Exemplo n.º 1
0
class ListTraitTest(HasStrictTraits):

    #---------------------------------------------------------------------------
    #  Trait definitions:
    #---------------------------------------------------------------------------

    people = List(Person)

    #---------------------------------------------------------------------------
    #  Traits view definitions:
    #---------------------------------------------------------------------------

    traits_view = View(VSplit(Item('people', id='table', editor=table_editor),
                              Item('people@',
                                   id='list',
                                   editor=ListEditor(style='custom', rows=5)),
                              Item('people@',
                                   id='notebook',
                                   editor=ListEditor(use_notebook=True,
                                                     deletable=True,
                                                     export='DockShellWindow',
                                                     page_name='.name')),
                              id='splitter',
                              show_labels=False),
                       title='List Trait Editor Test',
                       id='enthought.traits.ui.tests.list_traits_ui_test',
                       dock='horizontal',
                       width=.4,
                       height=.6,
                       resizable=True,
                       buttons=NoButtons,
                       kind='live')
class ShapeSelector(HasTraits):
    select = Enum(*[cls.__name__ for cls in Shape.__subclasses__()])
    shape = Instance(Shape)

    view = View(VGroup(
        Item("select", show_label=False),
        VSplit(Item("shape",
                    style="custom",
                    editor=InstanceEditor(view="view")),
               Item("shape",
                    style="custom",
                    editor=InstanceEditor(view="view_info")),
               show_labels=False)),
                width=350,
                height=300,
                resizable=True)

    def __init__(self, **traits):
        super(ShapeSelector, self).__init__(**traits)
        self._select_changed()

    def _select_changed(self):
        klass = [
            c for c in Shape.__subclasses__() if c.__name__ == self.select
        ][0]
        self.shape = klass()
Exemplo n.º 3
0
 def default_traits_view(self):
     view = View(
         HSplit(
             VSplit(
                 Item("object_class", editor=self.tree_editor, show_label=False, 
                     visible_when="object.show_tree"),
                 Group(
                     Item("search", label="搜索"),
                     Item("search_result_str", show_label=False,
                         editor=ListStrEditor(editable=False, selected_index="search_result_index")),
                     label="Search"),
             ),
             Item("current_document", style="custom", show_label=False,
                 editor=CodeEditor(lexer="null", search="top", line = "current_line", 
                     mark_lines="mark_lines", mark_color=0xff7777)),
             id = "tvtkdoc.hsplit"
         ),
         width = 700,
         height = 500,
         resizable = True,
         title = "TVTK文档浏览器",
         id = "tvtkdoc", 
         handler = TVTKDocumentHandler(),
     )
     return view
Exemplo n.º 4
0
 def default_traits_view(self):
     view = View(VSplit(
         HGroup(
             Group(
                 spring,
                 Item('delimiter', label='Column delimiter character'),
                 Item('comments', label='Comment character'),
                 Item('skiprows',
                      label='Number of lines to skip at the '
                      'beginning of the file'),
                 spring,
                 Item('handler.update_preview', show_label=False),
             ),
             Group(
                 Item(
                     'columns',
                     show_label=False,
                     style='readonly',
                     editor=ListEditor(style='custom'),
                     springy=True,
                 ),
                 label="Column names",
                 show_border=True,
             ),
         ),
         Group(Group(
             Item(
                 'data',
                 show_label=False,
                 editor=self.tabular_editor,
             ),
             label="Preview table",
         ),
               Group(
                   Item('handler.file_content',
                        style='readonly',
                        show_label=False,
                        springy=True),
                   label="%s" % self.model.filename,
               ),
               layout='tab'),
     ),
                 buttons=['OK', 'Cancel', 'Help'],
                 id='csv_load_editor',
                 resizable=True,
                 width=640,
                 height=580,
                 title='CSV import - [%s]' % self.model.filename)
     return view
Exemplo n.º 5
0
Arquivo: traits.py Projeto: ghorn/Eg
class Model(HasTraits):
	a = Code("print 'hello'")
	b = Button("click me")
 
	traits_view = View(HSplit(
	VGroup(
	Tabbed(
	Item('a'),
	Item('a'),
	Item('a')),
	Item('b')),
	VSplit(
	VGroup('b','b','b'),
	HGroup('a', show_border=True,
	label="traits is great")),
	dock="horizontal"
	),
	resizable=True,
	id="my.test.program.id")
Exemplo n.º 6
0
class PythonBrowser ( HasPrivateTraits ):

    dir       = Directory
    files     = List( FileInfo )    
    file_info = Instance( FileInfo )
    code      = Code
    
    view = View(
        HSplit(
            Item( 'dir', style = 'custom' ),
            VSplit( 
                Item( 'files', editor = tabular_editor ),
                Item( 'code',  style = 'readonly' ),
                show_labels = False ),
            show_labels = False
        ),
        resizable = True,
        width     = 0.75,
        height    = 0.75
    )
    
    #-- Event Handlers ---------------------------------------------------------
    
    def _dir_changed ( self, dir ):
        self.files = [ FileInfo( file_name = join( dir, name ) )
                       for name in listdir( dir )
                       if ((splitext( name )[1] == '.py') and 
                           isfile( join( dir, name ) )) ]
                           
    def _file_info_changed ( self, file_info ):
        fh = None
        try:
            fh = open( file_info.file_name, 'rb' )
            self.code = fh.read()
        except:
            pass
            
        if fh is not None:
            fh.close()
Exemplo n.º 7
0
class CSModelView(ModelView):

    model = Instance(ClampSetup)

    def _model_default(self):
        return ClampSetup()

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        figure.add_axes([0.08, 0.13, 0.85, 0.74])
        return figure

    data_changed = Event

    @on_trait_change('model.+modified')
    def refresh(self):

        figure = self.figure
        axes = figure.gca()
        axes.clear()

        cs = self.model
        xu, u, xe, e = cs.get_values()

        axes.set_xlabel('position on yarn', weight='semibold')
        axes.set_axis_bgcolor(color='white')
        axes.ticklabel_format(scilimits=(-3., 4.))
        axes.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.7)
        if cs.switch == 'strains':
            axes.plot(xe, e, lw=2, color='blue')
            axes.set_ylabel('strains [-]', weight='semibold')
            axes.plot(array([cs.l1, cs.l1]),
                      array([0, max(e)]),
                      lw=2,
                      color='red',
                      linestyle='dashed')
            axes.plot(array([cs.l1 + cs.L, cs.l1 + cs.L]),
                      array([0, max(e)]),
                      lw=2,
                      color='red',
                      linestyle='dashed')
            axes.text(cs.l1 + cs.L / 2,
                      max(e) * 0.95,
                      'clamp',
                      size='large',
                      ha='center')
            axes.text(cs.l1 + cs.L + cs.lt / 2,
                      max(e) * 0.95,
                      'tested length',
                      size='large',
                      ha='center')
        elif cs.switch == 'displacement':
            axes.plot(xu, u, lw=2, color='blue')
            axes.set_ylabel('displacement [m]', weight='semibold')
            axes.plot(array([cs.l1, cs.l1]),
                      array([0, max(u)]),
                      lw=2,
                      color='red',
                      linestyle='dashed')
            axes.plot(array([cs.l1 + cs.L, cs.l1 + cs.L]),
                      array([0, max(u)]),
                      lw=2,
                      color='red',
                      linestyle='dashed')
            axes.text(cs.l1 + cs.L / 2,
                      max(u) * 0.95,
                      'clamp',
                      size='large',
                      ha='center')
            axes.text(cs.l1 + cs.L + cs.lt / 2,
                      max(u) * 0.95,
                      'tested length',
                      size='large',
                      ha='center')
        else:
            print 'NOT YET IMPLEMENTED'


