Exemplo n.º 1
0
def empirical_SVD(stream_list, linear=True):
    """
    Empirical subspace detector generation function.

    Takes a list of \
    templates and computes the stack as the first order subspace detector, \
    and the differential of this as the second order subspace detector \
    following the empirical subspace method of
    `Barrett & Beroza, 2014 - SRL
    <http://srl.geoscienceworld.org/content/85/3/594.extract>`_.

    :type stream_list: list
    :param stream_list:
        list of streams to compute the subspace detectors from, where streams
        are :class:`obspy.core.stream.Stream` objects.
    :type linear: bool
    :param linear: Set to true by default to compute the linear stack as the \
        first subspace vector, False will use the phase-weighted stack as the \
        first subspace vector.

    :returns: list of two :class:`obspy.core.stream.Stream` s
    """
    from eqcorrscan.utils import stacking
    # Run a check to ensure all traces are the same length
    stachans = list(
        set([(tr.stats.station, tr.stats.channel) for st in stream_list
             for tr in st]))
    for stachan in stachans:
        lengths = []
        for st in stream_list:
            lengths.append(
                len(st.select(station=stachan[0], channel=stachan[1])[0]))
        min_length = min(lengths)
        for st in stream_list:
            tr = st.select(station=stachan[0], channel=stachan[1])[0]
            if len(tr.data) > min_length:
                if abs(len(tr.data) - min_length) > (0.1 *
                                                     tr.stats.sampling_rate):
                    raise IndexError('More than 0.1 s length '
                                     'difference, align and fix')
                warnings.warn(
                    str(tr) + ' is not the same length as others, ' +
                    'trimming the end')
                tr.data = tr.data[0:min_length]
    if linear:
        first_subspace = stacking.linstack(stream_list)
    else:
        first_subspace = stacking.PWS_stack(streams=stream_list)
    second_subspace = first_subspace.copy()
    for i in range(len(second_subspace)):
        second_subspace[i].data = np.diff(second_subspace[i].data)
        second_subspace[i].stats.starttime += 0.5 * \
            second_subspace[i].stats.delta
    return [first_subspace, second_subspace]
Exemplo n.º 2
0
def multi_event_singlechan(streams, picks, clip=10.0, pre_pick=2.0,\
                           freqmin=False, freqmax=False, realign=False, \
                           cut=(-3.0,5.0), PWS=False, title=False):
    """
    Function to plot data from a single channel at a single station for multiple
    events - data will be alligned by their pick-time given in the picks

    :type streams: List of :class:obspy.stream
    :param streams: List of the streams to use, can contain more traces than\
        you plan on plotting
    :type picks: List of :class:PICK
    :param picks: List of picks, one for each stream
    :type clip: float
    :param clip: Length in seconds to plot, defaults to 10.0
    :type pre_pick: Float
    :param pre_pick: Length in seconds to extract and plot before the pick,\
        defaults to 2.0
    :type freqmin: float
    :param freqmin: Low cut for bandpass in Hz
    :type freqmax: float
    :param freqmax: High cut for bandpass in Hz
    :type realign: Bool
    :param realign: To compute best alignement based on correlation or not.
    :type cut: tuple:
    :param cut: tuple of start and end times for cut in seconds from the pick
    :type PWS: bool
    :param PWS: compute Phase Weighted Stack, if False, will compute linear stack
    :type title: str
    :param title: Plot title.

