Exemplo n.º 1
0
def generate_sat_obj_list():
    """
    Generates list of satellite objects based on orbital elements
    :return: List of satellites
    """
    global sat_objs
    sat_objs = [None] * NUM_SHELLS
    for shell_cntr in range(0, NUM_SHELLS):
        sat_objs[shell_cntr] = [None] * (NUM_ORBS[shell_cntr] *
                                         NUM_SATS_PER_ORB[shell_cntr])
        counter = 0
        for orb in range(0, NUM_ORBS[shell_cntr]):
            raan = orb * 360 / NUM_ORBS[shell_cntr]
            orbit_wise_shift = 0
            if orb % 2 == 1:
                if PHASE_DIFF == 'Y':
                    orbit_wise_shift = 360 / (NUM_SATS_PER_ORB[shell_cntr] * 2)

            for n_sat in range(0, NUM_SATS_PER_ORB[shell_cntr]):
                mean_anomaly = orbit_wise_shift + (
                    n_sat * 360 / NUM_SATS_PER_ORB[shell_cntr])

                sat = ephem.EarthSatellite()
                sat._epoch = EPOCH
                sat._inc = ephem.degrees(INCLINATION_DEGREE[shell_cntr])
                sat._e = ECCENTRICITY
                sat._raan = ephem.degrees(raan)
                sat._ap = ARG_OF_PERIGEE
                sat._M = ephem.degrees(mean_anomaly)
                sat._n = MEAN_MOTION_REV_PER_DAY[shell_cntr]
                sat_objs[shell_cntr][counter] = sat
                counter += 1
    return sat_objs
Exemplo n.º 2
0
def generate_sat_obj_list(num_orbit, num_sats_per_orbit, epoch, phase_diff,
                          inclination, eccentricity, arg_perigee, mean_motion,
                          altitude):
    """
    Generates list of satellite objects based on orbital elements
    :param num_orbit: Number of orbits
    :param num_sats_per_orbit: Number of satellites per orbit
    :param epoch: Epoch (start time)
    :param phase_diff: Phase difference between adjacent orbits
    :param inclination: Angle of inclination
    :param eccentricity: Eccentricity of orbits
    :param arg_perigee: Argument of perigee of orbits
    :param mean_motion: Mean motion in revolutions per day
    :param altitude: Altitude in metres
    :return: List of satellite objects
    """
    sat_objs = [None] * (num_orbit * num_sats_per_orbit)
    counter = 0
    for orb in range(0, num_orbit):
        raan = orb * 360 / num_orbit
        orbit_wise_shift = 0
        if orb % 2 == 1:
            if phase_diff:
                orbit_wise_shift = 360 / (num_sats_per_orbit * 2)

        for n_sat in range(0, num_sats_per_orbit):
            mean_anomaly = orbit_wise_shift + (n_sat * 360 /
                                               num_sats_per_orbit)

            sat = ephem.EarthSatellite()
            sat._epoch = epoch
            sat._inc = ephem.degrees(inclination)
            sat._e = eccentricity
            sat._raan = ephem.degrees(raan)
            sat._ap = arg_perigee
            sat._M = ephem.degrees(mean_anomaly)
            sat._n = mean_motion

            sat_objs[counter] = {
                "sat_obj": sat,
                "alt_km": altitude / 1000,
                "orb_id": orb,
                "orb_sat_id": n_sat
            }
            counter += 1
    return sat_objs
Exemplo n.º 3
0
def constellationFromSaVi():
    DELETE_FROM_BEGINING = 3
    DELETE_FROM_END = 2
    constellation = list()
    with open(TCL_FILE_NAME, 'r') as tclfile:
        #we read from the TCL file and obtain a list containing SATELLITES_PER_ORBIT*NUMBER_OF_ORBITS
        #Attention : these elements are each one list(string) of size 1
        spaceX_SaVi = list(csv.reader(tclfile, delimiter='\n'))

        #we delete the lines that do not give any infomation for the satellites
        for i in range(0, DELETE_FROM_BEGINING):
            spaceX_SaVi.pop(0)
        for i in range(0, DELETE_FROM_END):
            spaceX_SaVi.pop(len(spaceX_SaVi) - 1)
        if len(spaceX_SaVi) != SATELLITES_PER_ORBIT * NUMBER_OF_ORBITS:
            raise Exception('The total number of satellites is not correct')