#            axes.plot(xslip, yslip, lw = 2, color = 'blue')
#            axes.set_ylabel('slip in clamp [m]', weight = 'semibold')
#            axes.set_xlabel('position in clamp [mm]', weight = 'semibold')

        self.data_changed = True

    traits_view = View(HSplit(
        VGroup(
            Item('model@', show_label=False, resizable=True),
            label='Material parameters',
            id='cs.viewmodel.model',
            dock='tab',
        ),
        VSplit(
            VGroup(
                Item('figure',
                     editor=MPLFigureEditor(),
                     resizable=True,
                     show_label=False),
                label='yarn displacement',
                id='cs.viewmodel.plot_window',
                dock='tab',
            ),
            id='cs.viewmodel.right',
        ),
        id='cs.viewmodel.splitter',
    ),
                       title='tested yarn',
                       id='cs.viewmodel',
                       dock='tab',
                       resizable=True,
                       buttons=[OKButton],
                       height=0.8,
                       width=0.8)
Exemplo n.º 8
0
class tcWindow(HasTraits):
    project = tcProject
    plot = tcPlot

    def __init__(self, project):
        self.project = project
        self.plot = create_timechart_container(project)
        self.plot_range_tools = self.plot.range_tools
        self.plot_range_tools.on_trait_change(self._selection_time_changed,
                                              "time")
        self.trait_view().title = self.get_title()

    def get_title(self):
        if self.project.filename == "dummy":
            return "PyTimechart: Please Open a File"
        return "PyTimechart:" + self.project.filename

    # Create an action that exits the application.
    status = Str("Welcome to PyTimechart")
    traits_view = View(
        HSplit(
            VSplit(
                Item('project',
                     show_label=False,
                     editor=InstanceEditor(view='process_view'),
                     style='custom',
                     width=150),
                #                Item('plot_range_tools', show_label = False, editor=InstanceEditor(view = 'selection_view'), style='custom',width=150,height=100)
            ),
            Item('plot', show_label=False, editor=ComponentEditor()),
        ),
        toolbar=ToolBar(*_create_toolbar_actions(),
                        image_size=(24, 24),
                        show_tool_names=False),
        menubar=MenuBar(*_create_menubar_actions()),
        statusbar=[
            StatusItem(name='status'),
        ],
        resizable=True,
        width=1280,
        height=1024,
        handler=tcActionHandler())

    def _on_open_trace_file(self):
        if open_file(None) and self.project.filename == "dummy":
            self._ui.dispose()

    def _on_view_properties(self):
        self.plot.options.edit_traits()

    def _on_exit(self, n=None):
        self.close()
        sys.exit(0)

    def close(self, n=None):
        pass

    def _on_about(self):
        aboutBox().edit_traits()

    def _on_doc(self):
        browse_doc()

    def _selection_time_changed(self):
        self.status = "selection time:%s" % (self.plot_range_tools.time)
Exemplo n.º 9
0
class MainWindow(HasTraits):
    parameter_file_collections = Instance(ParameterFileCollectionList)
    parameter_files = Instance(ParameterFileCollection)
    plot_frame_tabs = List(Instance(DataObject))
    open_parameterfile = Button
    shell = PythonValue

    def _shell_default(self):
        return globals()

    notebook_editor = ListEditor(editor=InstanceEditor(editable=True),
                                 use_notebook=True)

    traits_view = View(
        VSplit(
            HSplit(
                VGroup(
                    Item(
                        'parameter_file_collections',
                        width=120.0,
                        height=500.0,
                        show_label=False,
                        editor=TreeEditor(
                            editable=False,
                            nodes=[
                                TreeNode(
                                    node_for=[ParameterFileCollectionList],
                                    children='parameter_file_collections',
                                    label="=Data Collections"),
                                TreeNode(node_for=[ParameterFileCollection],
                                         children='parameter_files',
                                         label="name",
                                         view=View()),
                                TreeNode(node_for=[ParameterFile],
                                         children='data_objects',
                                         label="name",
                                         menu=Menu(
                                             Action(name='Slice',
                                                    action='object.do_slice'),
                                             Action(name='Project',
                                                    action='object.do_proj'),
                                             Action(name='VTK',
                                                    action='object.do_vtk')),
                                         view=View()),
                                TreeNode(node_for=[DataObject],
                                         children='',
                                         label="name"),
                            ],
                            show_icons=False),
                    ), Item('open_parameterfile', show_label=False)),
                Item('plot_frame_tabs',
                     style='custom',
                     editor=notebook_editor,
                     show_label=False,
                     height=500.0,
                     width=500.0),
            ),
            HGroup(
                #Item('shell', editor=ShellEditor(share=True),
                #show_label=False, height=120.0),
            ),
        ),
        resizable=True,
        width=800.0,
        height=660.0,
        title="reason v2 [prototype]")

    def _open_parameterfile_fired(self):
        print "OPENING"

    def _parameter_file_collections_default(self):
        return ParameterFileCollectionList()
Exemplo n.º 10
0
class OverlayMap(HasTraits):
    """
    Use mayavi to plot three image cut planes through an fMRI volume
    and stat-map overlay.
    """
    
    # Main scene
    scene = Instance(MlabSceneModel, ())

    # the image planes and lookup tables
    overlays = List(Instance(ImagePlaneWidget))
    underlays = List(Instance(ImagePlaneWidget))
    over_lut = Instance(HasTraits)
    under_lut = Instance(HasTraits)

    # lower range of the overlay lookup table
    _over_low_min = Float(0.0)
    _over_low_max = Float(0.1)
    over_low = Range(low='_over_low_min', high='_over_low_max',
                     value=0.0, mode='slider')

    # upper range of the overlay lookup table
    _over_hi_min = Float(0.0)
    _over_hi_max = Float(0.1)
    over_hi = Range(low='_over_hi_min', high='_over_hi_max',
                     value=0.01, mode='slider')


    # Whether to see x,y,z planes
    x_visible = Bool(True)
    y_visible = Bool(True)
    z_visible = Bool(True)

    # Which colormap to use 
    colormap = Enum("hot", 
                    "jet",
                    "autumn")
    
    def __init__(self, under_image, over_image):
        """
        Provide the underlay and overlay NiftiImages.  Can also
        provide filename strings.

