Exemplo n.º 1
0
class LinePlot(HasTraits):
    plot = Instance(Plot)
    data = Instance(ArrayPlotData)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=500,
                       height=500,
                       resizable=True,
                       title="Chaco Plot")

    def __init__(self, **traits):
        super(LinePlot, self).__init__(**traits)
        x = np.linspace(-14, 14, 100)
        y = np.sin(x) * x**3
        data = ArrayPlotData(x=x, y=y)
        plot = Plot(data)
        plot.plot(("x", "y"), type="line", color="blue")
        plot.title = "sin(x) * x^3"

        plot.tools.append(PanTool(plot))
        plot.tools.append(
            DragZoom(plot, drag_button="right", maintain_aspect_ratio=False))
        plot.overlays.append(ZoomTool(plot))

        #        plot.overlays.append(ZoomTool(plot, tool_mode="range", axis = "index",
        #            always_on=True, always_on_modifier="control"))
        self.plot = plot
        self.data = data
Exemplo n.º 2
0
class ScatterPlotTraits(HasTraits):
    plot = Instance(Plot)
    data = Instance(ArrayPlotData)
    color = Color("blue")
    marker = marker_trait

    traits_view = View(Group(Item('color', label="Color"),
                             Item('marker', label="Marker"),
                             Item('object.line.marker_size', label="Size"),
                             Item('plot',
                                  editor=ComponentEditor(),
                                  show_label=False),
                             orientation="vertical"),
                       width=800,
                       height=600,
                       resizable=True,
                       title="Chaco Plot")

    def __init__(self, **traits):
        super(ScatterPlotTraits, self).__init__(**traits)
        x = np.linspace(-14, 14, 100)
        y = np.sin(x) * x**3
        data = ArrayPlotData(x=x, y=y)
        plot = Plot(data)

        self.line = plot.plot(("x", "y"), type="scatter", color="blue")[0]
        self.plot = plot
        self.data = data

    def _color_changed(self):
        self.line.color = self.color

    def _marker_changed(self):
        self.line.marker = self.marker
Exemplo n.º 3
0
class ProbePlot(HasTraits):
    def __init__(self):
        super(Probe, self).__init__()
        x = linspace(0, self.N, self.N / self.d)
        y = linspace(0, self.N, self.N / self.d)
        xgrid, ygrid = meshgrid(x[1:], y[1:])
        z = exp(-(xgrid * xgrid + ygrid * ygrid) / 10000)
        plotdata = ArrayPlotData(imagedata=z)
        plot = Plot(plotdata)
        self.renderer = plot.img_plot("imagedata",
                                      xbounds=x,
                                      ybounds=y,
                                      colormap=bone)
        #self.renderer = plot.plot(("x", "y"), type="scatter", color="blue")[0]
        self.plot = plot

    traits_view = View(VGroup(
        HGroup(
            Item('HT',
                 label="High Tension, kV",
                 help='The microscope accelerating voltage'), spring,
            Item('wl', label="Wavelength, nm", style='readonly')),
        HGroup(spring, Item('alpha', label="Conv. Angle")),
        HGroup(VGroup(Item('noms', label="Nomenclature")),
               Item('notations[self.noms]', label='Labels')),
        HGroup(Item('plot', editor=ComponentEditor(), show_label=False))),
                       width=800,
                       height=600,
                       resizable=True,
                       title="Chaco Plot")
Exemplo n.º 4
0
class MutiLinePlot(HasTraits):
    plot = Instance(Plot)
    data = Instance(ArrayPlotData)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=500,
                       height=500,
                       resizable=True,
                       title="Chaco Plot")

    def __init__(self, **traits):
        super(MutiLinePlot, self).__init__(**traits)
        x = np.linspace(-14, 14, 100)
        y1 = np.sin(x) * x**3
        y2 = np.cos(x) * x**3
        data = ArrayPlotData(x=x, y1=y1, y2=y2)
        plot = Plot(data)
        plot.plot(("x", "y1"), type="line", color="blue", name="sin(x) * x**3")
        plot.plot(("x", "y2"), type="line", color="red", name="cos(x) * x**3")
        plot.plot(("x", "y2"),
                  type="scatter",
                  color="red",
                  marker="circle",
                  marker_size=2,
                  name="cos(x) * x**3 points")
        plot.title = "Multiple Curves"
        plot.legend.visible = True
        self.plot = plot
        self.data = data
Exemplo n.º 5
0
class CircleSelectionDemo(HasTraits):
    plot = Instance(Plot)
    data = Instance(ArrayPlotData)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=500,
                       height=500,
                       resizable=True,
                       title="Circle Selection Plot")

    def __init__(self, **traits):
        super(CircleSelectionDemo, self).__init__(**traits)
        x = np.random.random(100) * 2
        y = np.random.random(100)
        data = ArrayPlotData(x=x, y=y)
        plot = Plot(data)

        scatter = plot.plot(("x", "y"), type="scatter", color="blue")[0]
        scatter.tools.append(CircleSelection(scatter))
        scatter.overlays.append(
            ScatterInspectorOverlay(scatter,
                                    selection_color="red",
                                    selection_marker="circle",
                                    selection_outline_color="black",
                                    selection_marker_size=6))
        scatter.overlays.append(CircleSelectionOverlay(scatter))

        self.plot = plot
        self.data = data
class LinePlot(HasTraits):
    plot = Instance(Plot)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=500,
                       height=500,
                       resizable=True,
                       title="Chaco Plot")

    def __init__(self):
        super(LinePlot, self).__init__()
        x = linspace(-14, 14, 100)
        y1 = sin(x) * x**3
        y2 = cos(x) * x**3
        plotdata = ArrayPlotData(x=x, y1=y1, y2=y2)
        plot = Plot(plotdata)
        plot.plot(("x", "y1"), type="line", color="blue", name="sin(x) * x**3")
        plot.plot(("x", "y2"), type="line", color="red", name="cos(x) * x**3")
        plot.plot(("x", "y2"),
                  type="scatter",
                  color="red",
                  marker="circle",
                  marker_size=2,
                  name="cos(x) * x**3 points")
        plot.title = "Multiple Curves"
        self.plot = plot

        legend = Legend(padding=10, align="ur")
        legend.plots = plot.plots
        plot.overlays.append(legend)
Exemplo n.º 7
0
class HistDemo(HasTraits):
    plot = Instance(Plot)
    timer = Instance(Timer)
    need_update = Bool(False)
    view = View(Item("plot", editor=ComponentEditor(), show_label=False),
                resizable=True,
                width=500,
                height=250,
                title="Hist Demo")

    def __init__(self, **traits):
        super(HistDemo, self).__init__(**traits)
        img = cv.imread("lena.jpg")
        gray_img = cv.Mat()
        cv.cvtColor(img, gray_img, cv.CV_BGR2GRAY)
        self.img = gray_img
        self.img2 = self.img.clone()
        result = cv.MatND()

        r = cv.vector_float32([0, 256])
        ranges = cv.vector_vector_float32([r, r])

        cv.calcHist(cv.vector_Mat([self.img]),
                    channels=cv.vector_int([0, 1]),
                    mask=cv.Mat(),
                    hist=result,
                    histSize=cv.vector_int([256]),
                    ranges=ranges)

        data = ArrayPlotData(x=np.arange(0, len(result[:])), y=result[:])
        self.plot = Plot(data, padding=10)
        line = self.plot.plot(("x", "y"))[0]
        self.select_tool = RangeSelection(line, left_button_selects=True)
        line.tools.append(self.select_tool)
        self.select_tool.on_trait_change(self._selection_changed, "selection")
        line.overlays.append(RangeSelectionOverlay(component=line))

        cv.imshow("Hist Demo", self.img)

