Exemplo n.º 1
0
 def get_colorbar_plot(self, bounds=(0,1)):
     """
     Create a colorbar plot to be added to a plot-container
     
     Arguments:
     bounds -- (min, max) tuple sets the intensity range for the colormap
     
     Returns a Chaco2 Plot object containing the colorbar.        
     """
     cb_rgba = array_to_rgba(
         N.repeat(N.linspace(1, 0, num=1024)[:,N.newaxis], 20, axis=1), 
         cmap=self.get_colormap_object())
     if self._cbar_orientation is 'h':
          cb_rgba = cb_rgba.T[::-1]
     data = ArrayPlotData(colorbar=cb_rgba)
     
     # Create the plot object
     cb = Plot(data, width=self._cbar_width, resizable=self._cbar_orientation, 
         padding_left=0, padding_top=0)
     cb.img_plot('colorbar', name='colorbar', xbounds=bounds, ybounds=bounds,
         origin='top left')
     
     # Plot tweaks
     if self._cbar_orientation is 'v':
         cb.x_axis.visible = False
         cb.y_axis.orientation = 'right'
     else:
         cb.y_axis.visible = False
         cb.x_axis.orientation = 'bottom'
 
     return cb
Exemplo n.º 2
0
    def render_image(self):
        plot = Plot(self.img_plotdata, default_origin="top left")
        img = plot.img_plot("imagedata", colormap=gray)[0]
        plot.title = "%s of %s: " % (self.img_idx + 1,
                                     self.numfiles) + self.titles[self.img_idx]
        plot.aspect_ratio = float(self.sig.data.shape[1]) / float(
            self.sig.data.shape[0])

        #if not self.ShowCC:
        csr = CursorTool(img,
                         drag_button='left',
                         color='white',
                         line_width=2.0)
        self.csr = csr
        csr.current_position = self.left, self.top
        img.overlays.append(csr)

        # attach the rectangle tool
        plot.tools.append(PanTool(plot, drag_button="right"))
        zoom = ZoomTool(plot,
                        tool_mode="box",
                        always_on=False,
                        aspect_ratio=plot.aspect_ratio)
        plot.overlays.append(zoom)
        self.img_plot = plot
        return plot
 def __init__(self, **traits):
     super(PointSelectionDemo, self).__init__(**traits)
     x = np.random.rand(100)
     y = np.random.rand(100)
     data = ArrayPlotData(x=x, y=y)
     
     
     plot = Plot(data, padding=25) 
     self.scatter = scatter = plot.plot(("x", "y"), type="scatter", marker_size=4)[0] 
     
     self.select_tools = {}
     for i, c in enumerate(Colors.keys()):
         hover_name = "hover_%s" % c
         selection_name = "selections_%s" % c
         self.select_tools[c] = ScatterInspector(scatter,  
             hover_metadata_name=hover_name, 
             selection_metadata_name=selection_name)
          
         scatter.overlays.append(ScatterInspectorOverlay(scatter,  
             hover_metadata_name = hover_name,
             selection_metadata_name=selection_name,
             hover_color = "transparent",
             hover_outline_color = c,
             hover_marker_size = 6,
             hover_line_width = 1,
             selection_color = Colors[c],
         ))            
         
     scatter.active_tool = self.select_tools[self.color] 
     scatter.index.on_trait_change(self.selection_changed, 'metadata_changed') 
     self.plot = plot
     self.data = data
Exemplo n.º 4
0
    def __init__(self, signal_instance):
        super(TemplatePicker, self).__init__()
        try:
            import cv
        except:
            print "OpenCV unavailable.  Can't do cross correlation without it.  Aborting."
            return None
        self.OK_custom = OK_custom_handler()
        self.sig = signal_instance
        if not hasattr(self.sig.mapped_parameters, "original_files"):
            self.sig.data = np.atleast_3d(self.sig.data)
            self.titles = [self.sig.mapped_parameters.name]
        else:
            self.numfiles = len(
                self.sig.mapped_parameters.original_files.keys())
            self.titles = self.sig.mapped_parameters.original_files.keys()
        tmp_plot_data = ArrayPlotData(
            imagedata=self.sig.data[self.top:self.top + self.tmp_size,
                                    self.left:self.left + self.tmp_size,
                                    self.img_idx])
        tmp_plot = Plot(tmp_plot_data, default_origin="top left")
        tmp_plot.img_plot("imagedata", colormap=jet)
        tmp_plot.aspect_ratio = 1.0
        self.tmp_plot = tmp_plot
        self.tmp_plotdata = tmp_plot_data
        self.img_plotdata = ArrayPlotData(
            imagedata=self.sig.data[:, :, self.img_idx])
        self.img_container = self._image_plot_container()

        self.crop_sig = None
Exemplo n.º 5
0
def _create_plot_component(obj):
    # Setup the spectrum plot
    frequencies = linspace(0.0, MAX_FREQ, num=MAX_FREQN)
    obj.spectrum_data = ArrayPlotData(frequency=frequencies)
    empty_amplitude = zeros(MAX_FREQN)
    obj.spectrum_data.set_data("amplitude", empty_amplitude)

    obj.spectrum_plot = Plot(obj.spectrum_data)
    obj.spectrum_plot.plot(("frequency", "amplitude"), name="Spectrum", color="red")
    obj.spectrum_plot.padding = 50
    obj.spectrum_plot.title = "Spectrum"
    spec_range = obj.spectrum_plot.plots.values()[0][0].value_mapper.range
    spec_range.low = 0.0
    spec_range.high = 150.0  # spectrum amplitude maximum
    obj.spectrum_plot.index_axis.title = "Frequency (hz)"
    obj.spectrum_plot.value_axis.title = "Amplitude"

    # Time Series plot
    times = linspace(0.0, float(TIME_NUM_SAMPLES) / SAMPLING_RATE, num=TIME_NUM_SAMPLES)
    obj.time_data = ArrayPlotData(time=times)
    empty_amplitude = zeros(TIME_NUM_SAMPLES)
    obj.time_data.set_data("amplitude", empty_amplitude)
    obj.time_data.set_data("amplitude_1", empty_amplitude)

    obj.time_plot = Plot(obj.time_data)
    obj.time_plot.plot(("time", "amplitude"), name="Time", color="blue", alpha=0.5)
    obj.time_plot.plot(("time", "amplitude_1"), name="Time", color="red", alpha=0.5)

    obj.time_plot.padding = 50
    obj.time_plot.title = "Time"
    obj.time_plot.index_axis.title = "Time (seconds)"
    obj.time_plot.value_axis.title = "Amplitude"
    time_range = obj.time_plot.plots.values()[0][0].value_mapper.range
    time_range.low = -1
    time_range.high = 1