    for i in range(0, NUMBER_OF_ORBITS):
        orbit_i = list()
        for j in range(0, SATELLITES_PER_ORBIT):
            SaVi_line = spaceX_SaVi.pop(0)[0].split()
            for i in range(0, 2):
                SaVi_line.pop(0)
            to_add_sat = ephem.EarthSatellite()
            to_add_sat._epoch = EPOCH  #ok
            to_add_sat._n = geom.semi_major_to_mean_motion(
                float(SaVi_line[0]))  #ok
            to_add_sat._e = float(SaVi_line[1]) + ECCENTRICITY_ADJUSTMENT  #ok
            to_add_sat._inc = float(SaVi_line[2])  #ok
            to_add_sat._raan = float(SaVi_line[3])  #ok
            to_add_sat._ap = float(SaVi_line[4])  #ok
            to_add_sat._M = geom.time_to_periapsis_to_mean_anomaly(
                float(SaVi_line[5]), to_add_sat._n)  #ok
            to_add_sat._drag = 0.0
            orbit_i.append(to_add_sat)
        constellation.append(orbit_i)
    return constellation
Exemplo n.º 4
0
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import ephem
import math
import sys

# Generate a satellite from orbital elements
# Check parent script 02_get_sat_positions_at_time.sh for the arguments supplied
sat1 = ephem.EarthSatellite()
sat1._epoch = sys.argv[1] + ' ' + sys.argv[2]
sat1._inc = ephem.degrees(float(sys.argv[9]))
sat1._e = float(sys.argv[10])
sat1._raan = ephem.degrees(float(sys.argv[5]))
sat1._ap = float(sys.argv[11])
sat1._M = ephem.degrees(float(sys.argv[6]))
sat1._n = float(sys.argv[12])
sat1.compute(sys.argv[3] + ' ' + sys.argv[4])
counter = sys.argv[7]
num_orbit = sys.argv[8]
num_sat_in_orbit = sys.argv[13]
# Print the satellite position in terms of coordinates and elevation
print('%d %d %d %s %s %s' %
      (int(counter), int(num_orbit), int(num_sat_in_orbit),
       math.degrees(sat1.sublat), math.degrees(sat1.sublong), sat1.elevation))
Exemplo n.º 5
0
def earthsat_builder(df, ob_lat, ob_lon, ob_alt, ddate, cn):
    """

    :param df:
    :param ob_lat:
    :param ob_lon:
    :param ob_alt:
    :param ddate:
    :param cn:
    :return: DataFrame



    Observer: Obs
    - Computes the position of the Body.

    - Uses the date of the observer.

    - Uses the epoch of the observer.

         lon,lat : Latitude and longitude (String)
         elevation : (Int)
         ddate : (String) (date format : '1984/5/30 16:22:56' )
         earthSat : (ephem.Body)

    """
    g = 6.67408e-11
    m_earth = 5.97219e24
    column_to_add = ["el", "az", "rx_lon", "rx_lat", "rx_alt", "cn0", "ddate"]
    for col in range(len(column_to_add)):
        df[column_to_add[col]] = np.nan

    res=pd.DataFrame()
    for rx_lat, rx_lon, rx_alt, rx_date, signal_cn in zip(ob_lat, ob_lon, ob_alt, ddate, cn):
        act_df = df
        ob_lon = np.deg2rad(rx_lon)
        ob_lat = np.deg2rad(rx_lat)
        obs = ephem.Observer()
        obs.lat = np.deg2rad(ob_lat)
        obs.long = np.deg2rad(ob_lon)
        obs.elevation = rx_alt
        for index, row in act_df.iterrows():
            esat = ephem.EarthSatellite()

            esat._e = act_df.at[index, 'Eccentricity']

            esat._M = np.rad2deg(act_df.at[index, 'Mean Anom(rad)'])

            esat._ap = np.rad2deg(act_df.at[index, 'Argument of Perigee(rad)'])

            esat._raan = np.rad2deg(act_df.at[index, 'Right Ascen at Week(rad)'])

            esat._n = np.sqrt(g * m_earth / (act_df.at[index, 'SQRT(A)  (m 1/2)'] ** 2) ** 3) * (86400 / (2 * np.pi))

            esat._epoch = ephem.Date(rx_date)

            esat._inc = np.rad2deg(act_df.at[index, 'Orbital Inclination(rad)'])

            obs.date = ephem.Date(rx_date.strftime('%Y/%-m/%-d %H:%M:%S'))

            esat.compute(obs)

            values = [np.rad2deg(esat.alt), np.rad2deg(esat.az), rx_lon,
                      rx_lat, rx_alt, signal_cn, rx_date]
            for i in range(len(values)):
                act_df.set_value(index, column_to_add[i], values[i])

        res=pd.concat([res, act_df])

    res=res.reset_index(drop=True)

    return df_filter_info(res)