        Example:

        stat = OverlayMap('anat.nii.gz','stat.nii.gz')
        """
        # we've got traits
        HasTraits.__init__(self)

        # load in the image
        if isinstance(under_image, NiftiImage):
            # use it
            self.__under_image = under_image
        elif isinstance(under_image, str):
            # load from file
            self.__under_image = NiftiImage(under_image)
        else:
            raise ValueError("under_image must be a NiftiImage or a file.")

        # TODO: set the extent and spacing of the under image

        # set the over data
        if isinstance(over_image, str):
            # load from file
            over_image = NiftiImage(over_image)

        if isinstance(over_image, NiftiImage):
            # TODO: make sure it matches the dims of under image
            # TODO: set the extent
            
            # save just the dat
            self.__over_image = over_image.data.T

        elif isinstance(over_image, np.ndarray):
            # just set it
            # assumes it matches the dims and extent of the under image
            self.__over_image = over_image

        else:
            raise ValueError("over_image must be a NiftiImage, ndarray, or file.")

        self.__over_image = np.ma.masked_invalid(self.__over_image)

        self.configure_traits()
        pass

    def _plane_callback1(self, widget, event):
	    self._update_planes(0)

    def _plane_callback2(self, widget, event):
	    self._update_planes(1)

    def _plane_callback3(self, widget, event):
	    self._update_planes(2)

    def _update_planes(self,num):
        # set the underlay positions.
        
        # TODO: it may make more sense to do this in the callback for
        # each individual plane when it is called instead of all at
        # once

        #for i in range(len(self.overlays)):
	#if widget == self.overlays[i]:
            #    print "widget is overlay", i
	    #elif widget == self.underlays[i]:
            #    print "widget is underlay", i
	    #else:
	    #    print "widget", widget
                

            # from what I can tell, all these are necessary
        self.underlays[num].ipw.update_traits()
        self.overlays[num].ipw.origin = self.underlays[num].ipw.origin
        self.overlays[num].ipw.point1 = self.underlays[num].ipw.point1
        self.overlays[num].ipw.point2 = self.underlays[num].ipw.point2
        self.overlays[num].ipw.update_traits()
        self.overlays[num].ipw.update_placement()
        #self.overlays[num].scene.render()
                      
    @on_trait_change('scene.activated')
    def _create_plot(self):
        # shorten things a bit
        mlab = self.scene.mlab

        # generate the scalar_fields
        over = mlab.pipeline.scalar_field(np.ma.masked_invalid(self.__over_image).filled(0))
        #over_thresh = mlab.pipeline.threshold(over,low=self.__over_image.mean())
        under = mlab.pipeline.scalar_field(np.ma.masked_invalid(self.__under_image.data.T).filled(0))

        # create the planes for the x,y,z axes
        self.underlays = []
        self.overlays = []
        for orient in ['x_axes','y_axes','z_axes']:
            # first the underlay
            # TODO: fix the slice_index, which is a hack
            under = mlab.pipeline.image_plane_widget(under,colormap='gray',
                                                     slice_index=92,
                                                     plane_opacity=0,
                                                     plane_orientation=orient)
            # set up the lookup table
            under.ipw.user_controlled_lookup_table = True
            if self.under_lut is None:
                # set it
                self.under_lut = under.module_manager.scalar_lut_manager.lut
            else:
                # use it
                under.module_manager.scalar_lut_manager.lut.table = self.under_lut.table

            # add the interaction event
	    if orient == "x_axes":
                under.ipw.add_observer("InteractionEvent", self._plane_callback1)
	    elif orient == "y_axes":
                under.ipw.add_observer("InteractionEvent", self._plane_callback2)
	    else:
                under.ipw.add_observer("InteractionEvent", self._plane_callback3)
            
            # add it to the list
            self.underlays.append(under)

            # set up the overlay
            # TODO: fix the slice_index, which is a hack
            over = mlab.pipeline.image_plane_widget(over,
                                                    colormap=self.colormap,
                                                    slice_index=92,
                                                    plane_opacity=0,
                                                    plane_orientation=orient)
            # set the lookup table
            over.ipw.user_controlled_lookup_table = True
            if self.over_lut is None:
                # is first one, so set it with alpha at bottom
                lut = over.module_manager.scalar_lut_manager.lut.table.to_array()
                lut[:40, -1] = np.linspace(0,255,40)
                over.module_manager.scalar_lut_manager.lut.table = lut
                self.over_lut = over.module_manager.scalar_lut_manager.lut
            else:
                # use it
                over.module_manager.scalar_lut_manager.lut.table = self.over_lut.table

            # turn off the interaction
            over.ipw.interaction = False
            # append 
            self.overlays.append(over)

        # set the overlay upper bounds range
        over_min = np.ma.masked_invalid(self.__over_image).min()
        over_max = np.ma.masked_invalid(self.__over_image).max()
        over_mean = np.ma.masked_invalid(self.__over_image).mean()
        print "mmm:", over_min, over_max, over_mean
        self._over_hi_min = float(over_min) #self.__over_image.min()
        self._over_hi_max = float(over_max) #self.__over_image.max()
        self.over_hi = over_max #self.__over_image.max()

        # set the overlay lower bounds range
        self._over_low_min = float(over_min) #self.__over_image.min()
        self._over_low_max = float(over_max) #self.__over_image.max()
        self.over_low = over_mean #self.__over_image.mean()

    #@on_trait_change('over_hi')
    def _over_hi_changed(self):
        if self.over_hi < self.over_low:
            # set low to be hi
            self.over_low = self.over_hi
        else:
            # update the range
            self._update_overlay_range()
        
    #@on_trait_change('over_low')
    def _over_low_changed(self):
        if self.over_low > self.over_hi:
            # set hi to be low
            self.over_hi = self.over_low
        else:
            # update the range
            self._update_overlay_range()
        
    def _update_overlay_range(self):
        # XXX: Do I need to copy here?
        new_range = self.overlays[0].module_manager.scalar_lut_manager.data_range.copy()
        new_range[0] = self.over_low
        new_range[1] = self.over_hi
        for i in range(len(self.overlays)):
            self.overlays[i].module_manager.scalar_lut_manager.data_range = new_range

    def _x_visible_changed(self):
        # toggle the proper plane on or off
        self._update_plane_visible(0,self.x_visible)
    def _y_visible_changed(self):
        # toggle the proper plane on or off
        self._update_plane_visible(1,self.y_visible)
    def _z_visible_changed(self):
        # toggle the proper plane on or off
        self._update_plane_visible(2,self.z_visible)

    def _update_plane_visible(self, plane_id, bool_val):
        self.underlays[plane_id].visible = bool_val
        self.overlays[plane_id].visible = bool_val

    def _colormap_changed(self):
        print self.colormap
        for o in self.overlays:
            #TODO: Change colormap, don't know how exactly
            #print o.module_manager.scalar_lut_manager.lut
            pass