    # Spectrogram plot
    spectrogram_data = zeros((MAX_FREQN, SPECTROGRAM_LENGTH))
    obj.spectrogram_plotdata = ArrayPlotData()
    obj.spectrogram_plotdata.set_data("imagedata", spectrogram_data)
    spectrogram_plot = Plot(obj.spectrogram_plotdata)
    max_time = float(SPECTROGRAM_LENGTH * NUM_SAMPLES) / SAMPLING_RATE
    # max_freq = float(SAMPLING_RATE / 2)
    max_freq = float(MAX_FREQ)
    spectrogram_plot.img_plot(
        "imagedata", name="Spectrogram", xbounds=(0, max_time), ybounds=(0, max_freq), colormap=jet
    )
    range_obj = spectrogram_plot.plots["Spectrogram"][0].value_mapper.range
    range_obj.high = 2  # brightness of specgram
    range_obj.low = 0.0
    range_obj.edit_traits()
    spectrogram_plot.title = "Spectrogram"
    obj.spectrogram_plot = spectrogram_plot

    container = HPlotContainer()
    container.add(obj.spectrum_plot)
    container.add(obj.time_plot)
    container.add(spectrogram_plot)

    return container
Exemplo n.º 6
0
 def _create_corr_plot(self):
     plot = Plot(self.plotdata, padding=0)
     plot.padding_left = 25
     plot.padding_bottom = 25
     plot.tools.append(PanTool(plot))
     plot.overlays.append(ZoomTool(plot))
     self.corr_plot = plot
Exemplo n.º 7
0
def _create_plot_component():

    # Create a random scattering of XY pairs
    x = random.uniform(0.0, 10.0, 50)
    y = random.uniform(0.0, 5.0, 50)
    pd = ArrayPlotData(x = x, y = y)
    plot = Plot(pd, border_visible=True, overlay_border=True)

    scatter = plot.plot(("x", "y"), type="scatter", color="lightblue")[0]

    # Tweak some of the plot properties
    plot.set(title="Scatter Inspector Demo", padding=50)

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot))
    plot.overlays.append(ZoomTool(plot))

    # Attach the inspector and its overlay
    scatter.tools.append(ScatterInspector(scatter))
    overlay = ScatterInspectorOverlay(scatter,
                    hover_color="red",
                    hover_marker_size=6,
                    selection_marker_size=6,
                    selection_color="yellow",
                    selection_outline_color="purple",
                    selection_line_width=3)
    scatter.overlays.append(overlay)

    return plot
Exemplo n.º 8
0
 def __init__(self, filename, dataname1, dataname2, unit):
     super(doubleplott, self).__init__()
     
     with h5py.File(filename, 'r') as f:
         vdata1 = f['log'][dataname1].value [1:]
         tdata1 = f['log'][dataname2+'_time'].value [1:]
         vdata2 = f['log'][dataname2].value [1:]
         tdata2 = f['log'][dataname2+'_time'].value [1:]
     
     startend = measure(tdata1, tdata2)
     vlist1 = timegrid(startend[0], startend[1], unit, tdata1, vdata1)
     vlist2 = timegrid(startend[0], startend[1], unit, tdata2, vdata2)
     #print[vlist1]
     #print[vlist2]
     result = mfilter(vlist1,vlist2)
         
     
     plotdata = ArrayPlotData(x = result[0], y = result[1])
     plotm = Plot(plotdata)
     plotm.plot(("x", "y"), type="scatter", color="red")
     plotm.title = dataname1+'-'+dataname2+'-plot'
     self.plot = plotm
     
     plotm.tools.append(PanTool(plotm))
     plotm.tools.append(ZoomTool(plotm))
     plotm.tools.append(DragZoom(plotm, drag_button="right"))
Exemplo n.º 9
0
def _create_plot_component():

    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 40)
    pd = ArrayPlotData(index = x, y0=jn(0,x))

    # Create some line plots of some of the data
    plot1 = Plot(pd, title="render_style = hold", padding=50, border_visible=True,
                 overlay_border = True)
    plot1.legend.visible = True
    lineplot = plot1.plot(("index", "y0"), name="j_0", color="red", render_style="hold")

    # Attach some tools to the plot
    attach_tools(plot1)

    # Create a second scatter plot of one of the datasets, linking its
    # range to the first plot
    plot2 = Plot(pd, range2d=plot1.range2d, title="render_style = connectedhold",
                 padding=50, border_visible=True, overlay_border=True)
    plot2.plot(('index', 'y0'), color="blue", render_style="connectedhold")
    attach_tools(plot2)

    # Create a container and add our plots
    container = HPlotContainer()
    container.add(plot1)
    container.add(plot2)
    return container
Exemplo n.º 10
0
    def _create_returns_plot(self):
        plot = Plot(self.plotdata)
        plot.legend.visible = True
        #FIXME: The legend move tool doesn't seem to quite work right now
        #plot.legend.tools.append(LegendTool(plot.legend))
        plot.x_axis = None
        x_axis = PlotAxis(plot, orientation="bottom",
                        tick_generator=ScalesTickGenerator(scale=CalendarScaleSystem()))
        plot.overlays.append(x_axis)
        plot.x_grid.tick_generator = x_axis.tick_generator
        for i, name in enumerate(self.plotdata.list_data()):
            if name == "times":
                continue
            renderer = plot.plot(("times", name), type="line", name=name,
                                  color=tuple(COLOR_PALETTE[i]))[0]

        # Tricky: need to set auto_handle_event on the RangeSelection
        # so that it passes left-clicks to the PanTool
        # FIXME: The range selection is still getting the initial left down
        renderer.tools.append(RangeSelection(renderer, left_button_selects = False,
            auto_handle_event = False))
        plot.tools.append(PanTool(plot, drag_button="left", constrain=True,
            constrain_direction="x"))
        plot.overlays.append(ZoomTool(plot, tool_mode="range", max_zoom_out=1.0))
        # Attach the range selection to the last renderer; any one will do
        self._range_selection_overlay = RangeSelectionOverlay(renderer,
                                    metadata_name="selections")
        renderer.overlays.append(self._range_selection_overlay)
        # Grab a reference to the Time axis datasource and add a listener to its
        # selections metadata
        self.times_ds = renderer.index
        self.times_ds.on_trait_change(self._selections_changed, 'metadata_changed')
        self.returns_plot = plot
Exemplo n.º 11
0
def _create_plot_component():# Create a scalar field to colormap
    xbounds = (-2*pi, 2*pi, 600)
    ybounds = (-1.5*pi, 1.5*pi, 300)
    xs = linspace(*xbounds)
    ys = linspace(*ybounds)
    x, y = meshgrid(xs,ys)
    z = sin(x)*y

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("imagedata", z)

    # Create the plot
    plot = Plot(pd)
    img_plot = plot.img_plot("imagedata",
                             xbounds = xbounds[:2],
                             ybounds = ybounds[:2],
                             colormap=jet)[0]