        self.timer = Timer(50, self.on_timer)

    def _selection_changed(self):
        if self.select_tool.selection != None:
            self.need_update = True

    def on_timer(self):
        if self.need_update:
            x0, x1 = self.select_tool.selection
            self.img2[:] = self.img[:]
            np.clip(self.img2[:], x0, x1, out=self.img2[:])
            self.img2[:] -= x0
            self.img2[:] *= 256.0 / (x1 - x0)
            cv.imshow("Hist Demo", self.img2)
            self.need_update = False
Exemplo n.º 8
0
class IMUGloveDisplay(HasTraits):
    plot = Instance(HPlotContainer)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=1000,
                       height=600,
                       resizable=True,
                       title="IMU Glove Display")

    def __init__(self):
        super(IMUGloveDisplay, self).__init__()
        x = linspace(-14, 14, 100)
        y = sin(x) * x**3
        plotdata = ArrayPlotData(x=x, y=y)
        scatter = Plot(plotdata)
        scatter.plot(("x", "y"), type="scatter", color="blue")
        line = Plot(plotdata)
        line.plot(("x", "y"), type="line", color="blue")
        container = HPlotContainer(scatter, line)
        #scatter.title = "sin(x) * x^3"
        #line.title = 'line plot'
        self.plot = container
        self.InitGlove()

    def InitGlove(self):
        self.api = GloveAPI()
        self.api.initHardware()
        self.api.debug(False)
        self.api.configimu()

    def ReadData(self, numToRead):
        ''' Start streaming data '''
        self.api.stream(numToRead)

        self.api.clearIMUPacketEngine()
        keys = [
            'sentinal', 'footer', 'temp', 'gx', 'gy', 'gz', 'ax', 'ay', 'az',
            'sentinal'
        ]
        #keys = ['gx','gy','gz','ax','ay','az']
        packets = []
        t = time.time()
        for x in range(0, numToRead):
            p = self.api.getIMUPacket()
            if p:
                ''' Update the data in the plot.. '''
                showPacket(p, keys)
            else:
                self.api.configimu()
                self.api.stream(numToRead - x)

        tdiff = time.time() - t
        print("Total time:%6.6f Time per Packet:%6.6f" % (tdiff, tdiff / x))
Exemplo n.º 9
0
class ComponentViewer(HasTraits):
    """ A viewer of components for testing purposes """

    # The component being viewed
    component = Instance(Component)

    # The canvas to which the component is added
    canvas = Instance(Canvas)

    # A view into a subsection of the canvas
    viewport = Instance(Viewport)

    # Default view
    traits_view = View(HSplit(
        Group(Item("viewport", editor=ComponentEditor(), show_label=False)),
        Group(Item(name="component", style="custom", show_label=False),
              scrollable=True)),
                       resizable=True,
                       id="canvas_viewer",
                       width=.6,
                       height=.4,
                       title="Viewer")

    def _canvas_default(self):
        """ Trait initialiser """

        canvas = Canvas(draw_axes=True, bgcolor="honeydew")
        return canvas

    def _viewport_default(self):
        """ Trait initialiser """

        viewport = Viewport(component=self.canvas, enable_zoom=True)
        viewport.tools.append(ViewportPanTool(viewport))
        return viewport

    def _component_changed(self, old, new):
        """ Handles the component being changed.
        """
        canvas = self.canvas
        if old is not None:
            canvas.remove(old)
        if new is not None:
            canvas.add(new)

    def _anytrait_changed_for_component(self, new):
        """ Handles redrawing of the canvas. """

        self.canvas.request_redraw()
Exemplo n.º 10
0
class LassoDemoPlot(HasTraits):
    plot = Instance(HPlotContainer)
    data = Instance(ArrayPlotData)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=600,
                       height=320,
                       resizable=True,
                       title="Lasso Tool Demo")

    def __init__(self, **traits):
        super(LassoDemoPlot, self).__init__(**traits)
        x = np.random.random(N)
        y = np.random.random(N)
        x2 = np.array([])
        y2 = np.array([])

        data = ArrayPlotData(x=x, y=y, x2=x2, y2=y2)

        plot1 = Plot(data, padding=10)
        scatter_plot1 = plot1.plot(("x", "y"),
                                   type="scatter",
                                   marker="circle",
                                   color="blue")[0]

        self.lasso = LassoSelection(scatter_plot1,
                                    incremental_select=True,
                                    selection_datasource=scatter_plot1.index)
        self.lasso.on_trait_change(self._selection_changed,
                                   'selection_changed')
        scatter_plot1.tools.append(self.lasso)
        scatter_plot1.overlays.append(
            LassoOverlay(scatter_plot1, lasso_selection=self.lasso))

        plot2 = Plot(data, padding=10)
        plot2.index_range = plot1.index_range
        plot2.value_range = plot1.value_range
        plot2.plot(("x2", "y2"), type="scatter", marker="circle", color="red")

        self.plot = HPlotContainer(plot1, plot2)
        self.plot2 = plot2
        self.data = data

    def _selection_changed(self):
        index = np.array(self.lasso.selection_datasource.metadata["selection"],
                         dtype=np.bool)
        self.data["x2"] = self.data["x"][index]
        self.data["y2"] = self.data["y"][index]
Exemplo n.º 11
0
class Plot_i(HasTraits):

    plot = Instance(Plot)
    color = ColorTrait('blue')
    marker = marker_trait
    marker_size = Int(4)
    line_width = Int(4)
    traits_view = View(Group(Tabbed(Group( \
        Group(Item('color', label="Color"), \
            Item('marker', label="Marker"), \
            orientation = 'vertical'), \
        Group( \
            Item('marker_size', label= "Size"), \
            Item('line_width', label = 'Linewidth'), \
            orientation = 'vertical'), \
        dock = 'tab', orientation = 'vertical')), \
        Item('plot', editor=ComponentEditor(), show_label=False), orientation = 'horizontal'), \
        width=800, height=600, resizable=True, title="Chaco Plot")

    def __init__(self,X,Y):
        super(Plot_i, self).__init__()
        self.load_data(X,Y)
        self.start()

    def load_data(self,X,Y) :
        self.X = X
        self.Y = Y
        plotdata = ArrayPlotData(x = X, y = Y)
        plot = Plot(plotdata)
        self.renderer_line = plot.plot(('x','y'),type = 'line', color = "blue")[0]
        self.renderer_scat = plot.plot(('x','y'),type = 'scatter', color = "blue")[0]
        self.plot = plot

    def start(self):
        self.configure_traits()

    def _color_changed(self):
        self.renderer_line.color = self.color
        self.renderer_scat.color = self.color

    def _marker_changed(self):
        self.renderer_scat.marker = self.marker

    def _marker_size_changed(self):
        self.renderer_scat.marker_size = self.marker_size

    def _line_width_changed(self):
        self.renderer_line.line_width = self.line_width
Exemplo n.º 12
0
class LinePlot(HasTraits):
    plot = Instance(Plot)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=500,
                       height=500,
                       resizable=True,
                       title="QTLab Analysis Plot")

    def __init__(self, title, xtitle, x, ytitle, y, type="line", color="blue"):
        super(LinePlot, self).__init__()
        plotdata = ArrayPlotData(x=x, y=y)
        self.plotdata = plotdata
        plot = Plot(self.plotdata)
        plot.plot(('x', 'y'), type=type, color=color)
        plot.title = title
        plot.x_axis.title = xtitle
        plot.y_axis.title = ytitle
        self.plot = plot
        self._hid = 0
        self._colors = ['blue', 'red', 'black', 'green', 'magenta', 'yellow']

