Exemplo n.º 1
0
    return fig_heatmap, fig_snapshots


# %% Prepare the trajectories
# ===========================
nodes = pd.DataFrame({
    'node': node,
    'x': attrs['x'],
    'y': attrs['y']
} for node, attrs in graph.nodes(data=True))
all_nodes = list(graph.nodes)

# Load the trajectories
trajs_active = load_data(
    f'trajs/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{TAU:e}_N{NUM_TRAJS}_max_time{MAX_TIME}',
    suffix='.parquet')

trajs_undirected = load_data(
    f'trajs/{GRAPH}_UndirectedNetwork_ExponentialWalker_N{NUM_TRAJS}_max_time{MAX_TIME}',
    suffix='.parquet')

# %% Plot the time evolution of the distributions
# ===============================================

times = np.arange(MAX_TIME + 1)

# Undirected
fig_time_evol, fig_snapshots = plot_particle_distribution(
    trajs_undirected, times, all_nodes, snapshots=[0, 30, 60, 200])
fig_snapshots.savefig(
Exemplo n.º 2
0
erplot.graph.node_label(ax, graph, 0, label='0')
for node in nodes:
    erplot.graph.node_label(ax, graph, node, label='')
plt.show()

# %% MFPT vs switching rate
# =========================

graph = load_graph(GRAPH)
mfpts = []

nodes_d = distances[distances.distance == DISTANCE].index.values

for tau in tqdm(TAUS):
    df = load_data(
        f'MFPT/{GRAPH}_SwitchingNetworkConstantRate_ExponentialWalker_tau{tau:e}_sim1000'
    )
    mfpts.append(df[df.node.isin(nodes_d)].FPT.mean())

# Undirected
df = load_data(f'MFPT/{GRAPH}_UndirectedNetwork_ExponentialWalker')
df = df.join(distances, on='node')
undirected_mfpt = df[df.distance == DISTANCE].FPT.mean()

# %%

fig, ax = plt.subplots()
ax.plot(TAUS, mfpts, label='Active Network')
ax.hlines(undirected_mfpt,
          0,
          max(TAUS),
Exemplo n.º 3
0
fig, ax = erplot.graph.structure(graph)
erplot.graph.node_label(ax, graph, 0, label='0')
for node in nodes:
    erplot.graph.node_label(ax, graph, node, label='')
plt.show()

# %% MFPT vs switching rate
# =========================

graph = load_graph(GRAPH)
mfpts = []

nodes_d = distances[distances.distance == DISTANCE].index.values

for tau in tqdm(TAUS):
    df = load_data(
        f'MFPT/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{tau:e}')
    mfpts.append(df[df.node.isin(nodes_d)].FPT.mean())

df = load_data(f'MFPT/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{0.03:e}')
active30ms_mfpt = df[df.node.isin(nodes_d)].FPT.mean()

df = load_data(f'MFPT/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{0.3:e}')
active300ms_mfpt = df[df.node.isin(nodes_d)].FPT.mean()

df = load_data(f'MFPT/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{3:e}')
active3s_mfpt = df[df.node.isin(nodes_d)].FPT.mean()

# Undirected
df = load_data(f'MFPT/{GRAPH}_UndirectedNetwork_ExponentialWalker')
df = df.join(distances, on='node')
undirected_mfpt = df[df.distance == DISTANCE].FPT.mean()
# ==========================

graph = load_graph(GRAPH)

out = data_path(
    f'trajs/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{TAU:e}_N{NUM_TRAJS}_max_time{MAX_TIME}',
    suffix='.parquet')
if not out.exists():
    print(f'Generating trajectories: {out}')
    network = SwitchingNetwork(graph, timescale=TAU)
    walker = ExponentialWalker(timescale=0.1)
    generator = TrajectoryGenerator(network, walker)
    trajs = generator.trajectories(NUM_TRAJS, MAX_TIME)
    trajs.to_parquet(str(out))
else:
    trajs = load_data(str(out.with_suffix('')), suffix='.parquet')

# %% Create the movie
# ===================

df = reduce_trajs_steps(trajs).copy()
df['step'] = df.groupby('id').cumcount()  # add step count
df['prev_node'] = df.groupby('id').node.shift().fillna(0).astype(int)

# Generate frames
MAX_TIME = 30
times = np.linspace(0, MAX_TIME, int(MAX_TIME * 20))
values = np.zeros((len(times), graph.number_of_nodes()))
for i, t in enumerate(tqdm(times)):
    for node, count in count_nodes(t, df).iteritems():
        values[i, node] = count
Exemplo n.º 5
0
graph = load_graph(GRAPH)

out = data_path(f'MFPT/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{TAU:e}')
if not out.exists():
    network = SwitchingNetwork(graph, timescale=TAU, memory=False)
    walker = ExponentialWalker(timescale=0.1)
    sim = MFPTSimulation(network, walker, num_sims=5000)
    print(f'Running simulation: {out}')
    res = sim.run()
    res.to_csv(str(out))


