Exemplo n.º 1
0
 def __init__(self, up_size, path=None, ds_name=None, name='up_sampling'):
     self.up_size = up_size
     pe_name = '{}_h{}_w{}'.format(name, up_size[0], up_size[1])
     if path is None:
         assert ds_name is not None
         path = ersa_utils.get_block_dir('data', ['preprocess', ds_name, name])
     super().__init__(pe_name, path, func=self.process)
Exemplo n.º 2
0
 def __init__(self, gamma, path=None, ds_name=None, name='gamma_adjust'):
     """
     :param path: path to save the adjusted images
     :param ds_name: where to save data if path is None
     :param gamma: gamma to adjust images' brightness
     """
     self.gamma = gamma
     pe_name = '{}_gamma{}'.format(name, self.gamma)
     if path is None:
         assert ds_name is not None
         path = ersa_utils.get_block_dir('data',
                                         ['preprocess', ds_name, name])
     super().__init__(pe_name, path, func=self.process)
Exemplo n.º 3
0
def read_collection(clc_name=None,
                    clc_dir=None,
                    raw_data_path=None,
                    field_name=None,
                    field_id=None,
                    rgb_ext=None,
                    gt_ext=None,
                    file_ext=None,
                    files=None,
                    force_run=False):
    """
    Read and initialize a collection from a directory, try to create one if it does not exists
    :param clc_name: name of the collection
    :param clc_dir: directory to the collection
    :return: the collection object, assertion error if no process hasn't completed

    :param raw_data_path: path to where the data are stored
    :param field_name: could be name of the cities, or other prefix of the images
    :param field_id: could be id of the tiles, or other suffix of the images
    :param rgb_ext: name extensions that indicates the images are not ground truth, use ',' to separate if you have
                    multiple extensions
    :param gt_ext: name extensions that indicates the images are ground truth, you can only have at most one ground
                   truth extension
    :param file_ext: extension of the files, use ',' to separate if you have multiple extensions, if all the files
                     have the same extension, you only need to specify one
    :param files: files in the raw_data_path, can be specified by user to exclude some of the raw files, if it is
                  None, all files will be found automatically
    :param force_run: force run the collection maker even if it already exists
    """
    if clc_dir is None:
        assert clc_name is not None
        clc_dir = ersa_utils.get_block_dir('data', ['collection', clc_name])
    # check if finish
    if processBlock.BasicProcess('collection_maker', clc_dir).check_finish():
        # read metadata
        meta_data = ersa_utils.load_file(os.path.join(clc_dir, 'meta.pkl'))
        # create collection
        cm = CollectionMaker(meta_data['raw_data_path'],
                             meta_data['field_name'],
                             meta_data['field_id'],
                             meta_data['rgb_ext'],
                             meta_data['gt_ext'],
                             meta_data['file_ext'],
                             meta_data['files'],
                             meta_data['clc_name'],
                             force_run=force_run)
        return cm
    else:
        # try to create the collection
        return CollectionMaker(raw_data_path, field_name, field_id, rgb_ext,
                               gt_ext, file_ext, files, clc_name, force_run)
Exemplo n.º 4
0
 def __init__(self, path, switch_dict, field_ext_pair, name):
     """
     :param path: directory of the collection
     :param mult_factor: constant number
     :param field_ext_pair: a list where the first element is the field extension to be operated on and the second
                            field extension is the name of the new field
     """
     func = self.process
     self.switch_dict = switch_dict
     self.field_ext_pair = field_ext_pair
     self.clc = collectionMaker.read_collection(clc_dir=path)
     path = ersa_utils.get_block_dir('data', ['preprocess', os.path.basename(path), name])
     self.files = []
     super().__init__(name, path, func)
Exemplo n.º 5
0
 def __init__(self, path, mult_factor, field_ext_pair):
     """
     :param path: directory of the collection
     :param mult_factor: constant number
     :param field_ext_pair: a list where the first element is the field extension to be operated on and the second
                            field extension is the name of the new field
     """
     if mult_factor >= 1:
         name = 'chan_mult_{:.5f}'.format(mult_factor).replace('.', 'p')
     else:
         name = 'chan_mult_{}'.format(str(Fraction(mult_factor).limit_denominator()).replace('/', 'd'))
     func = self.process
     self.mult_factor = mult_factor
     self.field_ext_pair = field_ext_pair
     self.clc = collectionMaker.read_collection(clc_dir=path)
     path = ersa_utils.get_block_dir('data', ['preprocess', os.path.basename(path), name])
     self.files = []
     super().__init__(name, path, func)
Exemplo n.º 6
0
 def __init__(self, patch_size, tile_size=None, ds_name='', overlap=0, pad=0, name='patch_extractor'):
     """
     :param patch_size: patch size to be extracted
     :param tile_size: tile size (image size)
     :param ds_name: name of the dataset, it will be used to name the folder
     :param overlap: #overlapping pixels
     :param pad: #pxiels to pad around the iamge
     :param name: name of the process
     """
     self.patch_size = np.array(patch_size, dtype=np.int32)
     if tile_size is not None:
         self.tile_size = np.array(tile_size, dtype=np.int32)
     else:
         self.tile_size = tile_size
     self.overlap = overlap
     self.pad = pad
     pe_name = '{}_h{}w{}_overlap{}_pad{}'.format(name, self.patch_size[0], self.patch_size[1], self.overlap, self.pad)
     path = ersa_utils.get_block_dir('data', [name, ds_name, pe_name])
     super().__init__(pe_name, path, func=self.process)
Exemplo n.º 7
0
 def get_dir(self):
     """
     Get or create directory of this collection
     :return: directory of the collection
     """
     return ersa_utils.get_block_dir('data', ['collection', self.clc_name])
Exemplo n.º 8
0
    def __init__(self,
                 model,
                 file_list,
                 model_dir,
                 init_op,
                 reader_op,
                 ds_name='default',
                 save_result_parent_dir=None,
                 name='nn_estimator_segment_scene',
                 gpu=None,
                 verb=True,
                 load_epoch_num=None,
                 best_model=False,
                 score_result=False,
                 split_char='_',
                 post_func=None,
                 save_func=None,
                 ignore_label=(),
                 **kwargs):
        """
        :param model: model to be evaluated
        :param file_list: evaluation file list
        :param model_dir: path to the pretrained model
        :param init_op: initialize operation for the dataset reader
        :param reader_op: reader_op, return feature and label if scoring the results
        :param ds_name: name of the dataset
        :param save_result_parent_dir: parent directory to where the result will be stored
        :param name: name of the process
        :param gpu: which gpu to run the model, default to use all the gpus available
        :param verb: if True, print out message when evaluating
        :param load_epoch_num: which epoch's ckpt to load
        :param best_model: if True, load the model with best performance on the validation set
        :param score_result: if False, no gt used to score results
        :param split_char: character used to split file name
        :param post_func: post processing function to make prediction
        :param save_func: post processing function to make visible prediction map
        :param ignore_label: labels to be ignored at scoring
        :param kwargs: other parameters
        """
        self.model = model
        self.file_list = file_list
        self.model_dir = model_dir
        self.init_op = init_op
        self.reader_op = reader_op
        self.model_name = model_dir.split('/')[-1]
        if save_result_parent_dir is None:
            self.score_save_dir = ersa_utils.get_block_dir(
                'eval', [self.model_name, ds_name])
        else:
            self.score_save_dir = ersa_utils.get_block_dir(
                'eval', [save_result_parent_dir, self.model_name, ds_name])
        self.gpu = gpu
        self.verb = verb
        self.load_epoch_num = load_epoch_num
        self.best_model = best_model
        self.score_results = score_result
        self.split_char = split_char
        self.post_func = post_func
        self.save_func = save_func
        self.ignore_label = ignore_label
        self.kwargs = kwargs