        # Add some tools
        self.plot.tools.append(PanTool(self.plot, constrain_key="shift"))
        self.plot.overlays.append(
            ZoomTool(component=self.plot, tool_mode="box", always_on=False))

    def update_plot(self, x, y):
        '''
        Update plot
        '''
        self.plotdata.set_data('x', x)
        self.plotdata.set_data('y', y)
        self.plot.data = self.plotdata
        self.plot.request_redraw()

    def plot_hold_on(self, x, y, type="line"):
        '''
        Plot if hold on
        '''
        self._hid = self._hid + 1
        self.plotdata.set_data('x' + str(self._hid), x)
        self.plotdata.set_data('y' + str(self._hid), y)
        self.plot.plot(('x' + str(self._hid), 'y' + str(self._hid)),
                       type=type,
                       color=self._colors[self._hid % len(self._colors)])
        self.plot.request_redraw()
Exemplo n.º 13
0
class LinePlot(HasTraits):
    plot = Instance(Plot)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=500,
                       height=500,
                       resizable=True,
                       title="Chaco Plot")

    def __init__(self):
        super(LinePlot, self).__init__()
        x = linspace(-14, 14, 100)
        y = sin(x) * x**3
        plotdata = ArrayPlotData(x=x, y=y)
        plot = Plot(plotdata)
        plot.plot(("x", "y"), type="line", color="blue")
        plot.title = "sin(x) * x^3"
        self.plot = plot
Exemplo n.º 14
0
class ImagePlot(HasTraits):
    plot = Instance(Plot)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=500,
                       height=500,
                       resizable=True,
                       title="Chaco Plot")

    def __init__(self):
        super(ImagePlot, self).__init__()
        x = np.linspace(0, 10, 50)
        y = np.linspace(0, 5, 50)
        xgrid, ygrid = np.meshgrid(x, y)
        z = np.exp(-(xgrid * xgrid + ygrid * ygrid) / 100)
        plotdata = ArrayPlotData(imagedata=z)
        plot = Plot(plotdata)
        plot.img_plot("imagedata", xbounds=x, ybounds=y, colormap=jet)
        self.plot = plot
Exemplo n.º 15
0
class ContainerExample(HasTraits):
    plot = Instance(HPlotContainer)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=1000,
                       height=600,
                       resizable=True,
                       title="Chaco Plot")

    def __init__(self):
        super(ContainerExample, self).__init__()
        x = linspace(-14, 14, 100)
        y = sin(x) * x**3
        plotdata = ArrayPlotData(x=x, y=y)
        scatter = Plot(plotdata)
        scatter.plot(("x", "y"), type="scatter", color="blue")
        line = Plot(plotdata)
        line.plot(("x", "y"), type="line", color="blue")
        container = HPlotContainer(scatter, line)
        self.plot = container
Exemplo n.º 16
0
class ContainerExample(HasTraits):
    plot = Instance(VPlotContainer)
    data = Instance(ArrayPlotData)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=1000,
                       height=600,
                       resizable=True,
                       title="Chaco Plot")

    def __init__(self, **traits):
        super(ContainerExample, self).__init__(**traits)
        x = np.linspace(-14, 14, 100)
        y = np.sin(x) * x**3 / 1000
        data = ArrayPlotData(x=x, y=y)

        p1 = Plot(data, padding=30)
        p1.plot(("x", "y"), type="scatter", color="blue")
        p1.plot(("x", "y"), type="line", color="blue")

        p2 = Plot(data, padding=30)
        p2.plot(("x", "y"), type="line", color="blue")
        p2.set(bounds=[200, 100],
               position=[70, 150],
               bgcolor=(0.9, 0.9, 0.9),
               unified_draw=True,
               resizable="")

        p3 = Plot(data, padding=30)
        p3.plot(("x", "y"), type="line", color="blue", line_width=2.0)

        p4 = Plot(data, padding=30)
        p4.plot(("x", "y"), type="scatter", color="red", marker="circle")

        c1 = OverlayPlotContainer(p1, p2)

        c1.fixed_preferred_size = p3.get_preferred_size()
        c2 = HPlotContainer(c1, p3)
        c3 = VPlotContainer(p4, c2)

        self.plot = c3
Exemplo n.º 17
0
class LassoDemoPlot(HasTraits):
    plot = Instance(HPlotContainer) 
    traits_view = View(
        Item('plot',editor=ComponentEditor(), show_label=False), 
        width=600, height=320, resizable=True, title="Lasso Tool Demo")

    def __init__(self):
        x, y = np.ogrid[-2*np.pi:2*np.pi:256j, -2*np.pi:2*np.pi:256j]
        self.img_data = np.sin(x)*y
        #self.img_mask = np.zeros((len(x), len(y[0]), 4), dtype=np.uint8)
        #self.img_mask[:, :, 3] = 255
        self.img_index = np.array(list((np.broadcast(y, x))))
        
        plotdata = ArrayPlotData(img_data=self.img_data, mask_data=self.img_data) 
        plot1 = Plot(plotdata, padding=10) 
        img_plot = plot1.img_plot("img_data",
            xbounds=(np.min(x), np.max(x)),
            ybounds=(np.min(y), np.max(y)))[0]
       
        self.lasso = LassoSelection(img_plot)
        img_plot.tools.append(self.lasso)
        self.ll = LassoOverlay(img_plot, lasso_selection=self.lasso)
        img_plot.overlays.append(self.ll)
        self.lasso.on_trait_change(self._selection_changed, 'selection_completed')
        
        plot2 = Plot(plotdata, padding=10)
        plot2.img_plot("mask_data")
       
        self.plot = HPlotContainer(plot1, plot2)
        self.plot1 = plot1
        self.plot2 = plot2
        self.plotdata = plotdata
        
    def _selection_changed(self):
        data = np.logical_not(points_in_polygon(self.img_index, self.lasso.dataspace_points, False).astype(np.bool))
        data = data.reshape((256, 256))
        copy = self.img_data.copy()
        copy[data] = 0
        self.plotdata["mask_data"] = copy
        self.plot2.request_redraw()
Exemplo n.º 18
0
class SelectionDemo(HasTraits):
    plot = Instance(VPlotContainer)
    data = Instance(ArrayPlotData)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=500,
                       height=500,
                       resizable=True,
                       title="范围选择演示")

    def __init__(self, **traits):
        super(SelectionDemo, self).__init__(**traits)
        x = np.linspace(-140, 140, 1000)
        y = np.sin(x) * x**3
        y /= np.max(y)
        data = ArrayPlotData(x=x, y=y)

        self.plot1 = plot1 = Plot(data, padding=25)
        self.line1 = line1 = plot1.plot(("x", "y"), type="line")[0]

        self.select_tool = select_tool = RangeSelection(line1)
        line1.tools.append(select_tool)
        select_tool.on_trait_change(self._selection_changed, "selection")

        line1.overlays.append(RangeSelectionOverlay(component=line1))

        self.plot2 = plot2 = Plot(data, padding=25)
        plot2.plot(("x", "y"), type="line")[0]

        self.plot = VPlotContainer(plot2, plot1)

        self.data = data

    def _selection_changed(self):
        selection = self.select_tool.selection
        if selection != None:
            self.plot2.index_range.set_bounds(*selection)
        else:
            self.plot2.index_range.reset()
class LinePlot(HasTraits):
    plot = Instance(Plot)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=500,
                       height=500,
                       resizable=True,
                       title="Chaco Plot")

    def __init__(self):
        x = np.linspace(-14, 14, 100)
        y = np.sin(x) * x**3
        y2 = np.cos(x) * x**3
        plotdata = ArrayPlotData(x=x, y=y, y2=y2)
        plot = Plot(plotdata)
        plot.plot(("x", "y"), type="line", color="blue", name="sin")
        plot.plot(("x", "y2"), type="line", color="red", name="cos")
        #line.index.sort_order = "ascending"
        plot.title = "sin(x) * x^3"
        plot.legend.visible = True
        plot.legend.tools.append(LegendHighlighter(plot.legend))

        self.plot = plot
        self.plotdata = plotdata
Exemplo n.º 20
0
class ImagePlot(HasTraits):

    plot = Instance(Plot)

    colormap = Enum(sorted(color_map_name_dict.keys()))

    data = Array

    traits_view = View(Item('colormap'),
                       Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=600,
                       height=400,
                       title="Color Map")

    def __init__(self):
        # Create plot data.
        row = linspace(0, 1, 100)
        self.data = ones([10, 100]) * row
        plotdata = ArrayPlotData(imagedata=self.data)