    # define the view
    view = View(
        VSplit(
            Group(Item('scene', editor=SceneEditor(scene_class=MayaviScene), 
                       height=500, width=500, show_label=False)),
            Group(
                Group(Item('over_low', label="Lower Thresh"),
                      Item('over_hi', label="Upper Thresh"),
                      label="Overlay Properties",
                      show_border=True),
            ),
            Group(
                HGroup(Item('x_visible'),
                       Item('y_visible'),
                       Item('z_visible'),
                       Item('colormap'),
                       label="Plane visibility + colormap",
                       show_border=True),
            ),
        ),
        resizable=True,
        title='Overlay Viewer')
Exemplo n.º 11
0
class Images(HasTraits):
    """Main class for image point selections
    """
    filenames = Instance(Filenames, ())
    analysis = Instance(RectangleSelections, transient=True)
    filters = List(Instance(BaseFilter))
    figure = Instance(Figure, transient=True)
    data = Array

    def _filters_default(self):
        return [Rotate(), GaussianFilter()]

    def _analysis_default(self):
        return RectangleSelections()

    def _figure_default(self):
        def selection_callback(pos1, pos2):
            try:
                if pos1 == pos2:
                    self.analysis.selection.set_from_points(pos1)
                else:
                    self.analysis.selection.set_from_points(pos1, pos2)
            except:
                pass

        figure = Figure(process_selection=selection_callback)
        return figure

    @on_trait_change('filenames.selected')
    def open_image(self):
        data = imread(self.filenames.selected)
        for f in self.filters:
            data = f.process(data)
        self.data = data

    @on_trait_change('data,analysis.updated')
    def image_show(self):
        try:
            self.figure.plot_image(self.data)
        except:
            pass

    @on_trait_change('analysis.updated')
    def show_selection2(self):
        def plot(selection, color, index):
            s = selection
            x, y = list(
                map(lambda *args: args, s.top_left, s.top_right,
                    s.bottom_right, s.bottom_left, s.top_left))
            self.figure.plot_data(x, y, str(index), color)

        for i in range(len(self.analysis.selections) + 1):
            self.figure.del_plot(str(i))

        for index, selection in enumerate(self.analysis.selections):
            if self.analysis.index == index:
                color = 'red'
            else:
                color = 'black'
            try:
                plot(selection, color, index)
            except:
                pass

    view = View(
        VSplit(HSplit(Item('figure', style='custom', width=0.6, height=0.7),
                      Group(Item('analysis',
                                 style="custom",
                                 resizable=True,
                                 width=0.4,
                                 height=0.7,
                                 show_label=False),
                            scrollable=True),
                      show_labels=False),
               HSplit(
                   Group(
                       Item('filenames',
                            style='custom',
                            show_label=False,
                            height=0.3)),
                   Item('filters@',
                        id='notebook',
                        show_label=False,
                        editor=ListEditor(use_notebook=True,
                                          deletable=False,
                                          selected='selected',
                                          export='DockWindowShell',
                                          page_name='.name_'))),
               show_labels=False),
        width=1000,
        height=800,
        resizable=True,
    )
Exemplo n.º 12
0
             menu=Menu(NewAction, Separator(), DeleteAction, Separator(
             ), RenameAction, Separator(), CopyAction, CutAction, PasteAction),
             view=View(['name', '|<']),
             add=[Employee]),
    TreeNode(node_for=[Employee],
             auto_open=True,
             label='name',
             menu=Menu(
                 NewAction, Separator(),
                 Action(name='Default title', action='object.default_title'),
                 Action(name='Department',
                        action='handler.employee_department(editor,object)'),
                 Separator(), CopyAction, CutAction, PasteAction, Separator(),
                 DeleteAction, Separator(), RenameAction),
             view=View(VSplit(HGroup('3', 'name'),
                              HGroup('9', 'title'),
                              HGroup('phone'),
                              id='vsplit'),
                       id='enthought.traits.ui.test.tree_editor_test.employee',
                       dock='vertical'))
])

#-------------------------------------------------------------------------------
#  'TreeHandler' class:
#-------------------------------------------------------------------------------


class TreeHandler(Handler):
    def employee_department(self, editor, object):
        dept = editor.get_parent(object)
        print '%s works in the %s department.' % (object.name, dept.name)
Exemplo n.º 13
0
class ImageStackViewer(BaseDataViewer):

    plotdata = Instance(ArrayPlotData)
    plots = Dict  # map of plot names to Plot.img_plot(..)[0] results

    current_slice = List([0, 0, 0])

    traits_view = View(
        Tabbed(
            HSplit(
                Item('plot',
                     editor=ComponentEditor(),
                     show_label=False,
                     resizable=True,
                     label='View'),
                VSplit(
                    Item('options',
                         style='custom',
                         show_label=False,
                         resizable=True),
                    Item('tasks',
                         style='custom',
                         show_label=False,
                         label='Tasks')),
            ),
            Item('results', style='custom', show_label=False, label='Results'),
        ), )

    def _complex_view_changed(self):
        self.reset()

    def _plotdata_default(self):
        arr = self.data
        plotdata = ArrayPlotData(
            zz=numpy.array([[0]]),
            z_x=[],
            z_y=[],
            y_x=[],
            y_z=[],
            x_y=[],
            x_z=[],
        )
        plotdata.set_data('xy', arr[0])
        plotdata.set_data('xz', arr[:, 0])
        plotdata.set_data('zy', arr[:, :, 0].T)
        return plotdata

    def select_xy_slice(self, z):
        self.current_slice[0] = z
        data = self.get_data_slice(z, 0)
        points = self.get_points(z, 0)
        xdata = self.get_points_coords(z, 0, 2)
        ydata = self.get_points_coords(z, 0, 1)
        #xdata = [point.x for point in points]
        #ydata = [point.y for point in points]
        selections = [i for i, point in enumerate(points) if point.selected]

        self.plotdata.set_data('xy', data)
        self.plotdata.set_data('z_x', xdata)
        self.plotdata.set_data('z_y', ydata)

        self.plots['xyp'].index.metadata['selections'] = selections
        self.plots['xyp'].invalidate_and_redraw()
        self.plots['xy'].invalidate_and_redraw()

