Exemplo n.º 1
0
def rand_map_flat(shape,
                  wcs,
                  ps,
                  lmax=None,
                  lens=True,
                  aberrate=True,
                  beta=None,
                  dir=None,
                  seed=None,
                  dtype=None,
                  verbose=False,
                  recenter=False,
                  pad=0):
    """Simulate a random flat-sky map. The input spectrum should be
	[{phi,T,E,B},{phi,T,E,b},nl] of lens is True, and just [{T,E,B},{T,E,B},nl]
	otherwise."""
    if dtype is None: dtype = np.float64
    if dir is None: dir = aberration.dir_equ
    if beta is None: beta = aberration.beta
    ctype = np.result_type(dtype, 0j)
    if verbose: print "Generating unlensed cmb"
    # No position calculation necessary if we're not lensing or aberrating.
    if not lens and not aberrate:
        return enmap.rand_map(shape, wcs, ps, seed=seed)
    # Otherwise we must deal with various displacements
    if aberrate: pad += np.pi * beta * 1.2
    pad_pix = int(pad / enmap.pixsize(shape, wcs)**0.5)
    if pad_pix > 0:
        if verbose: print "Padding"
        template = enmap.zeros(shape, wcs, np.int16)
        template, pslice = enmap.pad(template, pad_pix, return_slice=True)
        pshape, pwcs = template.shape, template.wcs
    else:
        pshape, pwcs = shape, wcs
    # Simulate (padded) lensing map
    if lens:
        maps = enmap.rand_map((ps.shape[0], ) + pshape[-2:], pwcs, ps)
        phi, unlensed = maps[0], maps[1:]
        if verbose: print "Lensing"
        m = lensing.lens_map_flat(unlensed, phi)
    else:
        m = enmap.rand_map((ps.shape[0], ) + pshape[-2:], pwcs, ps)
    # Then handle aberration if necessary
    if aberrate:
        if verbose: print "Computing aberration displacement"
        pos = m.posmap()
        pos = enmap.samewcs(
            aberration.remap(pos[1::-1], dir=dir, beta=beta,
                             recenter=recenter), pos)
        amp = pos[3]
        pos = pos[1::-1]
        if verbose: print "Interpolating aberration"
        m = enmap.samewcs(m.at(pos, mask_nan=False), m)
        if verbose: print "Applying modulation"
        m *= amp
    if pad_pix > 0:
        if verbose: print "Unpadding"
        m = m[pslice]
    return m
Exemplo n.º 2
0
     ps = powspec.read_camb_full_lens(args.powspec).astype(dtype)
     if args.beam:
         raise NotImplementedError("Beam not supported for lensed sims yet")
     if args.geometry == "curved":
         m, = lensing.rand_map(shape,
                               wcs,
                               ps,
                               lmax=lmax,
                               maplmax=maplmax,
                               seed=(seed, i),
                               verbose=verbose,
                               dtype=dtype)
     else:
         maps = enmap.rand_map((shape[0] + 1, ) + shape[1:], wcs, ps)
         phi, unlensed = maps[0], maps[1:]
         m = lensing.lens_map_flat(unlensed, phi)
 else:
     ps = powspec.read_spectrum(args.powspec).astype(type)
     beam = make_beam(ps.shape[-1], args.beam * utils.arcmin * utils.fwhm)
     ps *= beam
     if args.geometry == "curved":
         m = curvedsky.rand_map(shape,
                                wcs,
                                ps,
                                lmax=lmax,
                                seed=(seed, i),
                                method=args.method,
                                direct=args.direct,
                                dtype=dtype,
                                verbose=verbose)
     else:
Exemplo n.º 3
0
		enmap.write_map("%s/%02d_%s_tqu.hdf" % (dir,i+1,desc), tqu)
		enmap.write_map("%s/%02d_%s_teb.hdf" % (dir,i+1,desc), teb)

cl_scal, cl_phi = powspec.read_camb_scalar(args.scal_cls, expand=True)
cl_tens = powspec.read_spectrum(args.tens_cls, expand="diag")
cl_cmb  = cl_scal+cl_tens
np.random.seed(args.seed)

res = bunch.Bunch(tqu=[],teb=[],desc=[])

