Exemplo n.º 1
0
    def test_history(self):
        universe = pd.DataFrame({
            "A": range(10),
            "B": range(10),
            "C": range(10)
        })
        trades = [
            trade("A", entry=1, exit=2, take=3, stop=-4),
            [2, -3] * trade(["B", "C"], entry=3, exit=9, take=5, stop=-2),
        ]
        strategy = DeterminedStrategy(trades).run(universe)
        history = strategy.history()

        expected = pd.DataFrame({
            "trade_id": [0, 1, 1],
            "asset": ["A", "B", "C"],
            "lot": [1, 2, -3],
            "entry": [1, 3, 3],
            "close": [2, 5, 5],
            "exit": [2, 9, 9],
            "take": [3, 5, 5],
            "stop": [-4, -2, -2],
            "pnl": [1, 4, -6],
        })
        pd.testing.assert_frame_equal(history, expected, check_dtype=False)
Exemplo n.º 2
0
    def test_logic(self):
        s0 = create_strategy(lambda universe: [trade("A")])
        s1 = create_strategy(lambda universe: [trade("B"), trade("C")])
        container = StrategyContainer(s0=s0, s1=s1)
        universe = ...

        result = container(universe)
        assert container(universe) == s0(universe) + s1(universe)
Exemplo n.º 3
0
    def test_repr(self):
        t = trade("A")
        assert repr(t) == "trade(['A'], lot=[1.])"

        t = trade("A", lot=2, take=3.0, stop=-3.0, entry="B0", exit="B1")

        assert (
            repr(t) ==
            "trade(['A'], lot=[2], entry=B0, exit=B1, take=3.0, stop=-3.0)")
Exemplo n.º 4
0
    def test_nonexitent(self):
        """non-existent asset, entry, exit"""
        universe = pd.DataFrame({"A": range(10)})

        with pytest.raises(KeyError):
            t = trade("NONEXISTENT").execute(universe)
        with pytest.raises(KeyError):
            t = trade("A", entry=99).execute(universe)
        with pytest.raises(KeyError):
            t = trade("A", entry=0, exit=99).execute(universe)
Exemplo n.º 5
0
    def test_array_value_linearity_mul(self, a, seed):
        np.random.seed(seed)

        universe = self.universe_hand
        lot0 = np.random.randn(2)
        t0 = list(lot0) * trade(["A", "B"], entry=1, exit=3)
        ta = list(a * lot0) * trade(["A", "B"], entry=1, exit=3)
        result = ta.array_value(universe)
        expected = a * t0.array_value(universe)

        assert np.allclose(result, expected)
Exemplo n.º 6
0
    def test_array_value_linearity_add(self, seed):
        np.random.seed(seed)
        universe = self.universe_hand

        lot0, lot1 = np.random.randn(2), np.random.randn(2)
        t0 = list(lot0) * trade(["A", "B"], entry=1, exit=3)
        t1 = list(lot1) * trade(["A", "B"], entry=1, exit=3)
        ta = list(lot0 + lot1) * trade(["A", "B"], entry=1, exit=3)
        result = ta.array_value(universe)
        expected = t0.array_value(universe) + t1.array_value(universe)

        assert np.allclose(result, expected)
Exemplo n.º 7
0
    def test_final_pnl_linearity_mul(self, a, seed):
        np.random.seed(seed)

        universe = self.universe_hand
        lot0 = np.random.randn(2)
        t0 = list(lot0) * trade(["A", "B"], entry=1, exit=3)
        ta = list(a * lot0) * trade(["A", "B"], entry=1, exit=3)
        t0.execute(universe)
        ta.execute(universe)
        result = ta.final_pnl(universe)
        expected = a * t0.final_pnl(universe)