    :returns: Alligned and cut traces, and new picks
    """
    from eqcorrscan.utils import stacking
    import copy
    from eqcorrscan.core.match_filter import normxcorr2
    from obspy import Stream
    fig, axes = plt.subplots(len(picks) + 1, 1, sharex=True, figsize=(7, 12))
    axes = axes.ravel()
    traces = []
    al_traces = []
    # Keep input safe
    plist = copy.deepcopy(picks)
    st_list = copy.deepcopy(streams)
    for i, pick in enumerate(plist):
        if st_list[i].select(station=pick.station, \
            channel='*'+pick.channel[-1]):
            tr=st_list[i].select(station=pick.station, \
                channel='*'+pick.channel[-1])[0]
        else:
            print 'No data for ' + pick.station + '.' + pick.channel
            continue
        tr.detrend('linear')
        if freqmin:
            tr.filter('bandpass', freqmin=freqmin, freqmax=freqmax)
        if realign:
            tr_cut = tr.copy()
            tr_cut.trim(pick.time+cut[0], pick.time+cut[1],\
                        nearest_sample=False)
            if len(tr_cut.data) <= 0.5 * (cut[1] -
                                          cut[0]) * tr_cut.stats.sampling_rate:
                print 'Not enough in the trace for ' + pick.station + '.' + pick.channel
                print 'Suggest removing pick from sfile at time ' + str(
                    pick.time)
            else:
                al_traces.append(tr_cut)
        else:
            tr.trim(pick.time-pre_pick, pick.time+clip-pre_pick,\
                    nearest_sample=False)
        if len(tr.data) == 0:
            print 'No data in the trace for ' + pick.station + '.' + pick.channel
            print 'Suggest removing pick from sfile at time ' + str(pick.time)
            continue
        traces.append(tr)
    if realign:
        shift_len = int(0.25 * (cut[1] - cut[0]) *
                        al_traces[0].stats.sampling_rate)
        shifts = stacking.align_traces(al_traces, shift_len)
        for i in xrange(len(shifts)):
            print 'Shifting by ' + str(shifts[i]) + ' seconds'
            pick.time -= shifts[i]
            traces[i].trim(pick.time - pre_pick, pick.time + clip-pre_pick,\
                           nearest_sample=False)
    # We now have a list of traces
    traces = [(trace, trace.stats.starttime.datetime) for trace in traces]
    traces.sort(key=lambda tup: tup[1])
    traces = [trace[0] for trace in traces]
    # Plot the traces
    for i, tr in enumerate(traces):
        y = tr.data
        x = np.arange(len(y))
        x = x / tr.stats.sampling_rate  # convert to seconds
        axes[i + 1].plot(x, y, 'k', linewidth=1.1)
        # axes[i+1].set_ylabel(tr.stats.starttime.datetime.strftime('%Y/%m/%d %H:%M'),\
        # rotation=0)
        axes[i + 1].yaxis.set_ticks([])
    traces = [Stream(trace) for trace in traces]
    if PWS:
        linstack = stacking.PWS_stack(traces)
    else:
        linstack = stacking.linstack(traces)
    tr=linstack.select(station=picks[0].station, \
            channel='*'+picks[0].channel[-1])[0]
    y = tr.data
    x = np.arange(len(y))
    x = x / tr.stats.sampling_rate
    axes[0].plot(x, y, 'r', linewidth=2.0)
    axes[0].set_ylabel('Stack', rotation=0)
    axes[0].yaxis.set_ticks([])
    for i, slave in enumerate(traces):
        cc = normxcorr2(tr.data, slave[0].data)
        axes[i + 1].set_ylabel('cc=' + str(round(np.max(cc), 2)), rotation=0)
        axes[i+1].text(0.9, 0.15, str(round(np.max(slave[0].data))), \
                       bbox=dict(facecolor='white', alpha=0.95),\
                       transform=axes[i+1].transAxes)
        axes[i+1].text(0.7, 0.85, slave[0].stats.starttime.datetime.strftime('%Y/%m/%d %H:%M:%S'), \
                       bbox=dict(facecolor='white', alpha=0.95),\
                       transform=axes[i+1].transAxes)
    axes[-1].set_xlabel('Time (s)')
    if title:
        axes[0].set_title(title)
    plt.subplots_adjust(hspace=0)
    plt.show()
    return traces, plist
Exemplo n.º 3
0
def multi_event_singlechan(streams,
                           catalog,
                           clip=10.0,
                           pre_pick=2.0,
                           freqmin=False,
                           freqmax=False,
                           realign=False,
                           cut=(-3.0, 5.0),
                           PWS=False,
                           title=False,
                           save=False,
                           savefile=None):
    r"""Function to plot data from a single channel at a single station for \
    multiple events - data will be alligned by their pick-time given in the \
    picks.

    :type streams: list of :class:obspy.stream
    :param streams: List of the streams to use, can contain more traces than \
        you plan on plotting
    :type catalog: obspy.core.event.Catalog
    :param catalog: Catalog of events, one for each trace, with a single pick
    :type clip: float
    :param clip: Length in seconds to plot, defaults to 10.0
    :type pre_pick: float
    :param pre_pick: Length in seconds to extract and plot before the pick, \
        defaults to 2.0
    :type freqmin: float
    :param freqmin: Low cut for bandpass in Hz
    :type freqmax: float
    :param freqmax: High cut for bandpass in Hz
    :type realign: bool
    :param realign: To compute best alignement based on correlation or not.
    :type cut: tuple
    :param cut: tuple of start and end times for cut in seconds from the pick
    :type PWS: bool
    :param PWS: compute Phase Weighted Stack, if False, will compute linear \
        stack.
    :type title: str
    :param title: Plot title.
    :type save: bool
    :param save: False will plot to screen, true will save plot and not show \
        to screen.
    :type savefile: str
    :param savefile: Filename to save to, required for save=True