    # Tweak some of the plot properties
    plot.title = "My First Image Plot"
    plot.padding = 50

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)
    imgtool = ImageInspectorTool(img_plot)
    img_plot.tools.append(imgtool)
    overlay = ImageInspectorOverlay(component=img_plot, image_inspector=imgtool,
                                    bgcolor="white", border_visible=True)

    img_plot.overlays.append(overlay)
    return plot
Exemplo n.º 12
0
    def _main_tab_default(self):
        self.sal_plot = Plot(self.plot_data)
        self.sal_plot.plot(('time_ds', 'sal_ds'), type='line')
        #sal_plot.overlays.append(PlotAxis(sal_plot, orientation='left'))
        #bottom_axis = PlotAxis(sal_plot, orientation="bottom",# mapper=xmapper,
        #                   tick_generator=ScalesTickGenerator(scale=CalendarScaleSystem()))
        #sal_plot.overlays.append(bottom_axis)

        #hgrid, vgrid = add_default_grids(sal_plot)
        #vgrid.tick_generator = bottom_axis.tick_generator
        #sal_plot.tools.append(PanTool(sal_plot, constrain=True,
        #                              constrain_direction="x"))
        #sal_plot.overlays.append(ZoomTool(sal_plot, drag_button="right",
        #                                  always_on=True,
        #                                  tool_mode="range",
        #                                  axis="index",
        #                                  max_zoom_out_factor=10.0,
        #                                  ))

        container = VPlotContainer(bgcolor="lightblue",
                                   spacing=40,
                                   padding=50,
                                   fill_padding=False)
        container.add(sal_plot)
        #container.add(price_plot)
        #container.overlays.append(PlotLabel("Salinity Plot with Date Axis",
        #                                    component=container,
        #                                    #font="Times New Roman 24"))
        #                                    font="Arial 24"))
        return container
Exemplo n.º 13
0
def _create_plot_component():# Create a scalar field to colormap
    xbounds = (-2*pi, 2*pi, 600)
    ybounds = (-1.5*pi, 1.5*pi, 300)
    xs = linspace(*xbounds)
    ys = linspace(*ybounds)
    x, y = meshgrid(xs,ys)
    z = sin(x)*y

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("imagedata", z)

    # Create the plot
    plot = Plot(pd)
    img_plot = plot.img_plot("imagedata",
                             xbounds=xbounds[:2],
                             ybounds=ybounds[:2],
                             colormap=jet)[0]

    # Tweak some of the plot properties
    plot.title = "Image Plot with Lasso"
    plot.padding = 50

    lasso_selection = LassoSelection(component=img_plot)
    lasso_selection.on_trait_change(lasso_updated, "disjoint_selections")
    lasso_overlay = LassoOverlay(lasso_selection = lasso_selection, component=img_plot)
    img_plot.tools.append(lasso_selection)
    img_plot.overlays.append(lasso_overlay)
    return plot
    def __init__(self):       
        self.data = ArrayPlotData()
        self.set_empty_data()
        self.plot = Plot(self.data, padding=10)
        scatter = self.plot.plot(("x","y", "c"), type="cmap_scatter", 
            marker_size=1, color_mapper=make_color_map(), line_width=0)[0]
        self.plot.x_grid.visible = False
        self.plot.y_grid.visible = False
        self.plot.x_axis.visible = False
        self.plot.y_axis.visible = False
        self.tool = TrianglesTool(self.plot)
        self.plot.overlays.append(self.tool)

        try:
            with file("ifs_chaco.data","rb") as f:
                tmp = pickle.load(f)
                self.ifs_names = [x[0] for x in tmp]                
                self.ifs_points = [np.array(x[1]) for x in tmp]

            if len(self.ifs_names) > 0:
                self.current_name = self.ifs_names[-1]
        except:
            pass 
        
        self.tool.on_trait_change(self.triangle_changed, 'changed')
        self.timer = Timer(10, self.ifs_calculate)       
def makeplot2( x,y,title):
  plotdata = ArrayPlotData(x=x, y=y ) #, y2=y2, y3=y3 )
  plot = Plot(plotdata)
  plot.plot(("x", "y"), type="line", color="blue")
  plot.title = title
  
  return plot
Exemplo n.º 16
0
class MyPlot(HasTraits):
    """ Displays a plot with a few buttons to control which overlay
        to display
    """
    plot = Instance(Plot)

    traits_view = View(Item('plot', editor=ComponentEditor(), show_label=False),
                        resizable=True)

    def __init__(self, x_index, y_index, data, **kw):
        super(MyPlot, self).__init__(**kw)

        # Create the data source for the MultiLinePlot.
        ds = MultiArrayDataSource(data=data)

        xs = ArrayDataSource(x_index, sort_order='ascending')
        xrange = DataRange1D()
        xrange.add(xs)

        ys = ArrayDataSource(y_index, sort_order='ascending')
        yrange = DataRange1D()
        yrange.add(ys)

        mlp = MultiLinePlot(
                        index = xs,
                        yindex = ys,
                        index_mapper = LinearMapper(range=xrange),
                        value_mapper = LinearMapper(range=yrange),
                        value=ds,
                        global_max = data.max(),
                        global_min = data.min(),
                        **kw)

        self.plot = Plot()
        self.plot.add(mlp)
Exemplo n.º 17
0
    def _plot_update(self):
        num_display_points = 100 * 25  # For 1000 Hz

        if self.model.master_index > num_display_points:
            disp_begin = self.model.master_index - num_display_points
            disp_end = self.model.master_index
            print 'disp_begin', disp_begin
            print 'disp_end', disp_end
            ydata = self.clean_time_series(
                np.array(self.model._ydata[disp_begin:disp_end]))
            xdata = np.array(self.model._tdata[disp_begin:disp_end])

            self.plot_data.set_data("y", ydata)
            self.plot_data.set_data("x", xdata)

        else:
            self.plot_data.set_data(
                "y",
                self.clean_time_series(
                    self.model._ydata[0:self.model.master_index]))
            self.plot_data.set_data(
                "x", self.model._tdata[0:self.model.master_index])

        self.plot = Plot(self.plot_data)

        #        self.plot.delplot('old')
        the_plot = self.plot.plot(("x", "y"),
                                  type="line",
                                  name='old',
                                  color="green")[0]
        self.plot.request_redraw()
Exemplo n.º 18
0
def _create_plot_component():
    pd = ArrayPlotData(x=random(100), y=random(100))

    # Create some line plots of some of the data
    plot = Plot(pd)

    # Create a scatter plot and get a reference to it (separate from the
    # Plot object) because we'll need it for the regression tool below.
    scatterplot = plot.plot(("x", "y"), color="blue", type="scatter")[0]

    # Tweak some of the plot properties
    plot.padding = 50

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot, drag_button="right"))
    plot.overlays.append(ZoomTool(plot))

    # Add the regression tool and overlay.  These need to be added
    # directly to the scatterplot instance (and not the Plot instance).
    regression = RegressionLasso(scatterplot,
        selection_datasource=scatterplot.index)
    scatterplot.tools.append(regression)
    scatterplot.overlays.append(RegressionOverlay(scatterplot,
                                                  lasso_selection=regression))
    return plot
Exemplo n.º 19
0
def _create_plot_component():