        # Create a Plot and associate it with the PlotData
        plot = Plot(plotdata)
        # Create a line plot in the Plot
        plot.img_plot("imagedata",
                      xbounds=(0, 1),
                      colormap=color_map_name_dict[self.colormap])[0]
        plot.y_axis.visible = False
        self.plot = plot
        self.plot.aspect_ratio = 5

    def _colormap_changed(self, new):
        colormap = color_map_name_dict[self.colormap]
        colormap = colormap(self.plot.color_mapper.range)
        self.plot.color_mapper = colormap
        self.plot.request_redraw()
Exemplo n.º 21
0
class AnimationPlot(HasTraits):
    plot = Instance(Plot)
    data = Instance(ArrayPlotData)
    phase = Float(0)
    traits_view = View(
        Item('plot',editor=ComponentEditor(), show_label=False),
        width=500, height=500, resizable=True, title="Plot Animation",
        handler = AnimationHandler()) 

    def __init__(self, **traits):
        super(AnimationPlot, self).__init__(**traits)
        data = ArrayPlotData(x=[0], y=[0])
        plot = Plot(data)
        plot.plot(("x", "y"), type="line", color="blue")
        plot.title = "sin(x)"
        self.plot = plot
        self.data = data
        
    def on_timer(self): 
        x = np.linspace(self.phase, self.phase+np.pi*4, 100)
        y = np.sin(x)
        self.phase += 0.02        
        self.data["x"] = x 
        self.data["y"] = y
Exemplo n.º 22
0
class LFapplication(HasTraits):

    traits_view = View(Item('LF_img',
                            editor=ComponentEditor(),
                            show_label=False),
                       Item('X_angle', label='Angle in the X axis'),
                       Item('Y_angle', label='Angle in the Y axis'),
                       resizable=True,
                       title="LF Image")

    def __init__(self, img_path):
        super(LFapplication, self).__init__()

        #
        # Load image data
        #
        base_path = os.path.splitext(img_path)[0]
        lenslet_path = base_path + '-lenslet.txt'
        optics_path = base_path + '-optics.txt'

        with open(lenslet_path, 'r') as f:
            tmp = eval(f.readline())
            x_offset, y_offset, right_dx, right_dy, down_dx, down_dy = \
                     np.array(tmp, dtype=np.float32)

        with open(optics_path, 'r') as f:
            for line in f:
                name, val = line.strip().split()
                try:
                    setattr(self, name, np.float32(val))
                except:
                    pass

        max_angle = math.atan(self.pitch / 2 / self.flen)

        #
        # Prepare image
        #
        im_pil = Image.open(img_path)
        if im_pil.mode == 'RGB':
            self.NCHANNELS = 3
            w, h = im_pil.size
            im = np.zeros((h, w, 4), dtype=np.float32)
            im[:, :, :3] = np.array(im_pil).astype(np.float32)
            self.LF_dim = (ceil(h / down_dy), ceil(w / right_dx), 3)
        else:
            self.NCHANNELS = 1
            im = np.array(im_pil.getdata()).reshape(im_pil.size[::-1]).astype(
                np.float32)
            h, w = im.shape
            self.LF_dim = (ceil(h / down_dy), ceil(w / right_dx))

        x_start = x_offset - int(x_offset / right_dx) * right_dx
        y_start = y_offset - int(y_offset / down_dy) * down_dy
        x_ratio = self.flen * right_dx / self.pitch
        y_ratio = self.flen * down_dy / self.pitch

        #
        # Generate the cuda kernel
        #
        mod_LFview = pycuda.compiler.SourceModule(
            _kernel_tpl.render(newiw=self.LF_dim[1],
                               newih=self.LF_dim[0],
                               oldiw=w,
                               oldih=h,
                               x_start=x_start,
                               y_start=y_start,
                               x_ratio=x_ratio,
                               y_ratio=y_ratio,
                               x_step=right_dx,
                               y_step=down_dy,
                               NCHANNELS=self.NCHANNELS))

        self.LFview_func = mod_LFview.get_function("LFview_kernel")
        self.texref = mod_LFview.get_texref("tex")

        #
        # Now generate the cuda texture
        #
        if self.NCHANNELS == 3:
            cuda.bind_array_to_texref(
                cuda.make_multichannel_2d_array(im, order="C"), self.texref)
        else:
            cuda.matrix_to_texref(im, self.texref, order="C")

        #
        # We could set the next if we wanted to address the image
        # in normalized coordinates ( 0 <= coordinate < 1.)
        # texref.set_flags(cuda.TRSF_NORMALIZED_COORDINATES)
        #
        self.texref.set_filter_mode(cuda.filter_mode.LINEAR)

        #
        # Prepare the traits
        #
        self.add_trait('X_angle', Range(-max_angle, max_angle, 0.0))
        self.add_trait('Y_angle', Range(-max_angle, max_angle, 0.0))

        self.plotdata = ArrayPlotData(LF_img=self.sampleLF())
        self.LF_img = Plot(self.plotdata)
        if self.NCHANNELS == 3:
            self.LF_img.img_plot("LF_img")
        else:
            self.LF_img.img_plot("LF_img", colormap=gray)

    def sampleLF(self):
        #
        # Get the output image
        #
        output = np.zeros(self.LF_dim, dtype=np.uint8)

        #
        # Calculate the gridsize. This is entirely given by the size of our image.
        #
        blocks = (16, 16, 1)
        gridx = ceil(self.LF_dim[1] / blocks[1])
        gridy = ceil(self.LF_dim[0] / blocks[0])
        grid = (gridx, gridy)

        #
        # Call the kernel
        #
        self.LFview_func(np.float32(self.X_angle),
                         np.float32(self.Y_angle),
                         cuda.Out(output),
                         texrefs=[self.texref],
                         block=blocks,
                         grid=grid)

        return output

    @on_trait_change('X_angle, Y_angle')
    def updateImge(self):
        self.plotdata.set_data('LF_img', self.sampleLF())
Exemplo n.º 23
0
class PointSelectionDemo(HasTraits):
    color = Enum(Colors.keys())
    green_selection = List()
    red_selection = List()
    plot = Instance(Plot)
    data = Instance(ArrayPlotData)

    traits_view = View(HSplit(
        Item('plot', editor=ComponentEditor(), show_label=False),
        VGroup(
            Item("color", show_label=False, style="custom"),
            Heading(u"绿色选择点"),
            Item("green_selection", show_label=False, style="readonly"),
            Heading(u"红色选择点"),
            Item("red_selection", show_label=False, style="readonly"),
        )),
                       width=800,
                       height=400,
                       resizable=True,
                       title=u"数据点选择演示")

    def __init__(self, **traits):
        super(PointSelectionDemo, self).__init__(**traits)
        x = np.random.rand(100)
        y = np.random.rand(100)
        data = ArrayPlotData(x=x, y=y)

        plot = Plot(data, padding=25)
        self.scatter = scatter = plot.plot(("x", "y"),
                                           type="scatter",
                                           marker_size=4)[0]