    def select_xz_slice(self, y):
        self.current_slice[1] = y
        data = self.get_data_slice(y, 1)
        points = self.get_points(y, 1)
        #xdata = [point.x for point in points]
        #zdata = [point.z for point in points]
        xdata = self.get_points_coords(y, 1, 2)
        zdata = self.get_points_coords(y, 1, 0)
        selections = [i for i, point in enumerate(points) if point.selected]

        self.plotdata.set_data('xz', data)
        self.plotdata.set_data('y_x', xdata)
        self.plotdata.set_data('y_z', zdata)

        self.plots['xzp'].index.metadata['selections'] = selections

        self.plots['xzp'].invalidate_and_redraw()
        self.plots['xz'].invalidate_and_redraw()

    def select_zy_slice(self, x):
        self.current_slice[2] = x
        data = self.get_data_slice(x, 2).T
        points = self.get_points(x, 2)
        #ydata = [point.y for point in points]
        #zdata = [point.z for point in points]
        ydata = self.get_points_coords(x, 2, 1)
        zdata = self.get_points_coords(x, 2, 0)
        selections = [i for i, point in enumerate(points) if point.selected]

        self.plotdata.set_data('zy', data)
        self.plotdata.set_data('x_y', ydata)
        self.plotdata.set_data('x_z', zdata)

        self.plots['zyp'].index.metadata['selections'] = selections

        self.plots['zyp'].invalidate_and_redraw()
        self.plots['zy'].invalidate_and_redraw()

    def redraw(self):
        for p in self.plots.values():
            p.invalidate_and_redraw()

    def reset(self):
        self.reset_points()

    def reset_points(self):
        if self.plots:
            self.select_xy_slice(self.current_slice[0])
            self.select_xz_slice(self.current_slice[1])
            self.select_zy_slice(self.current_slice[2])

    def _xyp_metadata_handler(self):
        z = self.current_slice[0]
        selections = self.plots['xyp'].index.metadata.get('selections', [])
        points = self.get_points(z, 0)
        changed = False
        for i, point in enumerate(points):
            old_value = point.selected
            new_value = i in selections
            if old_value == new_value:
                continue
            point.selected = new_value
            changed = True
        if changed:
            self.select_xz_slice(self.current_slice[1])
            self.select_zy_slice(self.current_slice[2])

    def _xzp_metadata_handler(self):
        y = self.current_slice[1]
        selections = self.plots['xzp'].index.metadata.get('selections', [])
        points = self.get_points(y, 1)
        changed = False
        for i, point in enumerate(points):
            old_value = point.selected
            new_value = i in selections
            if old_value == new_value:
                continue
            point.selected = new_value
            changed = True
        if changed:
            self.select_xy_slice(self.current_slice[0])
            self.select_zy_slice(self.current_slice[2])

    def _zyp_metadata_handler(self):
        x = self.current_slice[2]
        selections = self.plots['zyp'].index.metadata.get('selections', [])
        points = self.get_points(x, 2)
        changed = False
        for i, point in enumerate(points):
            old_value = point.selected
            new_value = i in selections
            if old_value == new_value:
                continue
            point.selected = new_value
            changed = True
        if changed:
            self.select_xy_slice(self.current_slice[0])
            self.select_xz_slice(self.current_slice[1])

    def get_plot(self):
        pixel_sizes = self.data_source.voxel_sizes
        shape = self.data.shape
        m = min(pixel_sizes)
        s = [int(d * sz / m) for d, sz in zip(shape, pixel_sizes)]
        if 1:  # else physical aspect ratio is enabled
            ss = max(s) / 4
            s = [max(s, ss) for s in s]
        plot_sizes = dict(xy=(s[2], s[1]),
                          xz=(s[2], s[0]),
                          zy=(s[0], s[1]),
                          zz=(s[0], s[0]))

        plots = GridContainer(shape=(2, 2),
                              spacing=(3, 3),
                              padding=50,
                              aspect_ratio=1)
        pxy = Plot(
            self.plotdata,
            padding=1,
            fixed_preferred_size=plot_sizes['xy'],
            x_axis=PlotAxis(orientation='top'),
        )
        pxz = Plot(
            self.plotdata,
            padding=1,
            fixed_preferred_size=plot_sizes['xz'],
        )
        pzy = Plot(
            self.plotdata,
            padding=1,
            fixed_preferred_size=plot_sizes['zy'],
            #orientation = 'v',  # cannot use 'v' because of img_plot assumes row-major ordering
            x_axis=PlotAxis(orientation='top'),
            y_axis=PlotAxis(orientation='right'),
        )
        pzz = Plot(self.plotdata,
                   padding=1,
                   fixed_preferred_size=plot_sizes['zz'])

        plots.add(pxy, pzy, pxz, pzz)

        self.plots = dict(
            xy=pxy.img_plot('xy', colormap=bone)[0],
            xz=pxz.img_plot('xz', colormap=bone)[0],
            zy=pzy.img_plot('zy', colormap=bone)[0],
            zz=pzz.img_plot('zz')[0],
            xyp=pxy.plot(('z_x', 'z_y'),
                         type='scatter',
                         color='orange',
                         marker='circle',
                         marker_size=3,
                         selection_marker_size=3,
                         selection_marker='circle')[0],
            xzp=pxz.plot(('y_x', 'y_z'),
                         type='scatter',
                         color='orange',
                         marker='circle',
                         marker_size=3,
                         selection_marker_size=3,
                         selection_marker='circle')[0],
            zyp=pzy.plot(('x_z', 'x_y'),
                         type='scatter',
                         color='orange',
                         marker='circle',
                         marker_size=3,
                         selection_marker_size=3,
                         selection_marker='circle')[0],
        )

        for p in ['xy', 'xz', 'zy']:
            self.plots[p].overlays.append(ZoomTool(self.plots[p]))
            self.plots[p].tools.append(
                PanTool(self.plots[p], drag_button='right'))

            imgtool = ImageInspectorTool(self.plots[p])
            self.plots[p].tools.append(imgtool)
            overlay = ImageInspectorOverlay(component=self.plots[p],
                                            bgcolor='white',
                                            image_inspector=imgtool)
            self.plots['zz'].overlays.append(overlay)

            self.plots[p + 'p'].tools.append(
                ScatterInspector(self.plots[p + 'p'], selection_mode='toggle'))

        self.plots['xyp'].index.on_trait_change(self._xyp_metadata_handler,
                                                'metadata_changed')
        self.plots['xzp'].index.on_trait_change(self._xzp_metadata_handler,
                                                'metadata_changed')
        self.plots['zyp'].index.on_trait_change(self._zyp_metadata_handler,
                                                'metadata_changed')

        plot = HPlotContainer()
        # todo: add colormaps
        plot.add(plots)
        return plot
Exemplo n.º 14
0
class Application(HasTraits):

    scene = Instance(MlabSceneModel, (), editor=SceneEditor())

