatedUnivariateSpline broken. Returns nan even when
        # interpolating. So we will use UnivariateSpline
        spline = scipy.interpolate.UnivariateSpline(sweep_dec, sweep_ra)
        ra = spline(dec)
        dra = ra - ra[len(ra) / 2]
        y, x = np.round(enmap.sky2pix(shape, wcs, [dec, ra]))
        dx = x - x[len(x) / 2]
        # It's also useful to be able to go from normal map index to
        # position in y and dx
        inv_y = np.zeros(shape[-2], dtype=int) - 1
        inv_y[y.astype(int)] = np.arange(len(y))
        # Compute the azimuth step size based on the total azimuth sweep.
        daz = (pattern[2] - pattern[1] + 2 * pad) / len(y)
        # Build the geometry of the unskewed system
        ushape, uwcs = enmap.geometry(pos=[0, 0],
                                      shape=[len(y), shape[-1]],
                                      res=[daz,
                                           enmap.pixshape(shape, wcs)[1]],
                                      proj="car")
        # And store the result
        self.y = y.astype(int)
        self.dx = np.round(dx).astype(int)
        self.dx_raw = dx
        self.inv_y = inv_y
        self.ushape = ushape
        self.uwcs = uwcs
Exemplo n.º 2
0
    def __init__(self,
                 shape,
                 wcs,
                 pattern,
                 offset,
                 site,
                 pad=2.0 * utils.degree,
                 order=0,
                 subsample=2.0):
        """Build an unskew operator that uses spline interpolation along an azimuth sweep
		to straighten out the scanning motion for one scanning pattern. Relatively slow, and
		leads to some smoothing due to the interpolation, but does not assume that dec changes
		with a constant speed during a sweep."""
        # Find the unskew transformation for this pattern.
        # We basically want dec->az and ra->ra0, with az spacing
        # similar to el spacing.
        ndec, nra = shape[-2:]
        info = calc_az_sweep(pattern,
                             offset,
                             site,
                             pad=pad,
                             subsample=subsample)
        sweep_ra, sweep_dec = info.sweep_cel
        #(sweep_ra, sweep_dec), naz, daz = calc_az_sweep(pattern, offset, site, pad=pad, subsample=subsample)
        # We want to be able to go from (y,x) to (ra,dec), with
        # dec = dec[y]
        # ra  = ra[y]-ra[0]+x
        # Precompute the pixel mapping. This will have the full witdh in ra,
        # but will be smaller in dec due to the limited az range.
        raw_dec, raw_ra = enmap.posmap(shape, wcs)
        skew_pos = np.zeros((2, info.naz, nra))
        skew_pos[0] = sweep_dec[:, None]
        skew_pos[1] = (sweep_ra - sweep_ra[0])[:, None] + raw_ra[None,
                                                                 ndec / 2, :]
        skew_pix = enmap.sky2pix(shape, wcs, skew_pos).astype(dtype)
        # Build geometry for the unskewed system
        ushape, uwcs = enmap.geometry(
            pos=[0, 0],
            shape=[info.naz, nra],
            res=[np.abs(info.daz),
                 enmap.pixshape(shape, wcs)[1]],
            proj="car")
        # Save
        self.order = order
        self.shape = shape
        self.wcs = wcs
        self.pattern = pattern
        self.site = site
        self.skew_pix = skew_pix
        # External interface
        self.ushape = ushape
        self.uwcs = uwcs
Exemplo n.º 3
0
	def __init__(self, shape, wcs, pattern, offset, site, pad=2.0*utils.degree):
		"""This unskew operation assumes that equal spacing in
		dec corresponds to equal spacing in time, and that shifts in
		RA can be done in units of whole pixels. This is an approximation
		relative to UnskewCurved, but it is several times faster, uses
		less memory, and causes less smoothing."""
		ndec, nra = shape[-2:]
		info = calc_az_sweep(pattern, offset, site, pad=pad)
		sweep_ra, sweep_dec = info.sweep_cel
		# For each pixel in dec (that we hit for this scanning pattern), we
		# want to know how far we have been displaced in ra.
		# First get the dec of each pixel center.
		ysweep, xsweep = enmap.sky2pix(shape, wcs, [sweep_dec,sweep_ra])
		y1  = max(int(np.min(ysweep)),0)
		y2  = min(int(np.max(ysweep))+1,shape[-2])
		# Make fft-friendly
		ny  = y2-y1
		ny2 = fft.fft_len(ny, "above", [2,3,5,7])
		y1  = max(y1-(ny2-ny)/2,0)
		y2  = min(y1+ny2,shape[-2])
		y   = np.arange(y1,y2)
		dec, _ = enmap.pix2sky(shape, wcs, [y,y*0])
		# Then interpolate the ra values corresponding to those decs.
		# InterpolatedUnivariateSpline broken. Returns nan even when
		# interpolating. So we will use UnivariateSpline
		spline  = scipy.interpolate.UnivariateSpline(sweep_dec, sweep_ra)
		ra      = spline(dec)
		dra     = ra - ra[len(ra)/2]
		y, x    = np.round(enmap.sky2pix(shape, wcs, [dec,ra]))
		dx      = x-x[len(x)/2]
		# It's also useful to be able to go from normal map index to
		# position in y and dx
		inv_y   = np.zeros(shape[-2],dtype=int)-1
		inv_y[y.astype(int)]= np.arange(len(y))
		# Compute the azimuth step size based on the total azimuth sweep.
		daz = (pattern[2]-pattern[1]+2*pad)/len(y)
		# Build the geometry of the unskewed system
		ushape, uwcs = enmap.geometry(pos=[0,0], shape=[len(y),shape[-1]], res=[daz,enmap.pixshape(shape,wcs)[1]], proj="car")
		# And store the result
		self.y  = y.astype(int)
		self.dx = np.round(dx).astype(int)
		self.dx_raw = dx
		self.inv_y  = inv_y
		self.ushape = ushape
		self.uwcs   = uwcs
Exemplo n.º 4
0
 def __init__(self, shape, wcs, groups=None):
     # Symbolic
     self.l1x, self.l1y, self.l2x, self.l2y, self.l1, self.l2 = get_ells()
     self.Lx, self.Ly, self.L = get_Ls()
     if groups is None:
         groups = [self.Lx * self.Lx, self.Ly * self.Ly, self.Lx * self.Ly]
     self._default_groups = groups
     self.integrands = {}
     self.ul1s = {}
     self.ul2s = {}
     self.ogroups = {}
     self.ogroup_weights = {}
     self.ogroup_symbols = {}
     self.l1funcs = []
     self.l2funcs = []
     # Diagnostic
     self.nfft = 0
     self.nifft = 0
     # Numeric
     self.shape, self.wcs = shape, wcs
     self.modlmap = enmap.modlmap(shape, wcs)
     self.lymap, self.lxmap = enmap.lmap(shape, wcs)
     self.pixarea = np.prod(enmap.pixshape(shape, wcs))
Exemplo n.º 5
0
    def __init__(self, shape, wcs, gradCut=None, kBeamX=None, kBeamY=None):
        '''