        self.select_tools = {}
        for i, c in enumerate(Colors.keys()):
            hover_name = "hover_%s" % c
            selection_name = "selections_%s" % c
            self.select_tools[c] = ScatterInspector(
                scatter,
                hover_metadata_name=hover_name,
                selection_metadata_name=selection_name)

            scatter.overlays.append(
                ScatterInspectorOverlay(
                    scatter,
                    hover_metadata_name=hover_name,
                    selection_metadata_name=selection_name,
                    hover_color="transparent",
                    hover_outline_color=c,
                    hover_marker_size=6,
                    hover_line_width=1,
                    selection_color=Colors[c],
                ))

        scatter.active_tool = self.select_tools[self.color]
        scatter.index.on_trait_change(self.selection_changed,
                                      'metadata_changed')
        self.plot = plot
        self.data = data

    def _color_changed(self):
        self.scatter.active_tool = self.select_tools[self.color]

    def selection_changed(self):
        x = self.scatter.index.get_data()
        y = self.scatter.value.get_data()
        metadata = self.scatter.index.metadata
        selection = metadata.get("selections_green", [])
        self.green_selection = [
            "%d, (%f, %f)" % (s, x[s], y[s]) for s in selection
        ]
        selection = metadata.get("selections_red", [])
        self.red_selection = [
            "%d, (%f, %f)" % (s, x[s], y[s]) for s in selection
        ]
Exemplo n.º 24
0
class Subgraph(BaseGraph):
    """ Defines a representation of a subgraph in Graphviz's dot language.
    """

    #--------------------------------------------------------------------------
    #  Trait definitions:
    #--------------------------------------------------------------------------

    # An ID is one of the following:
    #  * Any string of alphabetic ([a-zA-Z\200-\377]) characters, underscores
    #    ('_') or digits ([0-9]), not beginning with a digit;
    #  * a number [-]?(.[0-9]+ | [0-9]+(.[0-9]*)? );
    #  * any double-quoted string ("...") possibly containing escaped
    #    quotes (\")1;
    #  * an HTML string (<...>).
    #    ID = Str
    #
    #    name = Alias("ID", desc="synonym for ID") # Used by InstanceEditor
    #
    #    # Subgraph nodes.
    #    nodes = List(Instance(Node))
    #
    #    # Subgraph edges.
    #    edges = List(Instance(Edge))
    #
    #    # Subgraphs of the subgraph.
    #    subgraphs = List(Instance("godot.subgraph.Subgraph"))
    #
    #    # Separate rectangular layout regions.
    #    clusters = List(Instance("godot.cluster.Cluster"))

    # Parent graph in the graph heirarchy.
    #    parent = Instance("godot.graph.Graph")

    # Root graph instance.
    #    root = Instance("godot.graph.Graph")

    #--------------------------------------------------------------------------
    #  Xdot trait definitions:
    #--------------------------------------------------------------------------

    # For a given graph object, one will typically a draw directive before the
    # label directive. For example, for a node, one would first use the
    # commands in _draw_ followed by the commands in _ldraw_.
    #    _draw_ = Str(desc="xdot drawing directive")
    #
    #    # Label draw directive.
    #    _ldraw_ = Str(desc="xdot label drawing directive")

    #--------------------------------------------------------------------------
    #  Dot trait definitions.
    #--------------------------------------------------------------------------

    # Rank constraints on the nodes in a subgraph. If rank="same", all nodes
    # are placed on the same rank. If rank="min", all nodes are placed on the
    # minimum rank. If rank="source", all nodes are placed on the minimum rank,
    # and the only nodes on the minimum rank belong to some subgraph whose rank
    # attribute is "source" or "min". Analogous criteria hold for rank="max"
    # and rank="sink". (Note: the minimum rank is topmost or leftmost, and the
    # maximum rank is bottommost or rightmost.)
    rank = Enum("same",
                "min",
                "source",
                "max",
                "sink",
                desc="rank constraints on the nodes in a subgraph",
                graphviz=True)

    #--------------------------------------------------------------------------
    #  Views:
    #--------------------------------------------------------------------------

    traits_view = View(
        VGroup(
            Group(
                Item("vp",
                     editor=ComponentEditor(height=100),
                     show_label=False), Item("arrange", show_label=False)),
            VGroup(
                HGroup(Item("ID"), Item("rank")),
                Tabbed(nodes_item, edges_item, dock="tab"),
                #            subgraphs_notebook_group
            ),
            layout="split"),
        title="Subgraph",
        id="godot.subgraph",
        buttons=["OK", "Cancel", "Help"],
        resizable=True)

    #--------------------------------------------------------------------------
    #  "object" interface:
    #--------------------------------------------------------------------------

    def __str__(self):
        """ Returns a string representation of the cluster in dot language.
        """
        s = "subgraph"

        return "%s %s" % (s, super(Subgraph, self).__str__())
Exemplo n.º 25
0
class DataSetBrowser(HasTraits):
    """
    A class that allows browsing of a DataSet object with sliders
    to navigate through plates, images within plates, and objects 
    within images.
    """

    view = View(VGroup(
        HGroup(
            Item('image_plots',
                 editor=ComponentEditor(size=(50, 50)),
                 show_label=False), ),
        HGroup(
            Item('plots',
                 editor=ComponentEditor(size=(250, 300)),
                 show_label=False), ),
        Group(
            Item('object_index',
                 editor=RangeEditor(low=1,
                                    high_name='num_objects',
                                    mode='slider')),
            Item('image_index',
                 editor=RangeEditor(low=1,
                                    high_name='num_images',
                                    mode='slider')),
            Item('plate_index',
                 editor=RangeEditor(low=1,
                                    high_name='num_plates',
                                    mode='slider')),
        ),
        HGroup(
            Item('num_internal_knots',
                 label='Number of internal spline knots'),
            Item('smoothing', label='Amount of smoothing applied'))),
                height=700,
                width=800,
                resizable=True)

    # Chaco plot
    gfp_plot = Instance(Plot)
    sil_plot = Instance(Plot)
    image_plots = Instance(HPlotContainer)
    rotated_plot = Instance(Plot)
    plots = Instance(GridPlotContainer)
    #legends = Instance(VPlotContainer)
    # DataSet being viewed
    dataset = Instance(DataSet)

    # Plate object currently being examined
    current_plate = Instance(Plate)

    # ImageSilhouette object currently being examined
    current_image = Instance(ImageSilhouette)

    # ObjectSilhouette object currently being examined
    current_object = Instance(ObjectSilhouette)

    # Index traits that control the selected plate/image/object
    plate_index = Int(1)
    image_index = Int(1)
    object_index = Int(1)

    # Number of plates, images, and objects in the current context
    num_plates = Property(Int, depends_on='dataset')
    num_images = Property(Int, depends_on='current_plate')
    num_objects = Property(Int, depends_on='current_image')
    num_internal_knots = Range(1, 20, 3)
    smoothing = Range(0.0, 2.0, 0)

    def __init__(self, *args, **kwargs):
        """Construct a DataSetBrowser from the specified DataSet object."""
        super(DataSetBrowser, self).__init__(*args, **kwargs)
        self.current_plate = self.dataset[self.plate_index - 1]
        self.current_image = self.current_plate[self.image_index - 1]
        self.current_object = self.current_image[self.object_index - 1]
        self.sil_plot = Plot()
        self._object_index_changed()

