def upload_metadata(granule_id):
    """
    Creates and uploads metadata in stac and eo3 formats.
    :param granule_id: the id of the granule in format 'date/tile_id'
    :return: serialized stac metadata
    """

    local_path = Path(NCI_DIR) / granule_id
    granule_s3_path = get_granule_s3_path(granule_id)

    s3_path = f"s3://{S3_BUCKET}/{granule_s3_path}/"
    s3_eo3_path = f"{s3_path}eo3-ARD-METADATA.yaml"
    s3_stac_path = f"{s3_path}stac-ARD-METADATA.json"

    eo3 = create_eo3(local_path, granule_id)
    stac = to_stac_item(
        eo3,
        stac_item_destination_url=s3_stac_path,
        odc_dataset_metadata_url=s3_eo3_path,
        dataset_location=s3_path,
    )
    stac_dump = json.dumps(stac, default=json_fallback, indent=4)

    s3_dump(
        yaml.safe_dump(serialise.to_doc(eo3), default_flow_style=False), 
        s3_eo3_path, 
        ACL="bucket-owner-full-control",
        ContentType="text/vnd.yaml"
    )

    return stac_dump, s3_stac_path
Exemplo n.º 2
0
def test_valid_document_works(tmp_path: Path, example_metadata: Dict):
    generated_doc = dump_roundtrip(example_metadata)

    # Do a serialisation roundtrip and check that it's still identical.
    reserialised_doc = dump_roundtrip(
        serialise.to_doc(serialise.from_doc(generated_doc)))

    assert_same(generated_doc, reserialised_doc)

    assert serialise.from_doc(generated_doc) == serialise.from_doc(
        reserialised_doc)
Exemplo n.º 3
0
def assert_unchanged_after_roundstrip(doc: Dict):
    generated_doc = dump_roundtrip(doc)

    # Do a serialisation roundtrip and check that it's still identical.
    reserialised_doc = dump_roundtrip(
        serialise.to_doc(serialise.from_doc(generated_doc)))

    # One allowed difference: input dates can be many string formats,
    # but we normalise them with timezone (UTC default)
    _normalise_datetime_props(generated_doc)

    assert serialise.from_doc(generated_doc) == serialise.from_doc(
        reserialised_doc)
Exemplo n.º 4
0
def assert_expected_eo3(
        expected_doc: DatasetDoc,
        given_doc: DatasetDoc,
        *,
        ignore_fields=(),
):
    """
    Do the two DatasetDocs match?

    (Unlike equality, gives reasonable error message of differences, and
    compares geometry more intelligently.)
    """
    __tracebackhide__ = operator.methodcaller("errisinstance", AssertionError)
    if expected_doc.geometry is None:
        assert given_doc.geometry is None, "Expected no geometry"
    else:
        assert_shapes_mostly_equal(given_doc.geometry, expected_doc.geometry,
                                   0.00000001)
    e = serialise.to_doc(expected_doc)
    g = serialise.to_doc(given_doc)
    for f in ("geometry", ) + ignore_fields:
        e.pop(f)
        g.pop(f)
    assert_same(g, e)
Exemplo n.º 5
0
def test_location_single_serialisation(tmp_path: Path,
                                       l1_ls8_folder_md_expected: Dict):

    # Always serialises a single location as 'location'
    location = "https://some/test/path"

    # Given multiple
    l1_ls8_folder_md_expected["locations"] = [location]

    reserialised_doc = dump_roundtrip(
        serialise.to_doc(serialise.from_doc(l1_ls8_folder_md_expected)))

    # We get singular
    assert reserialised_doc["location"] == location
    assert "locations" not in reserialised_doc
Exemplo n.º 6
0
        def on_success(dataset: DatasetDoc, dataset_path: Path):
            """
            Index the dataset
            """
            product_name = dataset.product.name
            product = products.get(product_name)
            if not product:
                product = index.products.get_by_name(product_name)
                if not product:
                    raise ValueError(
                        f"Product {product_name} not found in ODC index")
                products[product_name] = product

            index.datasets.add(
                Dataset(product,
                        serialise.to_doc(dataset),
                        uris=dataset.locations))
            _LOG.debug("Indexed dataset",
                       dataset_id=dataset.id,
                       dataset_path=dataset_path)
Exemplo n.º 7
0
def test_in_memory_dataset(tmp_path: Path, l1_ls8_folder: Path):
    """
    You can create metadata fully in-memory, without touching paths.
    """

    out = tmp_path / "out"
    out.mkdir()

    [blue_geotiff_path] = l1_ls8_folder.rglob("L*_B2.TIF")

    dataset_location = out / "my/custom/dataset/path/ls_whatever.stac-item.json"

    p = DatasetPrepare(dataset_location=dataset_location)
    p.datetime = datetime(2019, 7, 4, 13, 7, 5)
    p.product_name = "loch_ness_sightings"
    p.processed = datetime(2019, 7, 4, 13, 8, 7)

    pretend_path = dataset_location.parent / "our_image_dont_read_it.tif"
    p.note_measurement(
        "blue",
        pretend_path,
        # We give it grid information, so it doesn't have to read it itself.
        # (reading will fail if it tries, because the path is fake!)
        grid=GridSpec.from_path(blue_geotiff_path),
        pixels=numpy.ones((60, 60), numpy.int16),
        nodata=-1,
    )

    dataset: DatasetDoc = p.to_dataset_doc()
    doc: dict = serialise.to_doc(dataset)

    # We're testing geometry calc in other tests.
    assert doc["geometry"] is not None, "Expected geometry"
    del doc["geometry"]
    assert doc["id"] is not None, "Expected an id"
    del doc["id"]

    # Users can ask the generator for file names:
    assert (
        p.names.measurement_filename("red") == "loch_ness_sightings_2019-07-04_red.tif"
    )

    # The computed file paths are relative to our given dataset location.
    out_url = out.as_uri()
    assert (
        p.names.resolve_file(p.names.measurement_filename("red"))
        == f"{out_url}/my/custom/dataset/path/loch_ness_sightings_2019-07-04_red.tif"
    )

    pprint(doc)
    assert_same(
        {
            "$schema": "https://schemas.opendatacube.org/dataset",
            "label": "loch_ness_sightings_2019-07-04",
            "crs": "epsg:32655",
            "measurements": {"blue": {"path": "our_image_dont_read_it.tif"}},
            "product": {"name": "loch_ness_sightings"},
            "properties": {
                "datetime": datetime(2019, 7, 4, 13, 7, 5, tzinfo=timezone.utc),
                "odc:processing_datetime": datetime(
                    2019, 7, 4, 13, 8, 7, tzinfo=timezone.utc
                ),
                "odc:product": "loch_ness_sightings",
            },
            "grids": {
                "default": {
                    "shape": [60, 60],
                    "transform": [
                        3955.5,
                        0.0,
                        641985.0,
                        0.0,
                        -3975.5000000000005,
                        -3714585.0,
                        0.0,
                        0.0,
                        1.0,
                    ],
                }
            },
            "accessories": {},
            "lineage": {},
        },
        doc,
    )