        templateFT is a template liteMap FFT object
    

    
        '''
        self.Ny, self.Nx = shape[-2:]
        self.lxMap, self.lyMap, self.modLMap, self.thetaMap, self.lx, self.ly = fmaps.get_ft_attributes_enmap(
            shape, wcs)
        self.lxHatMap = self.lxMap * np.nan_to_num(1. / self.modLMap)
        self.lyHatMap = self.lyMap * np.nan_to_num(1. / self.modLMap)

        if kBeamX is not None:
            self.kBeamX = kBeamX
        else:
            self.kBeamX = 1.

        if kBeamY is not None:
            self.kBeamY = kBeamY
        else:
            self.kBeamY = 1.

        self.uClNow2d = {}
        self.uClFid2d = {}
        self.lClFid2d = {}
        self.noiseXX2d = {}
        self.noiseYY2d = {}

        if gradCut is not None:
            self.gradCut = gradCut
        else:
            self.gradCut = self.modLMap.max()

        self.Nlkk = {}
        self.pixScaleY, self.pixScaleX = enmap.pixshape(shape, wcs)
Exemplo n.º 6
0
    fkmaps = fftfast.fft(measured, axes=[-2, -1])
    if deconvolve_beam: fkmaps = np.nan_to_num(fkmaps / kbeam_dat)