    ######################### Private interface ##########################

    def _plate_index_changed(self):
        """Handle the plate index changing."""
        try:
            self.current_plate = self.dataset[self.plate_index - 1]
        except IndexError:
            self.current_plate = None
        self.image_index = 1
        self._image_index_changed()

    def _image_index_changed(self):
        """Handle the image index slider changing."""
        try:
            self.current_image = self.current_plate[self.image_index - 1]
        except IndexError:
            self.current_image = None
        self.object_index = 1
        self._object_index_changed()

    def _object_index_changed(self):
        """Handle object index slider changing."""
        try:
            self.current_object = self.current_image[self.object_index - 1]

            # Display
            sil = self.current_object.image
            self._update_img_plot('sil_plot', sil, 'Extracted mask')

            # .T to get major axis horizontal
            rotated = self.current_object.aligned_version.image.T
            self._update_img_plot('rotated_plot', rotated, 'Aligned mask')

            self.image_plots = HPlotContainer(self.sil_plot,
                                              self.rotated_plot,
                                              valign="top",
                                              bgcolor="transparent")

            self._update_spline_plot()

        except IndexError:
            self.current_object = None

    def _get_num_plates(self):
        """Return the number of plates in the currently viewed dataset."""
        return len(self.dataset)

    def _get_num_images(self):
        """Return the number of images in the currently viewed plate."""
        return len(self.current_plate)

    def _get_num_objects(self):
        """Return the number of objects in the currently viewed image."""
        return len(self.current_image)

    def _update_img_plot(self, plot_name, image, title):
        """Update an image plot."""
        plotdata = ArrayPlotData(imagedata=image)
        xbounds = (0, image.shape[1] - 1)
        ybounds = (0, image.shape[0] - 1)

        plot = Plot(plotdata)
        plot.aspect_ratio = float(xbounds[1]) / float(ybounds[1])
        plot.img_plot("imagedata",
                      colormap=bone,
                      xbounds=xbounds,
                      ybounds=ybounds)
        plot.title = title

        setattr(self, plot_name, plot)
        getattr(self, plot_name).request_redraw()

    def _update_spline_plot(self):
        """Update the spline plot."""
        knots = np.mgrid[0:1:((self.num_internal_knots + 2) * 1j)][1:-1]
        medial_repr = self.current_object.aligned_version.medial_repr
        dependent_variable = np.mgrid[0:1:(medial_repr.length * 1j)]
        laplacian = ndimage.gaussian_laplace(medial_repr.width_curve,
                                             self.smoothing,
                                             mode='constant',
                                             cval=np.nan)
        m_spline = LSQUnivariateSpline(dependent_variable,
                                       medial_repr.medial_axis, knots)
        w_spline = LSQUnivariateSpline(dependent_variable,
                                       medial_repr.width_curve, knots)
        # sample at double the frequency
        spl_dep_var = np.mgrid[0:1:(medial_repr.length * 2j)]
        plots = self.plots
        if plots is None:
            # Render the plot for the first time.
            plotdata = ArrayPlotData(
                medial_x=dependent_variable,
                medial_y=medial_repr.medial_axis,
                width_x=dependent_variable,
                width_y=medial_repr.width_curve,
                medial_spline_x=spl_dep_var,
                medial_spline_y=m_spline(spl_dep_var),
                width_spline_x=spl_dep_var,
                width_spline_y=w_spline(spl_dep_var),
                laplacian_y=laplacian,
            )
            plot = Plot(plotdata)

            # Width data
            self._width_data_renderer, = plot.plot(
                ("width_x", "width_y"),
                type="line",
                color="blue",
                name="Original width curve data")

            filterdata = ArrayPlotData(x=dependent_variable,
                                       laplacian=laplacian)
            filterplot = Plot(filterdata)
            self._laplacian_renderer, = filterplot.plot(
                ("x", "laplacian"),
                type="line",
                color="black",
                name="Laplacian-of-Gaussian")

            # Titles for plot & axes
            plot.title = "Width curves"
            plot.x_axis.title = "Normalized position on medial axis"
            plot.y_axis.title = "Fraction of medial axis width"

            # Legend mangling stuff
            legend = plot.legend
            plot.legend = None
            legend.set(component=None,
                       visible=True,
                       resizable="",
                       auto_size=True,
                       bounds=[250, 70],
                       padding_top=plot.padding_top)

            filterlegend = filterplot.legend
            filterplot.legend = None
            filterlegend.set(component=None,
                             visible=True,
                             resizable="",
                             auto_size=True,
                             bounds=[250, 50],
                             padding_top=filterplot.padding_top)

            self.plots = GridPlotContainer(plot,
                                           legend,
                                           filterplot,
                                           filterlegend,
                                           shape=(2, 2),
                                           valign="top",
                                           bgcolor="transparent")

        else:

            # Update the real width curve
            self._width_data_renderer.index.set_data(dependent_variable)
            self._width_data_renderer.value.set_data(medial_repr.width_curve)

            # Render the Laplacian
            self._laplacian_renderer.index.set_data(dependent_variable)
            self._laplacian_renderer.value.set_data(laplacian)

    def _num_internal_knots_changed(self):
        """Hook to update the plot when we change the number of knots."""
        self._update_spline_plot()

    def _smoothing_changed(self):
        """Hook to update the plot when we change the smoothing parameter."""
        self._update_spline_plot()
Exemplo n.º 26
0
class SplineExplorer(traits.HasTraits):
    """A simple UI to adjust the parameters and view the resulting splines."""

    v_min = traits.Float(0)
    v_max = traits.Float(15)
    a_min = traits.Float(-5)
    a_max = traits.Float(5)
    j_min = traits.Float(-2.5)
    j_max = traits.Float(2.5)
    mass = traits.Float(400)

    q_i = traits.Float
    v_i = traits.Float
    a_i = traits.Float
    t_i = traits.Float

    q_f = traits.Float(100)
    v_f = traits.Float(0)
    a_f = traits.Float(0)
    t_f = traits.Float(18)

    plot_names = traits.List(
        ["Position", "Jerk", "Velocity", "Power", "Acceleration"])
    active_plots = traits.List

    target_type = traits.Enum(('Position', 'Velocity', 'Acceleration', 'Time'))

    plot_container = traits.Instance(Container)
    recalculate = menu.Action(name="Recalculate", action="recalc")
    dump = menu.Action(name="Print", action="dump")
    save = menu.Action(name="Save", action="save")
    trait_view = ui.View(ui.HGroup(
        ui.VGroup(
            ui.Item(name='target_type', label='Target'),
            ui.VGroup(ui.Item(name='active_plots',
                              show_label=False,
                              editor=ui.CheckListEditor(cols=3,
                                                        name='plot_names'),
                              style='custom'),
                      label='Show Plots',
                      show_border=True),
            ui.VGroup(ui.Item(name='q_i', label='Position'),
                      ui.Item(name='v_i', label='Velocity'),
                      ui.Item(name='a_i', label='Acceleration'),
                      ui.Item(name='t_i', label='Time'),
                      label='Initial Conditions',
                      show_border=True),
            ui.VGroup(ui.Item(
                name='q_f',
                label='Position',
                enabled_when="target_type not in ('Velocity', 'Acceleration')"
            ),
                      ui.Item(name='v_f',
                              label='Velocity',
                              enabled_when="target_type != 'Acceleration'"),
                      ui.Item(name='a_f', label='Acceleration'),
                      ui.Item(name='t_f',
                              label='Time',
                              enabled_when="target_type == 'Time'"),
                      label='Final Conditions:',
                      show_border=True),
            ui.VGroup(ui.Item(name='v_min', label='Min Velocity'),
                      ui.Item(name='v_max', label='Max Velocity'),
                      ui.Item(name='a_min', label='Min Acceleration'),
                      ui.Item(name='a_max', label='Max Acceleration'),
                      ui.Item(name='j_min', label='Min Jerk'),
                      ui.Item(name='j_max', label='Max Jerk'),
                      ui.Item(name='mass', label='Vehicle Mass'),
                      label='Constraints',
                      show_border=True)),
        ui.Item('plot_container', editor=ComponentEditor(), show_label=False)),
                         title='Cubic Spline Explorer',
                         handler=SEButtonHandler(),
                         buttons=[recalculate, dump, save],
                         resizable=True,
                         width=1000)