    # Create some RGBA image data
    image = zeros((200,400,4), dtype=uint8)
    image[:,0:40,0] += 255     # Vertical red stripe
    image[0:25,:,1] += 255     # Horizontal green stripe; also yellow square
    image[-80:,-160:,2] += 255 # Blue square
    image[:,:,3] = 255

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("imagedata", image)

    # Create the plot
    plot = Plot(pd, default_origin="top left")
    plot.x_axis.orientation = "top"
    img_plot = plot.img_plot("imagedata")[0]

    # Tweak some of the plot properties
    plot.bgcolor = "white"

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot, constrain_key="shift"))
    plot.overlays.append(ZoomTool(component=plot,
                                    tool_mode="box", always_on=False))

    imgtool = ImageInspectorTool(img_plot)
    img_plot.tools.append(imgtool)
    plot.overlays.append(ImageInspectorOverlay(component=img_plot,
                                               image_inspector=imgtool))
    return plot
Exemplo n.º 20
0
  def __init__(self, link):
    super(SolutionView, self).__init__()

    self.link = link
    self.link.add_callback(MSG_SOLUTION, self.solution_callback)
    self.link.add_callback(MSG_SOLUTION_DOPS, self.dops_callback)
    self.link.add_callback(MSG_SOLUTION_PRS, self.prs_callback)
    self.link.add_callback(MSG_SOLUTION_PRED_PRS, self.pred_prs_callback)

    self.plot_data = ArrayPlotData(n=[0.0], e=[0.0], h=[0.0], t=[0.0], ref_n=[0.0], ref_e=[0.0])
    self.plot = Plot(self.plot_data) #, auto_colors=colours_list)
    self.plot.plot(('n', 'e'), type='scatter', color='blue', marker='plus')
    self.plot.plot(('ref_n', 'ref_e'),
        type='scatter',
        color='red',
        marker='cross',
        marker_size=10,
        line_width=1.5
    )
    #self.plot.plot(('h', 'e'), type='line', color='red')

    self.pr_plot_data = ArrayPlotData(t=[0.0])
    self.pr_plot = Plot(self.pr_plot_data, auto_colors=colours_list)
    self.pr_plot.value_range.tight_bounds = False
    #self.pr_plot.value_range.low_setting = 0.0
    for n in range(TRACK_N_CHANNELS):
      self.pr_plot_data.set_data('prs'+str(n), [0.0])
      self.pr_plot.plot(('t', 'prs'+str(n)), type='line', color='auto')
      #self.pr_plot_data.set_data('pred_prs'+str(n), [0.0])
      #self.pr_plot.plot(('t', 'pred_prs'+str(n)), type='line', color='auto')

    self.python_console_cmds = {
      'solution': self
    }
Exemplo n.º 21
0
    def _image_plot_default(self):
        plot = Plot(self.image_data, default_origin="top left")
        #plot.x_axis.orientation = "top"
        img_plot = plot.img_plot("image_data")[0]

        plot.bgcolor = "black"
        return plot
Exemplo n.º 22
0
def _create_plot_component():
    # Create a scalar field to colormap
    xs = linspace(0, 10, 600)
    ys = linspace(0, 5, 600)
    x, y = meshgrid(xs, ys)
    z = exp(-(x**2 + y**2) / 100)

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("imagedata", z)

    # Create the plot
    plot = Plot(pd)
    img_plot = plot.img_plot("imagedata",
                             xbounds=(0, 10),
                             ybounds=(0, 5),
                             colormap=jet)[0]

    # Tweak some of the plot properties
    plot.title = "My First Image Plot"
    plot.padding = 50

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot))
    zoom = ZoomTool(component=img_plot, tool_mode="box", always_on=False)
    img_plot.overlays.append(zoom)
    return plot
 def __init__(self):
     x, y = np.ogrid[-2*np.pi:2*np.pi:256j, -2*np.pi:2*np.pi:256j]
     self.img_data = np.sin(x)*y
     #self.img_mask = np.zeros((len(x), len(y[0]), 4), dtype=np.uint8)
     #self.img_mask[:, :, 3] = 255
     self.img_index = np.array(list((np.broadcast(y, x))))
     
     plotdata = ArrayPlotData(img_data=self.img_data, mask_data=self.img_data) 
     plot1 = Plot(plotdata, padding=10) 
     img_plot = plot1.img_plot("img_data",
         xbounds=(np.min(x), np.max(x)),
         ybounds=(np.min(y), np.max(y)))[0]
    
     self.lasso = LassoSelection(img_plot)
     img_plot.tools.append(self.lasso)
     self.ll = LassoOverlay(img_plot, lasso_selection=self.lasso)
     img_plot.overlays.append(self.ll)
     self.lasso.on_trait_change(self._selection_changed, 'selection_completed')
     
     plot2 = Plot(plotdata, padding=10)
     plot2.img_plot("mask_data")
    
     self.plot = HPlotContainer(plot1, plot2)
     self.plot1 = plot1
     self.plot2 = plot2
     self.plotdata = plotdata
Exemplo n.º 24
0
def _do_plot_boilerplate(kwargs, image=False):
    """ Used by various plotting functions.  Checks/handles hold state,
    returns a Plot object for the plotting function to use.
    """

    if kwargs.has_key("hold"):
        hold(kwargs["hold"])
        del kwargs["hold"]

    # Check for an active window; if none, open one.
    if len(session.windows) == 0:
        if image:
            win = session.new_window(is_image=True)
            activate(win)
        else:
            figure()

    cont = session.active_window.get_container()

    if not cont:
        cont = Plot(session.data)
        session.active_window.set_container(cont)

    existing_tools = [type(t) for t in (cont.tools + cont.overlays)]
    if not PanTool in existing_tools:
        cont.tools.append(PanTool(cont))
    if not ZoomTool in existing_tools:
        cont.overlays.append(ZoomTool(cont, tool_mode="box", always_on=True, drag_button="right"))

    if not session.hold:
        cont.delplot(*cont.plots.keys())

    return cont
 def __init__(self, **traits):
     super(PointSelectionDemo, self).__init__(**traits)
     x = np.random.rand(100)
     y = np.random.rand(100)
     data = ArrayPlotData(x=x, y=y)
     
     
     plot = Plot(data, padding=25) 
     self.scatter = scatter = plot.plot(("x", "y"), type="scatter", marker_size=4)[0] 
     
     self.select_tools = {}
     for i, c in enumerate(Colors.keys()):
         hover_name = "hover_%s" % c
         selection_name = "selections_%s" % c
         self.select_tools[c] = ScatterInspector(scatter,  
             hover_metadata_name=hover_name, 
             selection_metadata_name=selection_name)
          
         scatter.overlays.append(ScatterInspectorOverlay(scatter,  
             hover_metadata_name = hover_name,
             selection_metadata_name=selection_name,
             hover_color = "transparent",
             hover_outline_color = c,
             hover_marker_size = 6,
             hover_line_width = 1,
             selection_color = Colors[c],
         ))            
         