    if maxlike and cluster:
        polcomb = "TT"
        fkmapsdc = np.nan_to_num(fkmaps / kbeam_dat)
        maps = enmap.samewcs(
            fftfast.ifft(fkmapsdc * fMaskCMB_T, normalize=True,
                         axes=[-2, -1]).real, measured)
        #kappa_model = init_kappa_model
        k = 0
        io.quickPlot2d(maps, out_dir + "map_iter_" + str(k).zfill(3) + ".png")

        from scipy.integrate import simps
        Ny, Nx = shape_dat[-2:]
        pixScaleY, pixScaleX = enmap.pixshape(shape_dat, wcs_dat)
        Ukappa = init_kappa_model
        Uft = fftfast.fft(Ukappa, axes=[-2, -1])
        Upower = np.real(Uft * Uft.conjugate())
        Nl2d = qest_maxlike.N.Nlkk[polcomb]
        area = Nx * Ny * pixScaleX * pixScaleY
        Upower = Upower * area / (Nx * Ny)**2
        wfilter = np.nan_to_num(Upower / Nl2d)

        #wfilter = np.nan_to_num(1./(qest_maxlike.N.Nlkk[polcomb]))
        # print wfilter.max()
        #wfilter = np.nan_to_num(qest_maxlike.N.clkk2d/(qest_maxlike.N.clkk2d+qest_maxlike.N.Nlkk[polcomb]))
        wfilter[wfilter > 1.e90] = 0.
        wfilter = wfilter / wfilter.max()
        wfilter[wfilter <= 0.] = 0.
        #io.quickPlot2d(np.fft.fftshift(wfilter),out_dir+"bwf2d.png")
Exemplo n.º 7
0
    offset_array = np.mean(offsets, 0)
    offset_det = offsets - offset_array
    ndet = len(offsets)
    if args.unskew == "curved":
        U = UnskewCurved(rhs.shape,
                         rhs.wcs,
                         pattern,
                         offset_array,
                         site,
                         order=args.order)
    elif args.unskew == "shift":
        U = UnskewShift(rhs.shape, rhs.wcs, pattern, offset_array, site)
    else:
        raise ValueError(args.unskew)
    scale = calc_scale(inspec.size, srate, speed,
                       enmap.pixshape(U.ushape, U.uwcs)[0])

    # Set up the inv noise matrix N. This should take a 2d ft of the
    # map as input, though it actually only cares about the y direction.
    N = NmatUncorr2(U.ushape, inspec, scale)

    # Set up the weight matrix W
    if args.cmode > 0:
        offset_upos = calc_offset_upos(pattern, offset_array, offset_det, site,
                                       rhs, U)
        corrfun = calc_cmode_corrfun(U.ushape, U.uwcs, offset_upos,
                                     corrfun_smoothing)
        W = WeightMat(U.ushape, corrfun, 4)  #ndet)
    else:
        W = None
Exemplo n.º 8
0
def get_ft_attributes_enmap(shape, wcs):
    Ny, Nx = shape[-2:]
    pixScaleY, pixScaleX = enmap.pixshape(shape, wcs)
    return get_ft_attributes(Ny, Nx, pixScaleY, pixScaleX)
Exemplo n.º 9
0
def simple_flipper_template_from_enmap(shape, wcs):
    Ny, Nx = shape[-2:]
    pixScaleY, pixScaleX = enmap.pixshape(shape, wcs)
    return simple_flipper_template(Ny, Nx, pixScaleY, pixScaleX)
Exemplo n.º 10
0
	def __init__(self, shape, wcs, pattern, offset, site, pad=2.0*utils.degree, order=0, subsample=2.0):
		"""Build an unskew operator that uses spline interpolation along an azimuth sweep
		to straighten out the scanning motion for one scanning pattern. Relatively slow, and
		leads to some smoothing due to the interpolation, but does not assume that dec changes
		with a constant speed during a sweep."""
		# Find the unskew transformation for this pattern.
		# We basically want dec->az and ra->ra0, with az spacing
		# similar to el spacing.
		ndec, nra = shape[-2:]
		info = calc_az_sweep(pattern, offset, site, pad=pad, subsample=subsample)
		sweep_ra, sweep_dec = info.sweep_cel
		#(sweep_ra, sweep_dec), naz, daz = calc_az_sweep(pattern, offset, site, pad=pad, subsample=subsample)
		# We want to be able to go from (y,x) to (ra,dec), with
		# dec = dec[y]
		# ra  = ra[y]-ra[0]+x
		# Precompute the pixel mapping. This will have the full witdh in ra,
		# but will be smaller in dec due to the limited az range.
		raw_dec, raw_ra = enmap.posmap(shape, wcs)
		skew_pos = np.zeros((2, info.naz, nra))
		skew_pos[0] = sweep_dec[:,None]
		skew_pos[1] = (sweep_ra-sweep_ra[0])[:,None] + raw_ra[None,ndec/2,:]
		skew_pix = enmap.sky2pix(shape, wcs, skew_pos).astype(dtype)
		# Build geometry for the unskewed system
		ushape, uwcs = enmap.geometry(pos=[0,0], shape=[info.naz, nra], res=[np.abs(info.daz), enmap.pixshape(shape,wcs)[1]], proj="car")
		# Save
		self.order    = order
		self.shape    = shape
		self.wcs      = wcs
		self.pattern  = pattern
		self.site     = site
		self.skew_pix = skew_pix
		# External interface
		self.ushape   = ushape
		self.uwcs     = uwcs
Exemplo n.º 11
0
	rhs  = enmap.ndmap(rhs,  wcs)
	hits = enmap.ndmap(hits, wcs)
	rhs  = prepare(rhs)
	hits = prepare(hits, hitmap=True)