        assert np.allclose(result, expected)
Exemplo n.º 8
0
    def test_handmade(self):
        universe = pd.DataFrame({
            "A": [3.0, 1.0, 4.0, 1.0, 5.0, 9.0, 2.0],
            "B": [2.0, 7.0, 1.0, 8.0, 1.0, 8.0, 1.0],
        })
        trades = [
            2 * trade("A", entry=1, exit=5).execute(universe),
            -3 * trade("B", entry=2, exit=4).execute(universe),
        ]
        result = ts.abs_exposure(trades, universe)
        expected = np.array([0.0, 2.0, 11.0, 26.0, 13.0, 18.0, 0.0])

        assert_equal(result, expected)
Exemplo n.º 9
0
 def test_init_array(self):
     t = trade("A", lot=1.0)
     assert isinstance(t.asset, np.ndarray)
     assert isinstance(t.lot, np.ndarray)
     t = trade("A", lot=[1.0])
     assert isinstance(t.asset, np.ndarray)
     assert isinstance(t.lot, np.ndarray)
     t = trade(["A"], lot=[1.0])
     assert isinstance(t.asset, np.ndarray)
     assert isinstance(t.lot, np.ndarray)
     t = trade(["A", "B"], lot=1.0)
     t = trade(["A", "B"], lot=[1.0, 2.0])
     assert isinstance(t.asset, np.ndarray)
     assert isinstance(t.lot, np.ndarray)
Exemplo n.º 10
0
    def test_final_pnl_lineality_add(self, seed):
        np.random.seed(seed)
        universe = self.universe_hand

        lot0, lot1 = np.random.randn(2), np.random.randn(2)
        t0 = list(lot0) * trade(["A", "B"], entry=1, exit=3)
        t1 = list(lot1) * trade(["A", "B"], entry=1, exit=3)
        ta = list(lot0 + lot1) * trade(["A", "B"], entry=1, exit=3)
        t0.execute(universe)
        t1.execute(universe)
        ta.execute(universe)
        result = ta.final_pnl(universe)
        expected = t0.final_pnl(universe) + t1.final_pnl(universe)

        assert np.allclose(result, expected)
Exemplo n.º 11
0
 def test_abs_exposure(self):
     universe = pd.DataFrame(
         {
             "A0": [1.0, 2.0, 3.0, 4.0, 5.0],
             "A1": [2.0, 3.0, 4.0, 5.0, 6.0],
             "A2": [3.0, 4.0, 5.0, 6.0, 7.0],
         },
         dtype=float,
     )
     strategy = create_strategy(lambda _: [
         [1, -1] * trade(["A0", "A2"], entry=1, exit=3),
         [-1, 2] * trade(["A1", "A2"], entry=2, exit=4),
     ]).run(universe, verbose=False)
     result = strategy.abs_exposure()
     expect = pd.Series([0, 0, 8, 15, 20], index=universe.index)
     pd.testing.assert_series_equal(result, expect, check_dtype=False)
Exemplo n.º 12
0
    def test_handmade(self):
        universe = pd.DataFrame({"A": [0.0, 3.0, 1.0, 4.0, 1.0, 5.0, 9.0, 2.0]})
        trades = [trade("A").execute(universe)]

        result = ts.drawdown(trades, universe)
        expected = np.array([0.0, 0.0, -2.0, 0.0, -3.0, 0.0, 0.0, -7.0])

        assert_equal(result, expected)
Exemplo n.º 13
0
    def test_array_value_value_hand(self):
        t = [2.0, -3.0] * trade(["A", "B"], entry=1, exit=3)
        result = t.array_value(self.universe_hand)
        expected = np.array([
            [6.0, -6.0],
            [2.0, -21.0],
            [8.0, -3.0],
            [2.0, -24.0],
            [10.0, -6.0],
            [18.0, -24.0],
            [4.0, -3.0],
        ])
        assert np.allclose(result, expected)