    # The mayavi engine view.
    engine_view = Instance(EngineView)

    coils = List(Instance(Loop, (), allow_none=False),
                 editor=ListEditor(style='custom'),
                 value=[
                     Loop(position=(0, 0, -0.05), ),
                     Loop(position=(0, 0, 0.05), ),
                 ])

    Bx = Array(value=np.zeros_like(X))
    By = Array(value=np.zeros_like(X))
    Bz = Array(value=np.zeros_like(X))
    Bnorm = Array(value=np.zeros_like(X))

    vector_field = None

    def __init__(self, **traits):
        HasTraits.__init__(self, **traits)
        self.engine_view = EngineView(engine=self.scene.engine)

    @on_trait_change('scene.activated,coils')
    def init_view(self):
        if self.scene._renderer is not None:
            self.scene.scene_editor.background = (0, 0, 0)
            for coil in self.coils:
                coil.app = self
                coil.display()

            self.visualize_field()

    def visualize_field(self):
        self.Bx = np.zeros_like(X)
        self.By = np.zeros_like(X)
        self.Bz = np.zeros_like(X)
        self.Bnorm = np.zeros_like(X)
        self.scene.scene.disable_render = True
        for coil in self.coils:
            self.Bx += coil.Bx
            self.By += coil.By
            self.Bz += coil.Bz

        self.Bnorm = np.sqrt(self.Bx**2 + self.By**2 + self.Bz**2)

        if self.vector_field is None:
            self.vector_field = self.scene.mlab.pipeline.vector_field(
                X,
                Y,
                Z,
                self.Bx,
                self.By,
                self.Bz,
                scalars=self.Bnorm,
                name='B field')
            vectors = self.scene.mlab.pipeline.vectors(
                self.vector_field,
                mode='arrow',
                resolution=10,
                mask_points=6,
                colormap='YlOrRd',
                scale_factor=2 * np.abs(X[0, 0, 0] - X[1, 1, 1]))
            vectors.module_manager.vector_lut_manager.reverse_lut = True
            vectors.glyph.mask_points.random_mode = False
            self.scene.mlab.axes()
            self.scp = self.scene.mlab.pipeline.scalar_cut_plane(
                self.vector_field, colormap='hot')
        else:
            # Modify in place the data source. The visualization will
            # update automaticaly
            self.vector_field.mlab_source.set(u=self.Bx,
                                              v=self.By,
                                              w=self.Bz,
                                              scalars=self.Bnorm)
        self.scene.scene.disable_render = False

    view = View(
        HSplit(VSplit(Item(name='engine_view', style='custom', resizable=True),
                      Item('coils', springy=True),
                      show_labels=False),
               'scene',
               show_labels=False),
        resizable=True,
        title='Coils...',
        height=0.8,
        width=0.8,
    )
class LiveSearch ( HasTraits ):
    
    # The currenty root directory being searched:
    root = Directory( getcwd(), entries = 10 )
    
    # Should sub directories be included in the search:
    recursive = Bool( True )
    
    # The file types to include in the search:
    file_type = Enum( 'Python', 'C', 'C++', 'Java', 'Ruby' )
    
    # The current search string:
    search = Str
    
    # Is the search case sensitive?
    case_sensitive = Bool( False )
    
    # The live search table filter:
    filter = Property # Instance( TableFilter )
    
    # The current list of source files being searched:
    source_files = Property # List( SourceFile )
    
    # The currently selected source file:
    selected = Any # Instance( SourceFile )
    
    # The contents of the currently selected source file:
    selected_contents = Property # List( Str )
    
    # The currently selected match:
    selected_match = Int
    
    # The text line corresponding to the selected match:
    selected_line = Property # Int
    
    # The full name of the currently selected source file:
    selected_full_name = Property # File
    
    # The list of marked lines for the currently selected file:
    mark_lines = Property # List( Int )
    
    # Summary of current number of files and matches:
    summary = Property # Str
    
    #-- Traits UI Views --------------------------------------------------------
    
    view = View(
        VGroup(
            HGroup(
                Item( 'root', 
                      id    = 'root',
                      label = 'Path',
                      width = 0.5
                ), 
                Item( 'recursive' ),
                Item( 'file_type', label = 'Type' ),
                Item( 'search', 
                      id     = 'search',
                      width  = 0.5, 
                      editor = HistoryEditor( auto_set = True )
                ),
                Item( 'case_sensitive' )
            ),
            VSplit(
                VGroup(
                    Item( 'summary',
                          editor = TitleEditor()
                    ),
                    Item( 'source_files',
                          id     = 'source_files',
                          editor = table_editor
                    ),
                    dock        = 'horizontal',
                    show_labels = False
                ),
                VGroup(
                    HGroup(
                        Item( 'selected_full_name',
                              editor  = TitleEditor(),
                              springy = True
                        ),
                        Item( 'selected_full_name',
                              editor  = DNDEditor(),
                              tooltip = 'Drag this file'
                        ),
                        show_labels = False
                    ),
                    Item( 'selected_contents',
                          style  = 'readonly',
                          editor = CodeEditor( mark_lines    = 'mark_lines',
                                               line          = 'selected_line',
                                               selected_line = 'selected_line' )
                    ),
                    dock        = 'horizontal',
                    show_labels = False
                ),
                id = 'splitter'
            )
        ),
        title     = 'Live File Search',
        id        = 'enthought.examples.demo.Advanced.'
                    'Table_editor_with_live_search_and_cell_editor.LiveSearch',
        width     = 0.75,
        height    = 0.67,
        resizable = True
    )
        
    #-- Property Implementations -----------------------------------------------
    
    @property_depends_on( 'search, case_sensitive' )
    def _get_filter ( self ):
        if len( self.search ) == 0:
            return lambda x: True
          
        return lambda x: len( x.matches ) > 0
    
    @property_depends_on( 'root, recursive, file_type' )
    def _get_source_files ( self ):
        root = self.root
        if root == '':
            root = getcwd()
            
        file_types = FileTypes[ self.file_type ]
        if self.recursive:
            result = []
            for dir_path, dir_names, file_names in walk( root ):
                for file_name in file_names:
                    if splitext( file_name )[1] in file_types:
                        result.append( SourceFile( 
                            live_search = self,
                            full_name   = join( dir_path, file_name ) ) )
            return result
                     
        return [ SourceFile( live_search = self,
                             full_name   = join( root, file_name ) )
                 for file_name in listdir( root )
                 if splitext( file_name )[1] in file_types ]
                 
    @property_depends_on( 'selected' )
    def _get_selected_contents ( self ):
        if self.selected is None:
            return ''
            
        return ''.join( self.selected.contents )
        
    @property_depends_on( 'selected' )
    def _get_mark_lines ( self ):
        if self.selected is None:
            return []
            
        return [ int( match.split( ':', 1 )[0] ) 
                 for match in self.selected.matches ]
                 