     scatter.active_tool = self.select_tools[self.color] 
     scatter.index.on_trait_change(self.selection_changed, 'metadata_changed') 
     self.plot = plot
     self.data = data
Exemplo n.º 26
0
    def __init__(self, signal_instance):
        super(TemplatePicker, self).__init__()
        try:
            import cv
        except:
            print "OpenCV unavailable.  Can't do cross correlation without it.  Aborting."
            return None
        self.OK_custom=OK_custom_handler()
        self.sig=signal_instance
        if not hasattr(self.sig.mapped_parameters,"original_files"):
            self.sig.data=np.atleast_3d(self.sig.data)
            self.titles=[self.sig.mapped_parameters.name]
        else:
            self.numfiles=len(self.sig.mapped_parameters.original_files.keys())
            self.titles=self.sig.mapped_parameters.original_files.keys()
        tmp_plot_data=ArrayPlotData(imagedata=self.sig.data[self.top:self.top+self.tmp_size,self.left:self.left+self.tmp_size,self.img_idx])
        tmp_plot=Plot(tmp_plot_data,default_origin="top left")
        tmp_plot.img_plot("imagedata", colormap=jet)
        tmp_plot.aspect_ratio=1.0
        self.tmp_plot=tmp_plot
        self.tmp_plotdata=tmp_plot_data
        self.img_plotdata=ArrayPlotData(imagedata=self.sig.data[:,:,self.img_idx])
        self.img_container=self._image_plot_container()

        self.crop_sig=None
Exemplo n.º 27
0
    def _create_plot_component(self):
        pd = self.pd

    # Create the plot
        plot = Plot(pd, default_origin="top left",orientation="h")
        shape = pd.get_data('imagedata').shape
        plot.aspect_ratio = float(shape[1]) / shape[0]
        plot.x_axis.orientation = "top"
        #plot.y_axis.orientation = "top"
        #img_plot = plot.img_plot("imagedata",colormap = jet)[0]
        img_plot = plot.img_plot("imagedata",name = 'image', colormap = jet)[0]
        
    # Tweak some of the plot properties
        #plot.bgcolor = "white"
        plot.bgcolor = bg_color
        
    # Attach some tools to the plot
        plot.tools.append(PanTool(plot,constrain_key="shift", drag_button = 'right'))
        printer = DataPrinter(component=plot, process = self.process_selection)
        plot.tools.append(printer)
        plot.overlays.append(ZoomTool(component=plot, 
                                  tool_mode="box", always_on=False))
        #plot.title = 'Default image'
        
        imgtool = ImageInspectorTool(img_plot)
        img_plot.tools.append(imgtool)
        plot.overlays.append(ImageInspectorOverlay(component=img_plot, 
                                               image_inspector=imgtool))
        return plot
Exemplo n.º 28
0
    def __init__(self, **traits):
        super(HistDemo, self).__init__(**traits)
        img = cv.imread("lena.jpg")
        gray_img = cv.Mat()
        cv.cvtColor(img, gray_img, cv.CV_BGR2GRAY)
        self.img = gray_img
        self.img2 = self.img.clone()
        result = cv.MatND()

        r = cv.vector_float32([0, 256])
        ranges = cv.vector_vector_float32([r, r])

        cv.calcHist(cv.vector_Mat([self.img]),
                    channels=cv.vector_int([0, 1]),
                    mask=cv.Mat(),
                    hist=result,
                    histSize=cv.vector_int([256]),
                    ranges=ranges)

        data = ArrayPlotData(x=np.arange(0, len(result[:])), y=result[:])
        self.plot = Plot(data, padding=10)
        line = self.plot.plot(("x", "y"))[0]
        self.select_tool = RangeSelection(line, left_button_selects=True)
        line.tools.append(self.select_tool)
        self.select_tool.on_trait_change(self._selection_changed, "selection")
        line.overlays.append(RangeSelectionOverlay(component=line))

        cv.imshow("Hist Demo", self.img)

        self.timer = Timer(50, self.on_timer)
Exemplo n.º 29
0
def _create_plot_component(obj):
    # Setup the spectrum plot
    frequencies = linspace(0.0, float(SAMPLING_RATE)/2, num=NUM_SAMPLES/2)
    obj.spectrum_data = ArrayPlotData(frequency=frequencies)
    empty_amplitude = zeros(NUM_SAMPLES/2)
    obj.spectrum_data.set_data('amplitude', empty_amplitude)

    obj.spectrum_plot = Plot(obj.spectrum_data)
    obj.spectrum_plot.plot(("frequency", "amplitude"), name="Spectrum",
                           color="red")
    obj.spectrum_plot.padding = 50
    obj.spectrum_plot.title = "Spectrum"
    spec_range = obj.spectrum_plot.plots.values()[0][0].value_mapper.range
    spec_range.low = 0.0
    spec_range.high = 5.0
    obj.spectrum_plot.index_axis.title = 'Frequency (hz)'
    obj.spectrum_plot.value_axis.title = 'Amplitude'

    # Time Series plot
    times = linspace(0.0, float(NUM_SAMPLES)/SAMPLING_RATE, num=NUM_SAMPLES)
    obj.time_data = ArrayPlotData(time=times)
    empty_amplitude = zeros(NUM_SAMPLES)
    obj.time_data.set_data('amplitude', empty_amplitude)

    obj.time_plot = Plot(obj.time_data)
    obj.time_plot.plot(("time", "amplitude"), name="Time", color="blue")
    obj.time_plot.padding = 50
    obj.time_plot.title = "Time"
    obj.time_plot.index_axis.title = 'Time (seconds)'
    obj.time_plot.value_axis.title = 'Amplitude'
    time_range = obj.time_plot.plots.values()[0][0].value_mapper.range
    time_range.low = -0.2
    time_range.high = 0.2

    # Spectrogram plot
    spectrogram_data = zeros(( NUM_SAMPLES/2, SPECTROGRAM_LENGTH))
    obj.spectrogram_plotdata = ArrayPlotData()
    obj.spectrogram_plotdata.set_data('imagedata', spectrogram_data)
    spectrogram_plot = Plot(obj.spectrogram_plotdata)
    max_time = float(SPECTROGRAM_LENGTH * NUM_SAMPLES) / SAMPLING_RATE
    max_freq = float(SAMPLING_RATE / 2)
    spectrogram_plot.img_plot('imagedata',
                              name='Spectrogram',
                              xbounds=(0, max_time),
                              ybounds=(0, max_freq),
                              colormap=jet,
                              )
    range_obj = spectrogram_plot.plots['Spectrogram'][0].value_mapper.range
    range_obj.high = 5
    range_obj.low = 0.0
    spectrogram_plot.title = 'Spectrogram'
    obj.spectrogram_plot = spectrogram_plot

    container = HPlotContainer()
    container.add(obj.spectrum_plot)
    container.add(obj.time_plot)
    container.add(spectrogram_plot)

    return container
Exemplo n.º 30
0
def _create_plot_component(obj):
    # Setup the spectrum plot
    frequencies = linspace(0.0, float(SAMPLING_RATE)/2, num=NUM_SAMPLES/2)
    obj.spectrum_data = ArrayPlotData(frequency=frequencies)
    empty_amplitude = zeros(NUM_SAMPLES/2)
    obj.spectrum_data.set_data('amplitude', empty_amplitude)

    obj.spectrum_plot = Plot(obj.spectrum_data)
    spec_renderer = obj.spectrum_plot.plot(("frequency", "amplitude"), name="Spectrum",
                           color="red")[0]
    obj.spectrum_plot.padding = 50
    obj.spectrum_plot.title = "Spectrum"
    spec_range = obj.spectrum_plot.plots.values()[0][0].value_mapper.range
    spec_range.low = 0.0
    spec_range.high = 5.0
    obj.spectrum_plot.index_axis.title = 'Frequency (hz)'
    obj.spectrum_plot.value_axis.title = 'Amplitude'