        t = [-3.0, 2.0] * trade(["B", "A"], entry=1, exit=3)
        result = t.array_value(universe=self.universe_hand)
        expected = expected[:, [1, 0]]
        assert np.allclose(result, expected)
Exemplo n.º 14
0
    def logic(self, universe):
        for _ in range(self._n_trades):
            n_assets = np.random.randint(1, self.max_n_assets + 1, size=1)[0]
            asset = list(np.random.choice(universe.columns, n_assets))
            lot = list(
                random_uniform(self.min_lot, self.max_lot, size=n_assets))
            entry, exit = sorted(np.random.choice(universe.index, 2))

            yield (lot * trade(asset, entry=entry, exit=exit))
Exemplo n.º 15
0
    def test(self):
        np.random.seed(42)
        universe = pd.DataFrame({"A": range(100)})
        lots = np.random.randn(100)
        trades = [lot * trade("A", entry=0) for lot in lots]
        trades = [t.execute(universe) for t in trades]
        result = num_win(trades, universe)
        expected = (lots > 0).sum()

        assert result == expected
Exemplo n.º 16
0
    def test(self):
        np.random.seed(42)
        universe = pd.DataFrame({"A": range(100)})
        lots = np.random.randn(100)
        trades = [lot * trade("A", entry=0) for lot in lots]
        trades = [t.execute(universe) for t in trades]
        metric = rate_lose(trades, universe)
        expected = (lots <= 0).sum() / len(trades)

        assert metric == expected
Exemplo n.º 17
0
    def test_truediv(self, a):
        t = trade("A", entry=0, exit=1, take=2.0, stop=-3.0)
        result = t / a
        expect = trade("A", lot=[1 / a], entry=0, exit=1, take=2.0, stop=-3.0)
        assert result == expect

        t = trade(["A", "B"],
                  lot=[1.0, -2.0],
                  entry=0,
                  exit=1,
                  take=2.0,
                  stop=-3.0)
        result = t / a
        expect = trade(["A", "B"],
                       lot=[1 / a, -2.0 / a],
                       entry=0,
                       exit=1,
                       take=2.0,
                       stop=-3.0)
        assert result == expect
Exemplo n.º 18
0
    def test_monotonous(self):
        """
        result = 0 if wealth is monotonously increasing
        """
        universe = pd.DataFrame({"A": np.linspace(1, 2, 100)})
        trades = [trade("A").execute(universe)]

        result = ts.drawdown(trades, universe)
        expected = np.zeros_like(result)

        assert_equal(result, expected)
Exemplo n.º 19
0
    def test(self):
        np.random.seed(42)
        universe = pd.DataFrame({"A": range(100)})
        lots = np.random.randn(100)
        trades = [lot * trade("A", entry=0) for lot in lots]
        trades = [t.execute(universe) for t in trades]

        tot_pnl = avg_pnl(trades, universe) * len(trades)
        expected = final_wealth(trades, universe).item()

        assert np.isclose(tot_pnl, expected)
Exemplo n.º 20
0
 def test_exposure(self):
     universe = pd.DataFrame(
         {
             "A0": [1.0, 2.0, 3.0, 4.0, 5.0],
             "A1": [2.0, 3.0, 4.0, 5.0, 6.0],
             "A2": [3.0, 4.0, 5.0, 6.0, 7.0],
         },
         dtype=float,
     )
     strategy = create_strategy(lambda universe: [
         [1, -1] * trade(["A0", "A2"], entry=1, exit=3),
         [-1, 2] * trade(["A1", "A2"], entry=2, exit=4),
     ]).run(universe, verbose=False)
     result = strategy.exposure()
     expect = pd.DataFrame(
         [[0, 0, 0], [0, 0, 0], [3, 0, -5], [4, -5, 6], [0, -6, 14]],
         index=universe.index,
         columns=universe.columns,
     )
     pd.testing.assert_frame_equal(result, expect, check_dtype=False)
Exemplo n.º 21
0
    def test_wealth(self):
        # TODO test for when exit != close

        universe = pd.DataFrame({
            "A": range(10),
            "B": range(10),
            "C": range(10)
        })