    @property_depends_on( 'selected, selected_match' )
    def _get_selected_line ( self ):
        selected = self.selected
        if (selected is None) or (len( selected.matches ) == 0):
            return 1
            
        return int( selected.matches[ self.selected_match - 1 
                                    ].split( ':', 1 )[0] )
        
    @property_depends_on( 'selected' )
    def _get_selected_full_name ( self ):
        if self.selected is None:
            return ''
            
        return self.selected.full_name
        
    @property_depends_on( 'source_files, search, case_sensitive' )
    def _get_summary ( self ):
        source_files = self.source_files
        search       = self.search
        if search == '':
            return 'A total of %d files.' % len( source_files )
        
        files   = 0
        matches = 0
        for source_file in source_files:
            n = len( source_file.matches )
            if n > 0:
                files   += 1
                matches += n
                
        return 'A total of %d files with %d files containing %d matches.' % (
               len( source_files ), files, matches )
        
    #-- Traits Event Handlers --------------------------------------------------
    
    def _selected_changed ( self ):
        self.selected_match = 1
        
    def _source_files_changed ( self ):
        if len( self.source_files ) > 0:
            self.selected = self.source_files[0]
        else:
            self.selected = None
Exemplo n.º 16
0
class TriangleWave(HasTraits):
    # 指定三角波的最窄和最宽范围,由于Range类型不能将常数和Traits属性名混用
    # 所以定义这两个值不变的Trait属性
    low = Float(0.02)
    hi = Float(1.0)

    # 三角波形的宽度
    wave_width = Range("low", "hi", 0.5)

    # 三角波的顶点C的x轴坐标
    length_c = Range("low", "wave_width", 0.5)

    # 三角波的定点的y轴坐标
    height_c = Float(1.0)

    # FFT计算所使用的取样点数,这里用一个Enum类型的属性以供用户从列表中选择
    fftsize = Enum([(2**x) for x in range(6, 12)])

    # FFT频谱图的x轴上限值
    fft_graph_up_limit = Range(0, 400, 20)

    # 用于显示FFT的结果
    peak_list = Str

    # 采用多少个频率合成三角波
    N = Range(1, 40, 4)

    # 保存绘图数据的对象
    plot_data = Instance(AbstractPlotData)

    # 绘制波形图的容器
    plot_wave = Instance(Component)

    # 绘制FFT频谱图的容器
    plot_fft = Instance(Component)

    # 包括两个绘图的容器
    container = Instance(Component)

    # 设置用户界面的视图, 注意一定要指定窗口的大小,这样绘图容器才能正常初始化
    view = View(HSplit(
        VSplit(
            VGroup(Item("wave_width", editor=scrubber, label="波形宽度"),
                   Item("length_c", editor=scrubber, label="最高点x坐标"),
                   Item("height_c", editor=scrubber, label="最高点y坐标"),
                   Item("fft_graph_up_limit", editor=scrubber, label="频谱图范围"),
                   Item("fftsize", label="FFT点数"), Item("N", label="合成波频率数")),
            Item("peak_list",
                 style="custom",
                 show_label=False,
                 width=100,
                 height=250)),
        VGroup(Item("container",
                    editor=ComponentEditor(size=(600, 300)),
                    show_label=False),
               orientation="vertical")),
                resizable=True,
                width=800,
                height=600,
                title="三角波FFT演示")

    # 创建绘图的辅助函数,创建波形图和频谱图有很多类似的地方,因此单独用一个函数以
    # 减少重复代码
    def _create_plot(self, data, name, type="line"):
        p = Plot(self.plot_data)
        p.plot(data, name=name, title=name, type=type)
        p.tools.append(PanTool(p))
        zoom = ZoomTool(component=p, tool_mode="box", always_on=False)
        p.overlays.append(zoom)
        p.title = name
        return p

    def __init__(self):
        # 首先需要调用父类的初始化函数
        super(TriangleWave, self).__init__()

        # 创建绘图数据集,暂时没有数据因此都赋值为空,只是创建几个名字,以供Plot引用
        self.plot_data = ArrayPlotData(x=[], y=[], f=[], p=[], x2=[], y2=[])

        # 创建一个垂直排列的绘图容器,它将频谱图和波形图上下排列
        self.container = VPlotContainer()

        # 创建波形图,波形图绘制两条曲线: 原始波形(x,y)和合成波形(x2,y2)
        self.plot_wave = self._create_plot(("x", "y"), "Triangle Wave")
        self.plot_wave.plot(("x2", "y2"), color="red")

        # 创建频谱图,使用数据集中的f和p
        self.plot_fft = self._create_plot(("f", "p"), "FFT", type="scatter")

        # 将两个绘图容器添加到垂直容器中
        self.container.add(self.plot_wave)
        self.container.add(self.plot_fft)

        # 设置
        self.plot_wave.x_axis.title = "Samples"
        self.plot_fft.x_axis.title = "Frequency pins"
        self.plot_fft.y_axis.title = "(dB)"

        # 改变fftsize为1024,因为Enum的默认缺省值为枚举列表中的第一个值
        self.fftsize = 1024

    # FFT频谱图的x轴上限值的改变事件处理函数,将最新的值赋值给频谱图的响应属性
    def _fft_graph_up_limit_changed(self):
        self.plot_fft.x_axis.mapper.range.high = self.fft_graph_up_limit

    def _N_changed(self):
        self.plot_sin_combine()

    # 多个trait属性的改变事件处理函数相同时,可以用@on_trait_change指定
    @on_trait_change("wave_width, length_c, height_c, fftsize")
    def update_plot(self):
        # 计算三角波
        global y_data
        x_data = np.arange(0, 1.0, 1.0 / self.fftsize)
        func = self.triangle_func()
        # 将func函数的返回值强制转换成float64
        y_data = np.cast["float64"](func(x_data))

        # 计算频谱
        fft_parameters = np.fft.fft(y_data) / len(y_data)

        # 计算各个频率的振幅
        fft_data = np.clip(
            20 * np.log10(np.abs(fft_parameters))[:self.fftsize / 2 + 1], -120,
            120)

        # 将计算的结果写进数据集
        self.plot_data.set_data("x", np.arange(0, self.fftsize))  # x坐标为取样点
        self.plot_data.set_data("y", y_data)
        self.plot_data.set_data("f", np.arange(0, len(fft_data)))  # x坐标为频率编号
        self.plot_data.set_data("p", fft_data)

        # 合成波的x坐标为取样点,显示2个周期
        self.plot_data.set_data("x2", np.arange(0, 2 * self.fftsize))

        # 更新频谱图x轴上限
        self._fft_graph_up_limit_changed()

        # 将振幅大于-80dB的频率输出
        peak_index = (fft_data > -80)
        peak_value = fft_data[peak_index][:20]
        result = []
        for f, v in zip(np.flatnonzero(peak_index), peak_value):
            result.append("%s : %s" % (f, v))
        self.peak_list = "\n".join(result)