	# Turn offsets into an average array offset and detector offsets relative to that,
	# and use the array offset to set up the Unskew matrix.
	offset_array = np.mean(offsets,0)
	offset_det   = offsets - offset_array
	ndet         = len(offsets)
	if args.unskew == "curved":
		U = UnskewCurved(rhs.shape, rhs.wcs, pattern, offset_array, site, order=args.order)
	elif args.unskew == "shift":
		U = UnskewShift(rhs.shape, rhs.wcs, pattern, offset_array, site)
	else: raise ValueError(args.unskew)
	scale = calc_scale(inspec.size, srate, speed, enmap.pixshape(U.ushape, U.uwcs)[0])

	# Set up the inv noise matrix N. This should take a 2d ft of the
	# map as input, though it actually only cares about the y direction.
	N = NmatUncorr2(U.ushape, inspec, scale)

	# Set up the weight matrix W
	if args.cmode > 0:
		offset_upos = calc_offset_upos(pattern, offset_array, offset_det, site, rhs, U)
		corrfun     = calc_cmode_corrfun(U.ushape, U.uwcs, offset_upos, corrfun_smoothing)
		W  = WeightMat(U.ushape, corrfun, 4)#ndet)
	else: W = None

	# The H in our equation is related to the hitcount, but isn't exactly it.
	# normalize_hits approximates it using the hitcounts.
	H = normalize_hits(hits)
Exemplo n.º 12
0
	rhs  = enmap.ndmap(rhs,  wcs)
	hits = enmap.ndmap(hits, wcs)
	rhs  = prepare(rhs)
	hits = prepare(hits, hitmap=True)

	# Turn offsets into an average array offset and detector offsets relative to that,
	# and use the array offset to set up the Unskew matrix.
	offset_array = np.mean(offsets,0)
	offset_det   = offsets - offset_array
	ndet         = len(offsets)
	if args.unskew == "curved":
		U = UnskewCurved(rhs.shape, rhs.wcs, pattern, offset_array, site, order=args.order)
	elif args.unskew == "shift":
		U = UnskewShift(rhs.shape, rhs.wcs, pattern, offset_array, site)
	else: raise ValueError(args.unskew)
	scale = calc_scale(inspec.size, srate, speed, enmap.pixshape(U.ushape, U.uwcs)[0])

	# Set up the inv noise matrix N. This should take a 2d ft of the
	# map as input, though it actually only cares about the y direction.
	N = NmatUncorr2(U.ushape, inspec, scale)

	# Set up the weight matrix W
	if args.cmode > 0:
		offset_upos = calc_offset_upos(pattern, offset_array, offset_det, site, rhs, U)
		corrfun     = calc_cmode_corrfun(U.ushape, U.uwcs, offset_upos, corrfun_smoothing)
		W  = WeightMat(U.ushape, corrfun, 4)#ndet)
	else: W = None

	# The H in our equation is related to the hitcount, but isn't exactly it.
	# normalize_hits approximates it using the hitcounts.
	H = normalize_hits(hits)