    # Time Series plot
    times = linspace(0.0, float(NUM_SAMPLES)/SAMPLING_RATE, num=NUM_SAMPLES)
    obj.time_data = ArrayPlotData(time=times)
    empty_amplitude = zeros(NUM_SAMPLES)
    obj.time_data.set_data('amplitude', empty_amplitude)

    obj.time_plot = Plot(obj.time_data)
    obj.time_plot.plot(("time", "amplitude"), name="Time", color="blue")
    obj.time_plot.padding = 50
    obj.time_plot.title = "Time"
    obj.time_plot.index_axis.title = 'Time (seconds)'
    obj.time_plot.value_axis.title = 'Amplitude'
    time_range = obj.time_plot.plots.values()[0][0].value_mapper.range
    time_range.low = -0.2
    time_range.high = 0.2

    # Spectrogram plot
    values = [zeros(NUM_SAMPLES/2) for i in xrange(SPECTROGRAM_LENGTH)]
    p = WaterfallRenderer(index = spec_renderer.index, values = values,
            index_mapper = LinearMapper(range = obj.spectrum_plot.index_mapper.range),
            value_mapper = LinearMapper(range = DataRange1D(low=0, high=SPECTROGRAM_LENGTH)),
            y2_mapper = LinearMapper(low_pos=0, high_pos=8,
                            range=DataRange1D(low=0, high=15)),
            )
    spectrogram_plot = p
    obj.spectrogram_plot = p
    dummy = Plot()
    dummy.padding = 50
    dummy.index_axis.mapper.range = p.index_mapper.range
    dummy.index_axis.title = "Frequency (hz)"
    dummy.add(p)

    container = HPlotContainer()
    container.add(obj.spectrum_plot)
    container.add(obj.time_plot)

    c2 = VPlotContainer()
    c2.add(dummy)
    c2.add(container)

    return c2
Exemplo n.º 31
0
def _create_plot_component():

    # Create some data
    numpts = 1000
    x = sort(random(numpts))
    y = random(numpts)
    color = exp(-(x**2 + y**2))

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("index", x)
    pd.set_data("value", y)
    pd.set_data("color", color)

    # Create the plot
    plot = Plot(pd)
    plot.plot(("index", "value", "color"),
              type="cmap_scatter",
              name="my_plot",
              color_mapper=jet,
              marker = "square",
              fill_alpha = 0.5,
              marker_size = 6,
              outline_color = "black",
              border_visible = True,
              bgcolor = "white")

    # Tweak some of the plot properties
    plot.title = "Colormapped Scatter Plot"
    plot.padding = 50
    plot.x_grid.visible = False
    plot.y_grid.visible = False
    plot.x_axis.font = "modern 16"
    plot.y_axis.font = "modern 16"

    # Right now, some of the tools are a little invasive, and we need the
    # actual ColomappedScatterPlot object to give to them
    cmap_renderer = plot.plots["my_plot"][0]

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot, constrain_key="shift"))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)
    selection = ColormappedSelectionOverlay(cmap_renderer, fade_alpha=0.35,
                                            selection_type="mask")
    cmap_renderer.overlays.append(selection)

    # Create the colorbar, handing in the appropriate range and colormap
    colorbar = create_colorbar(plot.color_mapper)
    colorbar.plot = cmap_renderer
    colorbar.padding_top = plot.padding_top
    colorbar.padding_bottom = plot.padding_bottom

    # Create a container to position the plot and the colorbar side-by-side
    container = HPlotContainer(use_backbuffer = True)
    container.add(plot)
    container.add(colorbar)
    container.bgcolor = "lightgray"
    return container
Exemplo n.º 32
0
 def __init__(self, **traits):
     super(AnimationPlot, self).__init__(**traits)
     data = ArrayPlotData(x=[0], y=[0])
     plot = Plot(data)
     plot.plot(("x", "y"), type="line", color="blue")
     plot.title = "sin(x)"
     self.plot = plot
     self.data = data
Exemplo n.º 33
0
 def load_data(self,X,Y) :
     self.X = X
     self.Y = Y
     plotdata = ArrayPlotData(x = X, y = Y)
     plot = Plot(plotdata)
     self.renderer_line = plot.plot(('x','y'),type = 'line', color = "blue")[0]
     self.renderer_scat = plot.plot(('x','y'),type = 'scatter', color = "blue")[0]
     self.plot = plot
Exemplo n.º 34
0
 def __init__(self, x, y, color = "blue"):
     super(ScatterPlot, self).__init__()
     plotdata = ArrayPlotData(x = x, y = y)
     plot = Plot(plotdata)
     self.renderer = plot.plot(("x", "y"), type = "scatter", color = color)[0]
     self.plot = plot
     self.color = color
     self.configure_traits()
Exemplo n.º 35
0
 def _create_plot(self, data, name, type="line"):
     p = Plot(self.plot_data)
     p.plot(data, name=name, title=name, type=type)
     p.tools.append(PanTool(p))
     zoom = ZoomTool(component=p, tool_mode="box", always_on=False)
     p.overlays.append(zoom)
     p.title = name
     return p
Exemplo n.º 36
0
 def __init__(self, **traits):
     super(AnimationPlot, self).__init__(**traits)
     data = ArrayPlotData(x=[0], y=[0])
     plot = Plot(data)
     plot.plot(("x", "y"), type="line", color="blue")
     plot.title = "sin(x)"
     self.plot = plot
     self.data = data
 def _create_plot(self, data, name, type="line"):
     p = Plot(self.plot_data)
     p.plot(data, name=name, title=name, type=type)
     p.tools.append(PanTool(p))
     zoom = ZoomTool(component=p, tool_mode="box", always_on=False)
     p.overlays.append(zoom)
     p.title = name
     return p
Exemplo n.º 38
0
    def _vr_image_plot_default(self):
        plot = Plot(self.vr_image_data, default_origin="top left",
                    size=(512,512))
        plot.aspect_ratio = 1.0
        #plot.x_axis.orientation = "top"
        img_plot = plot.img_plot("vr_image_data")[0]