    def __init__(self):
        super(SplineExplorer, self).__init__()
        self.active_plots = self.plot_names[:]
        self.active_plots.remove("Power")
        self.calc()

    def calc(self):
        try:
            self.solver = TrajectorySolver(self.v_max, self.a_max, self.j_max,
                                           self.v_min, self.a_min, self.j_min)
            self.initial = Knot(self.q_i, self.v_i, self.a_i, self.t_i)
            self.final = Knot(self.q_f, self.v_f, self.a_f, self.t_f)

            if self.target_type == 'Position':
                self.spline = self.solver.target_position(
                    self.initial, self.final)
            elif self.target_type == 'Velocity':
                self.spline = self.solver.target_velocity(
                    self.initial, self.final)
            elif self.target_type == 'Acceleration':
                self.spline = self.solver.target_acceleration(
                    self.initial, self.final)
            elif self.target_type == 'Time':
                self.spline = self.solver.target_time(self.initial, self.final)

            pos = vel = accel = jerk = power = False
            if "Position" in self.active_plots: pos = True
            if "Velocity" in self.active_plots: vel = True
            if "Acceleration" in self.active_plots: accel = True
            if "Jerk" in self.active_plots: jerk = True
            if "Power" in self.active_plots: power = True

            self.plotter = CSplinePlotter(self.spline,
                                          self.v_max,
                                          self.a_max,
                                          self.j_max,
                                          self.v_min,
                                          self.a_min,
                                          self.j_min,
                                          mass=self.mass,
                                          plot_pos=pos,
                                          plot_vel=vel,
                                          plot_accel=accel,
                                          plot_jerk=jerk,
                                          plot_power=power)
            self.plot_container = self.plotter.container
        except:
            self.initial = None
            self.final = None
            self.spline = None
            self.plot_container = Container()

    def display(self):
        self.configure_traits()

    def get_save_filename(self):
        """Get a filename from the user via a FileDialog. Returns the filename."""
        dialog = FileDialog(action="save as",
                            default_filename="spline_00",
                            wildcard="*.png")
        dialog.open()
        if dialog.return_code == OK:
            return dialog.path

    def save(self, path):
        """Save an image of the plot. Does not catch any exceptions."""
        # Create a graphics context of the right size
        win_size = self.plot_container.outer_bounds
        plot_gc = chaco.PlotGraphicsContext(win_size)
        #plot_gc.set_fill_color("transparent")
        # Place the plot component into it
        plot_gc.render_component(self.plot_container)

        # Save out to the user supplied filename
        plot_gc.save(path)

    def _active_plots_changed(self):
        self.calc()

    def _target_type_changed(self):
        self.calc()
Exemplo n.º 27
0
class SectionViewer(HasTraits):
    section = Instance(Section)
    plot = Instance(Plot)
    plotdata = Instance(ArrayPlotData,
                        kw={
                            'x': numpy.array([]),
                            'y': numpy.array([])
                        })
    #pointsx = Array(numpy.float, value=numpy.array([]))
    #pointsy = Array(numpy.float, value=numpy.array([]))
    data = Property(Array, depends_on='section.data.data_points')

    @cached_property
    def _get_data(self):
        try:
            ret = self.section.data.data_points
            #self.pointsx = ret[:, 0]
            #self.pointsy = ret[:, 1]
            self.plotdata.set_data('x', ret[:, 0])
            self.plotdata.set_data('y', ret[:, 1])
            return ret
        except AttributeError:
            return numpy.Array([[], []])

    @on_trait_change('data')
    def replot(self):
        # FIXME: handle aspect ratio correctness
        print 'in SectionViewer.plot'
        self.plot.title = 'Section : %s' % self.section.type
        self.plot.request_redraw()

    def __init__(self, *l, **kw):
        # TODO: implement aspect ratio maintaining
        HasTraits.__init__(self, *l, **kw)
        #self.plotdata = ArrayPlotData(x=self.pointsx, y=self.pointsy)
        plot = Plot(self.plotdata)
        renderer = plot.plot(("x", "y"))

        #lineplot = create_line_plot((self.pointsx,self.pointsy), width=2.0)
        #lineplot.tools.append(PanTool(lineplot, drag_button='middle'))
        #lineplot.tools.append(ZoomTool(lineplot, tool_mode='box'))
        plot.tools.append(PanTool(plot, drag_button='left'))
        plot.tools.append(ZoomTool(plot, tool_mode='box'))
        plot.tools.append(DragZoom(plot, tool_mode='box', drag_button='right'))
        plot.tools.append(CustomSaveTool(
            plot))  #, filename='/home/pankaj/Desktop/file.png'))
        #plot.overlays.append(PlotLabel('Section : %s' % self.section.type,component=plot))

        #plot.tools.append(PlotToolbar(plot))
        plot.tools.append(TraitsTool(plot))
        #plot.tools.append(ZoomTool(plot, tool_mode='box', axis='index', drag_button='right', always_on=True))
        #plot.aspect_ratio = 3
        #plot.request_redraw()
        #print plot.bounds
        #plot.aspect_ratio = 1
        #plot.bounds = [500,300]
        #print plot.bounds
        #plot.range2d = DataRange2D(low=(0,-.5), high=(1,0.5))
        #print plot.bounds
        for renderer in chain(*plot.plots.values()):
            renderer.index_mapper.stretch_data = False
            renderer.value_mapper.stretch_data = False

            renderer.index_mapper.range.low = 0
            renderer.index_mapper.range.high = 1
            renderer.value_mapper.range.low = -3 / 8.
            renderer.value_mapper.range.high = 3 / 8.
        self.plot = plot

    view = View(Item(
        'plot',
        editor=ComponentEditor(),
        show_label=False,
        resizable=True,
    ),
                resizable=True)
Exemplo n.º 28
0
class tcWindow(HasTraits):
    project = tcProject
    plot = tcPlot

    def __init__(self, project):
        self.project = project
        self.plot = create_timechart_container(project)
        self.plot_range_tools = self.plot.range_tools
        self.plot_range_tools.on_trait_change(self._selection_time_changed,
                                              "time")
        self.trait_view().title = self.get_title()

    def get_title(self):
        if self.project.filename == "dummy":
            return "PyTimechart: Please Open a File"
        return "PyTimechart:" + self.project.filename