# 1. Start with last scattering
cmb   = enmap.rand_map(shape, wcs, cl_cmb)
m     = cmb; add(res, m, "cmb")
# 2. Add lensing
phi   = enmap.rand_map(shape[-2:], wcs, cl_phi)
lcmb  = lensing.lens_map_flat(cmb, phi)
m     = lcmb; add(res, m, "lens")
# 3. Add point sources
pinfo = parse_points(args.ptsrc)
pmap  = sim_points(shape, wcs, pinfo)
m    += pmap; add(res, m, "ptsrc")
# 4. Add sz clusters
zinfo = parse_points(args.sz)
zmap  = sim_points(shape, wcs, zinfo)
m    += zmap; add(res, m, "sz")
# 5. Add faraday rotation (probably invisible)
m = enmap.rotate_pol(m, args.faraday)
add(res, m, "faraday")
# 6. Add dust (as a representative galactic foreground)
cl_dust = parse_powlaw(args.dust)
dust = enmap.rand_map(shape, wcs, cl_dust)
Exemplo n.º 4
0
verbose = args.verbose - args.quiet > 0
def make_beam(nl, bsize):
	l = np.arange(nl)
	return np.exp(-l*(l+1)*bsize**2)

for i in range(comm.rank, args.nsim, comm.size):
	if args.lensed:
		ps = powspec.read_camb_full_lens(args.powspec).astype(dtype)
		if args.beam:
			raise NotImplementedError("Beam not supported for lensed sims yet")
		if args.geometry == "curved":
			m, = lensing.rand_map(shape, wcs, ps, lmax=lmax, maplmax=maplmax, seed=(seed,i), verbose=verbose, dtype=dtype)
		else:
			maps = enmap.rand_map((shape[0]+1,)+shape[1:], wcs, ps)
			phi, unlensed = maps[0], maps[1:]
			m = lensing.lens_map_flat(unlensed, phi)
	else:
		ps = powspec.read_spectrum(args.powspec).astype(type)
		beam = make_beam(ps.shape[-1], args.beam*utils.arcmin*utils.fwhm)
		ps *= beam
		if args.geometry == "curved":
			m = curvedsky.rand_map(shape, wcs, ps, lmax=lmax, seed=(seed,i), method=args.method, direct=args.direct, dtype=dtype, verbose=verbose)
		else:
			m = enmap.rand_map(shape, wcs, ps)

	if args.nsim == 1:
		if verbose: print "Writing %s" % args.ofile
		enmap.write_map(args.ofile, m)
	else:
		if verbose: print "Writing %s" % (args.ofile % i)
		enmap.write_map(args.ofile % i, m)
Exemplo n.º 5
0
box   = np.array([[-w,-w],[w,w]])/2
wcs   = enmap.create_wcs(shape, box)

cl_scal, cl_phi = powspec.read_camb_scalar(args.scal_cls, expand=True)
cl_tens = powspec.read_spectrum(args.tens_cls, expand="diag")

## Generate scalar-only lensed and unlensed map
#m_scal_u, m_scal_l = lensing.rand_map(shape, wcs, cl_scal, cl_phi, seed=args.seed, output="ul", verbose=args.verbose)
## Generate tensor-only lensed and unlensed map
#m_tens_u, m_tens_l = lensing.rand_map(shape, wcs, cl_tens, cl_phi, seed=args.seed, output="ul", verbose=args.verbose)

np.random.seed(args.seed)
phi      = enmap.rand_map(shape[-2:], wcs, cl_phi)
m_scal_u = enmap.rand_map(shape, wcs, cl_scal)
m_tens_u = enmap.rand_map(shape, wcs, cl_tens)
m_scal_l = lensing.lens_map_flat(m_scal_u, phi)
m_tens_l = lensing.lens_map_flat(m_tens_u, phi)

# And the sums
m_tot_u = m_scal_u + m_tens_u
m_tot_l = m_scal_l + m_tens_l

# Convert from TQU to TEB and downgrade
def to_eb(m): return enmap.ifft(enmap.map2harm(m)).real
m_scal_u, m_scal_l, m_tens_u, m_tens_l, m_tot_u, m_tot_l = [enmap.downgrade(to_eb(i),os) for i in [m_scal_u, m_scal_l, m_tens_u, m_tens_l, m_tot_u, m_tot_l]]

# And output
utils.mkdir(args.odir)
enmap.write_map(args.odir + "/map_scalar.fits", m_scal_u)
enmap.write_map(args.odir + "/map_tensor.fits", m_tens_u)
enmap.write_map(args.odir + "/map_tot.fits", m_tot_u)