        # 保存现在的fft计算结果,并计算正弦合成波
        self.fft_parameters = fft_parameters
        self.plot_sin_combine()

    # 计算正弦合成波,计算2个周期
    def plot_sin_combine(self):
        index, data = fft_combine(self.fft_parameters, self.N, 2)
        self.plot_data.set_data("y2", data)

    # 返回一个ufunc计算指定参数的三角波
    def triangle_func(self):
        c = self.wave_width
        c0 = self.length_c
        hc = self.height_c

        def trifunc(x):
            x = x - int(x)  # 三角波的周期为1,因此只取x坐标的小数部分进行计算
            if x >= c: r = 0.0
            elif x < c0: r = x / c0 * hc
            else: r = (c - x) / (c - c0) * hc
            return r

        # 用trifunc函数创建一个ufunc函数,可以直接对数组进行计算, 不过通过此函数
        # 计算得到的是一个Object数组,需要进行类型转换
        return np.frompyfunc(trifunc, 1, 1)
Exemplo n.º 17
0
    ), 
    resizable = True,
    width = 400,
    height = 150,
    title = "水平分组(带调节栏)"    
)

view4 = View(
    VSplit(
        VGroup(
            Item(name = 'employee_number', label='编号'),
            Item(name = 'department', label="部门", tooltip="在哪个部门干活"),
            Item(name = 'last_name', label="姓"),
            Item(name = 'first_name', label="名"),
            show_border = True,
            scrollable = True
        ),
        VGroup(
            Item(name = 'salary', label="工资"),
            Item(name = 'bonus', label="奖金"),
            show_border = True,
            scrollable = True
        ),
    ), 
    resizable = True,
    width = 200,
    height = 300,
    title = "垂直分组(带调节栏)"    
)

sam = SimpleEmployee()
sam.edit_traits(view=view1)
Exemplo n.º 18
0
class PlotOMatic(HasTraits):
    io_driver_list = Instance(IODriverList)
    variables = Instance(Variables)
    viewers = Instance(Viewers)
    selected_viewer = Instance(Viewer)

    handler = PlotOMaticHandler()

    viewer_node = TreeNode(node_for=[Viewer],
                           auto_open=True,
                           label='name',
                           menu=Menu(handler.remove_viewer_action),
                           icon_path='icons/',
                           icon_item='plot.png')

    tree_editor = TreeEditor(nodes=[
        TreeNode(
            node_for=[IODriverList],
            auto_open=True,
            children='io_drivers',
            label='=Input Drivers',
            menu=Menu(handler.refresh_tree_action,
                      handler.add_io_driver_actions_menu),
            view=View(),
        ),
        TreeNode(node_for=[IODriver],
                 auto_open=True,
                 children='_decoders',
                 label='name',
                 add=[DataDecoder],
                 menu=Menu(handler.remove_io_driver_action,
                           handler.refresh_tree_action,
                           handler.add_decoder_actions_menu),
                 icon_path='icons/',
                 icon_open='input.png',
                 icon_group='input.png'),
        TreeNode(node_for=[DataDecoder],
                 auto_open=True,
                 children='',
                 label='name',
                 menu=Menu(handler.refresh_tree_action,
                           handler.remove_decoder_action),
                 icon_path='icons/',
                 icon_item='decoder.png'),
        TreeNode(node_for=[IODriverList],
                 auto_open=True,
                 children='viewers',
                 label='=Viewers',
                 menu=Menu(handler.refresh_tree_action,
                           handler.add_viewer_actions_menu),
                 view=View()), viewer_node
    ],
                             hide_root=True,
                             orientation='vertical')

    view = View(HSplit(
        Item(name='io_driver_list',
             editor=tree_editor,
             resizable=True,
             show_label=False,
             width=.32),
        VSplit(
            Item(name='selected_viewer',
                 style='custom',
                 resizable=True,
                 show_label=False,
                 editor=InstanceEditor(view='view')),
            Item(name='variables', show_label=False, style='custom',
                 height=.3))),
                menubar=MenuBar(handler.file_menu, handler.data_menu),
                title='Plot-o-matic',
                resizable=True,
                width=1000,
                height=600,
                handler=PlotOMaticHandler())

    def __init__(self, **kwargs):
        HasTraits.__init__(self, **kwargs)
        self.viewer_node.on_select = self.click_viewer

    def click_viewer(self, viewer):
        self.selected_viewer = viewer
        self.viewers.select_viewer(viewer)

    def start(self):
        self.io_driver_list.start_all()
        self.viewers.start()

    def stop(self):
        self.viewers.stop()
        self.io_driver_list.stop_all()

    def get_config(self):
        config = {}
        config['io_drivers'] = self.io_driver_list.get_config()
        config['viewers'] = self.viewers.get_config()
        return config

    def set_config(self, config):
        if 'io_drivers' in config:
            self.io_driver_list.set_config(config['io_drivers'])
        if 'viewers' in config:
            self.viewers.set_config(config['viewers'])
        self.variables.clear()
Exemplo n.º 19
0
class Mayavi(HasTraits):

    # The scene model.
    scene = Instance(MlabSceneModel, ())

    # The mayavi engine view.
    engine_view = Instance(EngineView)

    # The current selection in the engine tree view.
    current_selection = Property

    ######################
    view = View(HSplit(
        VSplit(
            Item(name='engine_view',
                 style='custom',
                 resizable=True,
                 show_label=False),
            Item(name='current_selection',
                 editor=InstanceEditor(),
                 enabled_when='current_selection is not None',
                 style='custom',
                 springy=True,
                 show_label=False),
        ),
        Item(name='scene',
             editor=SceneEditor(),
             show_label=False,
             resizable=True,
             height=500,
             width=500),
    ),
                resizable=True,
                scrollable=True)

    def __init__(self, **traits):
        HasTraits.__init__(self, **traits)
        self.engine_view = EngineView(engine=self.scene.engine)

        # Hook up the current_selection to change when the one in the engine
        # changes.  This is probably unnecessary in Traits3 since you can show
        # the UI of a sub-object in T3.
        self.scene.engine.on_trait_change(self._selection_change,
                                          'current_selection')

        self.generate_data_mayavi()

    def generate_data_mayavi(self):
        """Shows how you can generate data using mayavi instead of mlab."""
        from enthought.mayavi.sources.api import ParametricSurface
        from enthought.mayavi.modules.api import Outline, Surface
        e = self.scene.engine
        s = ParametricSurface()
        e.add_source(s)
        e.add_module(Outline())
        e.add_module(Surface())

    def _selection_change(self, old, new):
        self.trait_property_changed('current_selection', old, new)

    def _get_current_selection(self):
        return self.scene.engine.current_selection