        super().__init__(name, self.score_save_dir, func=self.process)
Exemplo n.º 9
0
    def __init__(self,
                 model,
                 file_list,
                 input_size,
                 tile_size,
                 batch_size,
                 img_mean,
                 model_dir,
                 ds_name='default',
                 save_result_parent_dir=None,
                 name='nn_estimator_segment',
                 gpu=None,
                 verb=True,
                 load_epoch_num=None,
                 best_model=False,
                 truth_val=1,
                 score_results=False,
                 split_char='_',
                 **kwargs):
        """
        :param model: model to be evaluated
        :param file_list: evaluation file list
        :param input_size: dimension of the input to the network
        :param tile_size: dimension of the single evaluation file
        :param batch_size: batch size
        :param img_mean: mean of each channel
        :param model_dir: path to the pretrained model
        :param ds_name: name of the dataset
        :param save_result_parent_dir: parent directory to where the result will be stored
        :param name: name of the process
        :param gpu: which gpu to run the model, default to use all the gpus available
        :param verb: if True, print out message when evaluating
        :param load_epoch_num: which epoch's ckpt to load
        :param best_model: if True, load the model with best performance on the validation set
        :param truth_val: value of H1 pixel in gt
        :param score_results: if False, no gt used to score results
        :param split_char: character used to split file name
        :param kwargs: other parameters
        """
        self.model = model
        self.file_list = file_list
        self.input_size = input_size
        self.tile_size = tile_size
        self.batch_size = batch_size
        self.img_mean = img_mean
        self.model_dir = model_dir
        self.model_name = model_dir.split('/')[-1]
        if save_result_parent_dir is None:
            self.score_save_dir = ersa_utils.get_block_dir(
                'eval', [self.model_name, ds_name])
        else:
            self.score_save_dir = ersa_utils.get_block_dir(
                'eval', [save_result_parent_dir, self.model_name, ds_name])
        self.gpu = gpu
        self.verb = verb
        self.load_epoch_num = load_epoch_num
        self.best_model = best_model
        self.truth_val = truth_val
        self.score_results = score_results
        self.split_char = split_char
        self.kwargs = kwargs
        self.compute_shape_flag = False  # recompute tile shape or not

        super().__init__(name, self.score_save_dir, func=self.process)