        plot.bgcolor = "black"
        return plot
Exemplo n.º 39
0
 def __init__(self, *args, **kw):
     HasTraits.__init__(self, *args, **kw)
     numpoints = 200
     plotdata = ArrayPlotData(x=sort(random(numpoints)), y=random(numpoints))
     plot = Plot(plotdata)
     plot.plot(("x", "y"), type="scatter")
     plot.tools.append(PanTool(plot))
     plot.overlays.append(ZoomTool(plot))
     self.plot = plot
Exemplo n.º 40
0
 def __init__(self):
     super(LinePlot, self).__init__()
     x = linspace(-14, 14, 100)
     y = sin(x) * x**3
     plotdata = ArrayPlotData(x=x, y=y)
     plot = Plot(plotdata)
     plot.plot(("x", "y"), type="line", color="blue")
     plot.title = "sin(x) * x^3"
     self.plot = plot
Exemplo n.º 41
0
    def __init__(self):
        super(ScatterPlotTraits, self).__init__()
        x = linspace(-14, 14, 100)
        y = sin(x) * x**3
        plotdata = ArrayPlotData(x=x, y=y)
        plot = Plot(plotdata)

        self.renderer = plot.plot(("x", "y"), type="scatter", color="blue")[0]
        self.plot = plot
Exemplo n.º 42
0
 def __init__(self, **traits):
     super(MandelbrotDemo, self).__init__(**traits)
     self.data = ArrayPlotData(image=np.zeros((1, 1)))
     self.plot = Plot(self.data, padding=0)
     imgplot = self.plot.img_plot("image", colormap=reverse(Blues), interpolation="bilinear")[0]
     imgplot.tools.append( MandelbrotController(imgplot, application=self) )
     self.imgplot = imgplot
     self.plot.x_axis.visible = False
     self.plot.y_axis.visible = False
Exemplo n.º 43
0
    def __init__( self, **traits ):
        super( ParamController, self ).__init__( **traits )

        p = self.rate_plot ( "rates" ) 

        container = Plot()
        container.add( p ) 

        self.plot = container
Exemplo n.º 44
0
 def __init__(self):
     super(LinePlot, self).__init__()
     x = linspace(-14, 14, 100)
     y = sin(x) * x**3
     plotdata = ArrayPlotData(x=x, y=y)
     plot = Plot(plotdata)
     plot.plot(("x", "y"), type="line", color="blue")
     plot.title = "sin(x) * x^3"
     self.plot = plot
Exemplo n.º 45
0
    def __init__(self):
        super(ScatterPlotTraits, self).__init__()
        x = linspace(-14, 14, 100)
        y = sin(x) * x**3
        plotdata = ArrayPlotData(x = x, y = y)
        plot = Plot(plotdata)

        self.renderer = plot.plot(("x", "y"), type="scatter", color="blue")[0]
        self.plot = plot
Exemplo n.º 46
0
 def __init__(self, x, y, color = "blue", line_width = 4):
     super(LinePlot, self).__init__()
     plotdata = ArrayPlotData(x = x, y = y)
     plot = Plot(plotdata)
     self.renderer = plot.plot(("x", "y"), type = "line", color = color, line_width = line_width)[0]
     self.plot = plot
     self.color = color
     self.line_width = line_width
     self.configure_traits()
Exemplo n.º 47
0
 def __init__(self):
     super(ImagePlot, self).__init__()
     x = np.linspace(0, 10, 50)
     y = np.linspace(0, 5, 50)
     xgrid, ygrid = np.meshgrid(x, y)
     z = np.exp(-(xgrid * xgrid + ygrid * ygrid) / 100)
     plotdata = ArrayPlotData(imagedata=z)
     plot = Plot(plotdata)
     plot.img_plot("imagedata", xbounds=x, ybounds=y, colormap=jet)
     self.plot = plot
Exemplo n.º 48
0
    def __init__(self, **traits):
        super(ScatterPlotTraits, self).__init__(**traits)
        x = np.linspace(-14, 14, 100)
        y = np.sin(x) * x**3
        data = ArrayPlotData(x=x, y=y)
        plot = Plot(data)

        self.line = plot.plot(("x", "y"), type="scatter", color="blue")[0]
        self.plot = plot
        self.data = data
Exemplo n.º 49
0
    def __init__(self):
        x = numpy.linspace(-14, 14, 100)
        y = numpy.sin(x) * x**3
        plotdata = ArrayPlotData(x=x, y=y)

        plot = Plot(plotdata)
        plot.plot(("x", "y"), type="line", color="blue")
        plot.title = "sin(x) * x^3"

        self.plot=plot
Exemplo n.º 50
0
 def __init__(self, **traits):
     super(LinePlot, self).__init__(**traits)
     x = np.linspace(-14, 14, 100)
     y = np.sin(x) * x**3
     data = ArrayPlotData(x=x, y=y)
     plot = Plot(data)
     plot.plot(("x", "y"), type="line", color="blue")
     plot.title = "sin(x) * x^3"
     self.plot = plot
     self.data = data
Exemplo n.º 51
0
 def __init__(self):
     # Create the data and the PlotData object
     x = linspace(-14, 14, 500)
     y = sin(x) * x**3
     plotdata = ArrayPlotData(x = x, y = y)
     # Create a Plot and associate it with the PlotData
     plot = Plot(plotdata)
     # Create a line plot in the Plot
     plot.plot(("x", "y"), type="line", color="blue")
     self.plot = plot
Exemplo n.º 52
0
    def __init__(self, **traits):
        super(LassoDemoPlot, self).__init__(**traits)
        x = np.random.random(N)
        y = np.random.random(N)
        x2 = np.array([])
        y2 = np.array([])

        data = ArrayPlotData(x=x, y=y, x2=x2, y2=y2)

        plot1 = Plot(data, padding=10)
        scatter_plot1 = plot1.plot(("x", "y"),
                                   type="scatter",
                                   marker="circle",
                                   color="blue")[0]

        self.lasso = LassoSelection(scatter_plot1,
                                    incremental_select=True,
                                    selection_datasource=scatter_plot1.index)
        self.lasso.on_trait_change(self._selection_changed,
                                   'selection_changed')
        scatter_plot1.tools.append(self.lasso)
        scatter_plot1.overlays.append(
            LassoOverlay(scatter_plot1, lasso_selection=self.lasso))

        plot2 = Plot(data, padding=10)
        plot2.index_range = plot1.index_range
        plot2.value_range = plot1.value_range
        plot2.plot(("x2", "y2"), type="scatter", marker="circle", color="red")

        self.plot = HPlotContainer(plot1, plot2)
        self.plot2 = plot2
        self.data = data
Exemplo n.º 53
0
 def __init__(self, dims=(128, 10)):
     super(ImagePlot, self).__init__()
     z = numpy.zeros(dims)
     self.plotdata = ArrayPlotData(imagedata=z)
     plot = Plot(self.plotdata)
     plot.img_plot("imagedata",
                   xbounds=(0, dims[1]),
                   ybounds=(0, dims[0]),
                   colormap=self._cmap)
     self.plot = plot
     self.flag = True
Exemplo n.º 54
0
class BaseViewer(HasTraits):
    main_tab = Instance(Component)