        # TODO remove it when #129 will be fixed ---
        universe = universe.astype(float)
        # ---

        trades = [trade("A", entry=1, exit=3), trade("B", entry=2, exit=4)]
        strategy = DeterminedStrategy(trades).run(universe)
        wealth = strategy.wealth()

        expected = pd.Series([0, 0, 1, 3, 4, 4, 4, 4, 4, 4],
                             index=universe.index)

        pd.testing.assert_series_equal(wealth, expected, check_dtype=False)
Exemplo n.º 22
0
    def test(self):
        np.random.seed(42)
        universe = pd.DataFrame({"A": range(100)})
        lots = np.random.randn(100)
        trades = [lot * trade("A", entry=0) for lot in lots]
        trades = [t.execute(universe) for t in trades]

        tot_win = avg_win(trades, universe) * num_win(trades, universe)
        pnls = np.array([t.final_pnl(universe) for t in trades])
        expected = np.sum(pnls[pnls > 0])

        assert tot_win == expected
Exemplo n.º 23
0
    def test_mul(self, a):
        t = trade("A", entry=0, exit=1, take=2.0, stop=-3.0)
        result = a * t
        expect = trade("A", lot=[a], entry=0, exit=1, take=2.0, stop=-3.0)
        assert result == expect
        result = t * a
        assert result == expect

        t = trade(["A", "B"],
                  lot=[1.0, -2.0],
                  entry=0,
                  exit=1,
                  take=2.0,
                  stop=-3.0)
        result = a * t
        expect = trade(["A", "B"],
                       lot=[a, -2.0 * a],
                       entry=0,
                       exit=1,
                       take=2.0,
                       stop=-3.0)
        assert result == expect
        result = t * a
        assert result == expect
Exemplo n.º 24
0
    def test_init_shape(self):
        t = trade("A", lot=1.0)
        assert t.asset.shape == (1, )
        assert t.lot.shape == (1, )

        t = trade(["A"], lot=1.0)
        assert t.asset.shape == (1, )
        assert t.lot.shape == (1, )

        t = trade("A", lot=[1.0])
        assert t.asset.shape == (1, )
        assert t.lot.shape == (1, )

        t = trade(["A", "B"], lot=1.0)
        assert t.asset.shape == (2, )
        assert t.lot.shape == (2, )

        t = trade(["A", "B"], lot=[1.0])
        assert t.asset.shape == (2, )
        assert t.lot.shape == (2, )

        t = trade(["A", "B"], lot=[1.0, 2.0])
        assert t.asset.shape == (2, )
        assert t.lot.shape == (2, )
Exemplo n.º 25
0
 def logic(self, universe):
     yield (self.param_1 * trade("A"))
     yield (self.param_2 * trade("B"))
Exemplo n.º 26
0
 def logic(self, universe):
     asset = list(self.weight.keys())
     price = universe.loc[:, asset].iloc[0].values
     lot = list(np.array(list(self.weight.values())) / price)
     yield lot * trade(asset, entry=universe.index[0])
Exemplo n.º 27
0
 def my_strategy(universe, param_1, param_2):
     """
     Example logic
     """
     yield (param_1 * trade("A"))
     yield (param_2 * trade("B"))
Exemplo n.º 28
0
    def test_init_from_func(self):
        strategy = create_strategy(self.my_strategy, param_1=1.0, param_2=2.0)
        universe = self.universe

        assert strategy(universe) == [1.0 * trade("A"), 2.0 * trade("B")]
Exemplo n.º 29
0
    def test_init_from_init(self):
        strategy = MyStrategy(param_1=1.0, param_2=2.0)
        universe = self.universe

        assert strategy(universe) == [1.0 * trade("A"), 2.0 * trade("B")]
Exemplo n.º 30
0
def test():
    universe = pd.DataFrame({"A": range(10)})
    trades = [trade("A", entry=1, exit=3)]
    strategy = DeterminedStrategy(trades).run(universe)
    wealth = strategy.wealth()