# %% MFPT heatmap
# ===============

data = load_data(f'MFPT/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{TAU:e}')
# data = load_data(f'MFPT/{GRAPH}_UndirectedNetwork_ExponentialWalker')

mfpt = data.groupby("node").FPT.mean()
fig, ax, cb = erplot.graph.heatmap(
    graph, mfpt, cmap=cmocean.cm.delta, vmax=VMAX)

erplot.graph.node_label(ax, graph, 0, "S", size=5)
cb.remove()
fig.savefig(FIGURES_PATH.joinpath("MFPT_heatmap_{}.svg".format(GRAPH)))
plt.show()

fig, ax, cb = erplot.graph.heatmap(
    graph, mfpt, cmap=cmocean.cm.delta, vmax=VMAX)
ax.remove()
cb.ax.set_ylabel("$\\bar{\\tau}_{S \\to T}$   (s)")
        linestyle='--',
        label='Exponential fit')
ax.legend()
fig.savefig(FIGURES_PATH.joinpath(f'{GRAPH}_attractor_size_distribution.svg'))

# %% Distribution of particles
# ============================

M = graph.number_of_nodes()
hist = np.zeros((NUM_RUNS, M + 1))
all_nodes = list(graph.nodes)

# I am taking the average distribution over NUM_RUNS independent simulations
for n_run in range(1, 1 + NUM_RUNS):
    trajs = load_data(
        f'trajs/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{TAU:e}_uniform_10_max_time{MAX_TIME}_run{n_run}',
        suffix='.parquet')

    trajs = trajs.set_index('time', drop=False).sort_index()
    counts = trajs.groupby(
        'id',
        as_index=False).last().groupby('node').count().reindex(all_nodes,
                                                               fill_value=0)
    hist[n_run - 1], bins = np.histogram(counts.id, bins=np.arange(M + 2))

hist_norm = np.sum(hist, axis=0) / np.sum(hist)

sim_vals = hist_norm
sim_xvals = (bins[:-1] + bins[1:]) / 2

# Theoretical functions
Exemplo n.º 7
0
    if out.exists():
        continue

    print(f'Generating trajectories: {out}')
    network = SwitchingNetwork(graph, timescale=tau)
    walker = ExponentialWalker(timescale=0.1)
    generator = TrajectoryGenerator(network, walker)
    trajs = generator.trajectories(N, MAX_TIME)
    trajs.to_parquet(str(out))

# %% Generate the figures
# =======================

for tau in TAUS:
    df = load_data(
        f'trajs/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{tau:e}_N{N}_max_time{MAX_TIME}',
        suffix='.parquet')

    df = df.sort_values(["id", "time"])
    df = collapse_traps(df)
    df["step"] = df.groupby("id").cumcount()  # add step count
    df["prev_node"] = df.node.shift()

    ts = np.linspace(0, 120, 1200)
    neighbors, count = count_by_source(TARGET, ts, df, graph)

    fig, ax = plt.subplots(figsize=(4, 2))
    ax.stackplot(ts,
                 count,
                 labels=neighbors,
                 colors=['#1b9e77', '#d95f02', '#7570b3'])
        for sim_id in trange(NUM_SIMS):
            network.reset()
            walker.reset()
            generator = TrajectoryGenerator(network, walker)
            traj = generator.trajectories_to_target(num_trajs, TARGET, keep=1)
            traj['sim_id'] = sim_id
            trajs.append(traj)

        df = pd.concat(trajs)
        df.to_parquet(str(out))

# %% Length of fastest
# ====================

df = load_data(
    f'trajs/{GRAPH}_UndirectedNetwork_ExponentialWalker_N{NUM_TRAJS}_1st_trajectories_S0_T{TARGET}',
    suffix='.parquet')
dfagg = df.groupby(['sim_id', 'id']).agg({'node': 'count', 'time': 'max'})

fig, ax = plt.subplots()
bins = range(0, dfagg.node.max() + dfagg.node.max() % 2 + 1, 2)
ax.hist(dfagg.node,
        bins,
        density=True,
        label='Undirected network',
        color='gray')

for tau in TAUS:
    df = load_data(
        f'trajs/{GRAPH}_SwitchingNetwork_ExponentialWalker_tau{tau:e}_N{NUM_TRAJS}_1st_trajectories_S0_T{TARGET}',
        suffix='.parquet')