    # Create an action that exits the application.
    status = Str("Welcome to PyTimechart")
    traits_view = View(
        HSplit(
            VSplit(
                Item('project',
                     show_label=False,
                     editor=InstanceEditor(view='process_view'),
                     style='custom',
                     width=150),
                #                Item('plot_range_tools', show_label = False, editor=InstanceEditor(view = 'selection_view'), style='custom',width=150,height=100)
            ),
            Item('plot', show_label=False, editor=ComponentEditor()),
        ),
        toolbar=ToolBar(*_create_toolbar_actions(),
                        image_size=(24, 24),
                        show_tool_names=False),
        menubar=MenuBar(*_create_menubar_actions()),
        statusbar=[
            StatusItem(name='status'),
        ],
        resizable=True,
        width=1280,
        height=1024,
        handler=tcActionHandler())

    def _on_open_trace_file(self):
        if open_file(None) and self.project.filename == "dummy":
            self._ui.dispose()

    def _on_view_properties(self):
        self.plot.options.edit_traits()

    def _on_exit(self, n=None):
        self.close()
        sys.exit(0)

    def close(self, n=None):
        pass

    def _on_about(self):
        aboutBox().edit_traits()

    def _on_doc(self):
        browse_doc()

    def _selection_time_changed(self):
        self.status = "selection time:%s" % (self.plot_range_tools.time)
Exemplo n.º 29
0
        plot = Plot(self.plotdata)
        plot.plot(("x", "y"))
        plot.plot(("x", "y"), type='scatter')

        plot.tools.append(PanTool(plot, drag_button='left'))
        plot.tools.append(ZoomTool(plot, tool_mode='box'))
        plot.tools.append(DragZoom(plot, tool_mode='box', drag_button='right'))
        plot.tools.append(CustomSaveTool(
            plot))  #, filename='/home/pankaj/Desktop/file.png'))
        plot.tools.append(TraitsTool(plot))
        self.plot = plot
        self.set_plotdata()

    view_variables = View(Item(
        'plot',
        editor=ComponentEditor(),
        show_label=False,
        resizable=True,
    ),
                          HGroup(
                              Item('var_x',
                                   editor=EnumEditor(name='var_names_view')),
                              Item('var_y',
                                   editor=EnumEditor(name='var_names_view'))),
                          resizable=True)


class OutputVariablesAdapter(TabularAdapter):
    def _columns_default(self):
        var_names = sorted(self.object.variable_names, key=lambda x: x.lower())
        ret = [(var_name, self.object.variable_names.index(var_name))
Exemplo n.º 30
0
class CyclesPlot(HasTraits):
    """ Simple plotting class with some attached controls"""
    plot = Instance(GridContainer)
    traits_view = View(Item('plot', editor=ComponentEditor(),
                            show_label=False),
                       width=800,
                       height=600,
                       resizable=True,
                       title="Business Cycles Plot")

    # Private Traits
    _file_path = Str
    _dates = Array
    _series1 = Array
    _series2 = Array
    _selected_s1 = Array
    _selected_s2 = Array

    def __init__(self):
        super(CyclesPlot, self).__init__()

        # Normally you'd pass in the data, but I'll hardwire things for this
        #    one-off plot.

        srecs = read_time_series_from_csv("./biz_cycles2.csv",
                                          date_col=0,
                                          date_format="%Y-%m-%d")

        dt = srecs["Date"]

        # Industrial production compared with trend (plotted on value axis)
        iprod_vs_trend = srecs["Metric 1"]

        # Industrial production change in last 6 Months (plotted on index axis)
        iprod_delta = srecs["Metric 2"]

        self._dates = dt
        self._series1 = self._selected_s1 = iprod_delta
        self._series2 = self._selected_s2 = iprod_vs_trend

        end_x = np.array([self._selected_s1[-1]])
        end_y = np.array([self._selected_s2[-1]])

        plotdata = ArrayPlotData(x=self._series1,
                                 y=self._series2,
                                 dates=self._dates,
                                 selected_x=self._selected_s1,
                                 selected_y=self._selected_s2,
                                 endpoint_x=end_x,
                                 endpoint_y=end_y)

        cycles = Plot(plotdata, padding=20)

        cycles.plot(("x", "y"), type="line", color=(.2, .4, .5, .4))

        cycles.plot(("selected_x", "selected_y"),
                    type="line",
                    marker="circle",
                    line_width=3,
                    color=(.2, .4, .5, .9))

        cycles.plot(("endpoint_x", "endpoint_y"),
                    type="scatter",
                    marker_size=4,
                    marker="circle",
                    color=(.2, .4, .5, .2),
                    outline_color=(.2, .4, .5, .6))

        cycles.index_range = DataRange1D(low_setting=80., high_setting=120.)

        cycles.value_range = DataRange1D(low_setting=80., high_setting=120.)

        # dig down to use actual Plot object
        cyc_plot = cycles.components[0]

        # Add the labels in the quadrants
        cyc_plot.overlays.append(
            PlotLabel("\nSlowdown" + 40 * " " + "Expansion",
                      component=cyc_plot,
                      font="swiss 24",
                      color=(.2, .4, .5, .6),
                      overlay_position="inside top"))

        cyc_plot.overlays.append(
            PlotLabel("Downturn" + 40 * " " + "Recovery\n ",
                      component=cyc_plot,
                      font="swiss 24",
                      color=(.2, .4, .5, .6),
                      overlay_position="inside bottom"))

        timeline = Plot(plotdata, resizable='h', height=50, padding=20)
        timeline.plot(("dates", "x"),
                      type="line",
                      color=(.2, .4, .5, .8),
                      name='x')
        timeline.plot(("dates", "y"),
                      type="line",
                      color=(.5, .4, .2, .8),
                      name='y')

        # Snap on the tools
        zoomer = ZoomTool(timeline,
                          drag_button="right",
                          always_on=True,
                          tool_mode="range",
                          axis="index",
                          max_zoom_out_factor=1.1)

        panner = PanTool(timeline, constrain=True, constrain_direction="x")

        # dig down to get Plot component I want
        x_plt = timeline.plots['x'][0]

        range_selection = RangeSelection(x_plt, left_button_selects=True)
        range_selection.on_trait_change(self.update_interval, 'selection')

        x_plt.tools.append(range_selection)
        x_plt.overlays.append(RangeSelectionOverlay(x_plt))

        # Set the plot's bottom axis to use the Scales ticking system
        scale_sys = CalendarScaleSystem(
            fill_ratio=0.4,
            default_numlabels=5,
            default_numticks=10,
        )
        tick_gen = ScalesTickGenerator(scale=scale_sys)

        bottom_axis = ScalesPlotAxis(timeline,
                                     orientation="bottom",
                                     tick_generator=tick_gen)

        # Hack to remove default axis - FIXME: how do I *replace* an axis?
        del (timeline.underlays[-2])

        timeline.overlays.append(bottom_axis)

        container = GridContainer(padding=20,
                                  fill_padding=True,
                                  bgcolor="lightgray",
                                  use_backbuffer=True,
                                  shape=(2, 1),
                                  spacing=(30, 30))

        # add a central "x" and "y" axis

        x_line = LineInspector(cyc_plot,
                               is_listener=True,
                               color="gray",
                               width=2)
        y_line = LineInspector(cyc_plot,
                               is_listener=True,
                               color="gray",
                               width=2,
                               axis="value")

        cyc_plot.overlays.append(x_line)
        cyc_plot.overlays.append(y_line)

        cyc_plot.index.metadata["selections"] = 100.0
        cyc_plot.value.metadata["selections"] = 100.0

        container.add(cycles)
        container.add(timeline)

        container.title = "Business Cycles"

        self.plot = container

    def update_interval(self, value):

        # Reaching pretty deep here to get selections
        sels = self.plot.plot_components[1].plots['x'][0].index.metadata[
            'selections']

        if not sels is None:
            p = self._dates >= sels[0]
            q = self._dates <= sels[1]
            msk = p & q

            self._selected_s1 = self._series1[msk]
            self._selected_s2 = self._series2[msk]

            # Find the index of the last point in the mask
            last_idx = -(msk[::-1].argmax() + 1)
            endpoint_x = np.array([self._series1[last_idx]])
            endpoint_y = np.array([self._series2[last_idx]])

        else:
            self._selected_s1 = self._series1
            self._selected_s2 = self._series2
            endpoint_x = np.array([self._series1[-1]])
            endpoint_y = np.array([self._series2[-1]])

        self.plot.plot_components[0].data['selected_x'] = self._selected_s1
        self.plot.plot_components[0].data['selected_y'] = self._selected_s2
        self.plot.plot_components[0].data['endpoint_x'] = endpoint_x
        self.plot.plot_components[0].data['endpoint_y'] = endpoint_y