    :returns: Alligned and cut traces, and new picks
    """
    _check_save_args(save, savefile)
    from eqcorrscan.utils import stacking
    import copy
    from eqcorrscan.core.match_filter import normxcorr2
    from obspy import Stream
    import warnings
    fig, axes = plt.subplots(len(catalog) + 1, 1, sharex=True, figsize=(7, 12))
    axes = axes.ravel()
    traces = []
    al_traces = []
    # Keep input safe
    clist = copy.deepcopy(catalog)
    st_list = copy.deepcopy(streams)
    for i, event in enumerate(clist):
        if st_list[i].select(station=event.picks[0].waveform_id.station_code,
                             channel='*' +
                             event.picks[0].waveform_id.channel_code[-1]):
            tr = st_list[i].select(
                station=event.picks[0].waveforms_id.station_code,
                channel='*' + event.picks[0].waveform_id.channel_code[-1])[0]
        else:
            print('No data for ' + event.pick[0].waveform_id)
            continue
        tr.detrend('linear')
        if freqmin:
            tr.filter('bandpass', freqmin=freqmin, freqmax=freqmax)
        if realign:
            tr_cut = tr.copy()
            tr_cut.trim(event.picks[0].time + cut[0],
                        event.picks[0].time + cut[1],
                        nearest_sample=False)
            if len(tr_cut.data) <= (0.5 * (cut[1] - cut[0]) *
                                    tr_cut.stats.sampling_rate):
                msg = ''.join([
                    'Not enough in the trace for ', tr.stats.station, '.',
                    tr.stats.channel, '\n',
                    'Suggest removing pick from sfile at time ',
                    str(event.picks[0].time)
                ])
                warnings.warn(msg)
            else:
                al_traces.append(tr_cut)
        else:
            tr.trim(event.picks[0].time - pre_pick,
                    event.picks[0].time + clip - pre_pick,
                    nearest_sample=False)
        if len(tr.data) == 0:
            msg = ''.join([
                'No data in the trace for ', tr.stats.station, '.',
                tr.stats.channel, '\n',
                'Suggest removing pick from sfile at time ',
                str(event.picks[0].time)
            ])
            warnings.warn(msg)
            continue
        traces.append(tr)
    if realign:
        shift_len = int(0.25 * (cut[1] - cut[0]) *
                        al_traces[0].stats.sampling_rate)
        shifts = stacking.align_traces(al_traces, shift_len)
        for i in xrange(len(shifts)):
            print('Shifting by ' + str(shifts[i]) + ' seconds')
            event.picks[0].time -= shifts[i]
            traces[i].trim(event.picks[0].time - pre_pick,
                           event.picks[0].time + clip - pre_pick,
                           nearest_sample=False)
    # We now have a list of traces
    traces = [(trace, trace.stats.starttime.datetime) for trace in traces]
    traces.sort(key=lambda tup: tup[1])
    traces = [trace[0] for trace in traces]
    # Plot the traces
    for i, tr in enumerate(traces):
        y = tr.data
        x = np.arange(len(y))
        x = x / tr.stats.sampling_rate  # convert to seconds
        axes[i + 1].plot(x, y, 'k', linewidth=1.1)
        axes[i + 1].yaxis.set_ticks([])
    traces = [Stream(trace) for trace in traces]
    if PWS:
        linstack = stacking.PWS_stack(traces)
    else:
        linstack = stacking.linstack(traces)
    tr = linstack.select(station=event[0].picks[0].waveform_id.station_code,
                         channel='*' +
                         event[0].picks[0].waveform_id.channel_code[-1])[0]
    y = tr.data
    x = np.arange(len(y))
    x = x / tr.stats.sampling_rate
    axes[0].plot(x, y, 'r', linewidth=2.0)
    axes[0].set_ylabel('Stack', rotation=0)
    axes[0].yaxis.set_ticks([])
    for i, slave in enumerate(traces):
        cc = normxcorr2(tr.data, slave[0].data)
        axes[i + 1].set_ylabel('cc=' + str(round(np.max(cc), 2)), rotation=0)
        axes[i + 1].text(0.9,
                         0.15,
                         str(round(np.max(slave[0].data))),
                         bbox=dict(facecolor='white', alpha=0.95),
                         transform=axes[i + 1].transAxes)
        axes[i + 1].text(
            0.7,
            0.85,
            slave[0].stats.starttime.datetime.strftime('%Y/%m/%d %H:%M:%S'),
            bbox=dict(facecolor='white', alpha=0.95),
            transform=axes[i + 1].transAxes)
    axes[-1].set_xlabel('Time (s)')
    if title:
        axes[0].set_title(title)
    plt.subplots_adjust(hspace=0)
    if not save:
        plt.show()
    else:
        plt.savefig(savefile)
    return traces, clist