    traits_view = View(Item('main_tab', editor=ComponentEditor),
                       width=500,
                       height=500,
                       resizable=True,
                       title="Salinity Plot")

    def __init__(self, **kwargs):
        HasTraits.__init__(self, **kwargs)
        self.init_data()

    def init_data(self):
        file_name = '/home/dpothina/work/apps/pysonde/tests/ysi_test_files/BAYT_20070323_CDT_YS1772AA_000.dat'
        sonde = Sonde(file_name)
        sal_ds = np.array([1, 2, 3, 4, 5, 6, 7,
                           8])  # sonde.data['seawater_salinity']
        time_ds = sal_ds**2  # [time.mktime(date.utctimetuple()) for date in sonde.dates]
        #time_ds = ArrayDataSource(dt)
        #sal_ds = ArrayDataSource(salinity, sort_order="none")
        self.plot_data = ArrayPlotData(sal_ds=sal_ds, time_ds=time_ds)

    def _main_tab_default(self):
        self.sal_plot = Plot(self.plot_data)
        self.sal_plot.plot(('time_ds', 'sal_ds'), type='line')
        #sal_plot.overlays.append(PlotAxis(sal_plot, orientation='left'))
        #bottom_axis = PlotAxis(sal_plot, orientation="bottom",# mapper=xmapper,
        #                   tick_generator=ScalesTickGenerator(scale=CalendarScaleSystem()))
        #sal_plot.overlays.append(bottom_axis)

        #hgrid, vgrid = add_default_grids(sal_plot)
        #vgrid.tick_generator = bottom_axis.tick_generator
        #sal_plot.tools.append(PanTool(sal_plot, constrain=True,
        #                              constrain_direction="x"))
        #sal_plot.overlays.append(ZoomTool(sal_plot, drag_button="right",
        #                                  always_on=True,
        #                                  tool_mode="range",
        #                                  axis="index",
        #                                  max_zoom_out_factor=10.0,
        #                                  ))

        container = VPlotContainer(bgcolor="lightblue",
                                   spacing=40,
                                   padding=50,
                                   fill_padding=False)
        container.add(sal_plot)
        #container.add(price_plot)
        #container.overlays.append(PlotLabel("Salinity Plot with Date Axis",
        #                                    component=container,
        #                                    #font="Times New Roman 24"))
        #                                    font="Arial 24"))
        return container
Exemplo n.º 55
0
    def __init__(self, options, **kwtraits):
        super(FiberView, self).__init__(**kwtraits)
        self.model = FiberModel(options)

        # debugging
        self.debug = options.debug
        self.model.debug = options.debug

        # timing parameters
        self.max_packets = options.max_packets
        self.hertz = options.hertz

        # extend options to model
        self.model.max_packets = options.max_packets
        self.model.preallocate_arrays()
        self.model.num_analog_channels = options.num_analog_channels

        # generate traits plot
        self.plot_data = ArrayPlotData(x=self.model._tdata,
                                       y=self.model._ydata)
        self.plot = Plot(self.plot_data)
        renderer = self.plot.plot(("x", "y"),
                                  type="line",
                                  name='old',
                                  color="green")[0]
        #        self.plot.delplot('old')

        # recording flags
        self.model.recording = False
        self.model.trialEnded = True

        print 'Viewer initialized.'

        # should we wait for a ttl input to start?
        if options.ttl_start:
            self.model.ttl_start = True
            self.ttl_received = False

            # initialize FIO0 for TTL input
            self.FIO0_DIR_REGISTER = 6100
            self.FIO0_STATE_REGISTER = 6000
            self.model.labjack.writeRegister(self.FIO0_DIR_REGISTER,
                                             0)  # Set FIO0 low

        # initialize output array
        self.out_arr = None

        # keep track of number of runs
        self.run_number = 0

        self.timer = Timer(self.model.dt,
                           self.time_update)  # update every 1 ms
Exemplo n.º 56
0
 def _plot_xy8_default(self):
     plot = Plot(self.plot_xy8_data,
                 padding_left=60,
                 padding_top=25,
                 padding_right=10,
                 padding_bottom=50)
     plot.plot(('xy8_plot_x', 'xy8_plot_y'), style='line', color='blue')
     plot.index_axis.title = 'tau [micro-s]'
     plot.value_axis.title = 'Intensity [a.u.]'
     plot.title = 'xy8 raw data'
     plot.tools.append(PanTool(plot))
     plot.overlays.append(ZoomTool(plot))
     return plot
Exemplo n.º 57
0
 def __init__(self, dims=(128, 10)):
     super(ImagePlot, self).__init__()
     #z = numpy.zeros(dims)
     self.plotdata = ArrayPlotData(neurons=[0], times=[0])
     plot = Plot(self.plotdata)
     plot.plot(
         ("times", "neurons"),
         type="scatter",
         marker="dot",
         marker_size=1,
         color='black',
     )
     self.plot = plot
Exemplo n.º 58
0
 def __init__(self):
     super(Probe, self).__init__()
     x = linspace(0, self.N, self.N / self.d)
     y = linspace(0, self.N, self.N / self.d)
     xgrid, ygrid = meshgrid(x[1:], y[1:])
     z = exp(-(xgrid * xgrid + ygrid * ygrid) / 10000)
     plotdata = ArrayPlotData(imagedata=z)
     plot = Plot(plotdata)
     self.renderer = plot.img_plot("imagedata",
                                   xbounds=x,
                                   ybounds=y,
                                   colormap=bone)
     #self.renderer = plot.plot(("x", "y"), type="scatter", color="blue")[0]
     self.plot = plot
    def __init__(self):
        x = np.linspace(-14, 14, 100)
        y = np.sin(x) * x**3
        y2 = np.cos(x) * x**3
        plotdata = ArrayPlotData(x=x, y=y, y2=y2)
        plot = Plot(plotdata)
        plot.plot(("x", "y"), type="line", color="blue", name="sin")
        plot.plot(("x", "y2"), type="line", color="red", name="cos")
        #line.index.sort_order = "ascending"
        plot.title = "sin(x) * x^3"
        plot.legend.visible = True
        plot.legend.tools.append(LegendHighlighter(plot.legend))

        self.plot = plot
        self.plotdata = plotdata
Exemplo n.º 60
0
    def __init__(self):
        # Create plot data.
        row = linspace(0, 1, 100)
        self.data = ones([10, 100]) * row
        plotdata = ArrayPlotData(imagedata=self.data)

        # Create a Plot and associate it with the PlotData
        plot = Plot(plotdata)
        # Create a line plot in the Plot
        plot.img_plot("imagedata",
                      xbounds=(0, 1),
                      colormap=color_map_name_dict[self.colormap])[0]
        plot.y_axis.visible = False
        self.plot = plot
        self.plot.aspect_ratio = 5