def test_it(self): state_size = 10 with ErtTestContext("update", self.config_file) as tc: analysis = self.createAnalysisModule() ert = tc.getErt() obs = ert.getObservations() local_obsdata = obs.getAllActiveLocalObsdata() fs = ert.getEnkfFsManager().getCurrentFileSystem() state = EnkfStateType.FORECAST mask = BoolVector(initial_size=ert.getEnsembleSize(), default_value=True) meas_data = MeasData(mask) obs_data = ObsData() obs.getObservationAndMeasureData(fs, local_obsdata, state, mask.createActiveList(), meas_data, obs_data) update(self.rng, mask, analysis, ert, meas_data, obs_data, state_size) mask[0] = False mask[4] = False meas_data = MeasData(mask) obs_data = ObsData() obs.getObservationAndMeasureData(fs, local_obsdata, state, mask.createActiveList(), meas_data, obs_data) update(self.rng, mask, analysis, ert, meas_data, obs_data, state_size)
def init_matrices(ens, mask, obs, rng): state_size = 2 report_step = 5 meas_data = MeasData(mask) meas_block = meas_data.addBlock("OBS", report_step, len(obs)) A = Matrix(state_size, mask.countEqual(True)) active_iens = 0 for iens, params in enumerate(ens): if mask[iens]: state = forward_model(params) meas_block[0, iens] = measure(state) A[0, active_iens] = params[0] A[1, active_iens] = params[1] active_iens += 1 S = meas_data.createS() obs_data = ObsData() obs_block = obs_data.addBlock("OBS", 1) for iobs, obs_value in enumerate(obs): obs_block[iobs] = obs_value R = obs_data.createR() dObs = obs_data.createDObs() E = obs_data.createE(rng, meas_data.getActiveEnsSize()) D = obs_data.createD(E, S) obs_data.scale(S, E=E, D=D, R=R, D_obs=dObs) return (A, S, E, D, R, dObs)
def init_matrices(ens , mask , obs , rng): state_size = 2 report_step = 5 meas_data = MeasData( mask ) meas_block = meas_data.addBlock("OBS" , report_step , len(obs) ) A = Matrix( state_size , mask.countEqual( True )) active_iens = 0 for iens,params in enumerate( ens ): if mask[iens]: state = forward_model( params ) meas_block[0,iens] = measure( state ) A[0 , active_iens] = params[0] A[1 , active_iens] = params[1] active_iens += 1 S = meas_data.createS() obs_data = ObsData() obs_block = obs_data.addBlock("OBS" , 1) for iobs,obs_value in enumerate(obs): obs_block[iobs] = obs_value R = obs_data.createR() dObs = obs_data.createDObs() E = obs_data.createE( rng , meas_data.getActiveEnsSize() ) D = obs_data.createD(E , S) obs_data.scale(S , E = E , D = D , R = R , D_obs = dObs) return (A , S , E , D , R , dObs)
def calculatePrincipalComponent(self, fs, local_obsdata, truncation_or_ncomp=3): pc = Matrix(1, 1) pc_obs = Matrix(1, 1) singular_values = DoubleVector() state_map = fs.getStateMap() ens_mask = BoolVector(False, self.ert().getEnsembleSize()) state_map.selectMatching(ens_mask, RealizationStateEnum.STATE_HAS_DATA) active_list = ens_mask.createActiveList() if len(ens_mask) > 0: meas_data = MeasData(ens_mask) obs_data = ObsData() self.ert().getObservations().getObservationAndMeasureData( fs, local_obsdata, active_list, meas_data, obs_data) meas_data.deactivateZeroStdSamples(obs_data) active_size = len(obs_data) if active_size > 0: S = meas_data.createS() D_obs = obs_data.createDObs() truncation, ncomp = self.truncationOrNumberOfComponents( truncation_or_ncomp) obs_data.scale(S, D_obs=D_obs) EnkfLinalg.calculatePrincipalComponents( S, D_obs, truncation, ncomp, pc, pc_obs, singular_values) if self.__prior_singular_values is None: self.__prior_singular_values = singular_values else: for row in range(pc.rows()): factor = singular_values[ row] / self.__prior_singular_values[row] pc.scaleRow(row, factor) pc_obs.scaleRow(row, factor) return PcaPlotData(local_obsdata.getName(), pc, pc_obs, singular_values) return None
def test_create(self): obs_data = ObsData() obs_size = 10 block = obs_data.addBlock("OBS", obs_size) self.assertTrue(isinstance(block, ObsBlock)) block[0] = (10, 10) block[1] = (12, 12) D = obs_data.createDObs() self.assertTrue(isinstance(D, Matrix)) self.assertEqual(D.dims(), (2, 1)) self.assertEqual(D[0, 0], 10) self.assertEqual(D[1, 0], 12) obs_data.scaleMatrix(D) self.assertEqual(D[0, 0], 1) self.assertEqual(D[1, 0], 1) R = obs_data.createR() self.assertEqual((2, 2), R.dims()) with self.assertRaises(IndexError): obs_data[10] v, s = obs_data[0] self.assertEqual(v, 10) self.assertEqual(s, 10) v, s = obs_data[1] self.assertEqual(v, 12) self.assertEqual(s, 12)
def calculatePrincipalComponent(self, fs, local_obsdata, truncation_or_ncomp=3): pc = Matrix(1, 1) pc_obs = Matrix(1, 1) singular_values = DoubleVector() state_map = fs.getStateMap() ens_mask = BoolVector(False, self.ert().getEnsembleSize()) state_map.selectMatching(ens_mask, RealizationStateEnum.STATE_HAS_DATA) active_list = BoolVector.createActiveList(ens_mask) if len(active_list) > 0: state = EnkfStateType.FORECAST meas_data = MeasData(active_list) obs_data = ObsData() self.ert().getObservations().getObservationAndMeasureData(fs, local_obsdata, state, active_list, meas_data, obs_data) meas_data.deactivateZeroStdSamples(obs_data) active_size = len(obs_data) if active_size > 0: S = meas_data.createS(active_size) D_obs = obs_data.createDobs(active_size) truncation, ncomp = self.truncationOrNumberOfComponents(truncation_or_ncomp) obs_data.scale(S, D_obs=D_obs) EnkfLinalg.calculatePrincipalComponents(S, D_obs, truncation, ncomp, pc, pc_obs, singular_values) if self.__prior_singular_values is None: self.__prior_singular_values = singular_values else: for row in range(pc.rows()): factor = singular_values[row]/self.__prior_singular_values[row] pc.scaleRow( row , factor ) pc_obs.scaleRow( row , factor ) return PcaPlotData(local_obsdata.getName(), pc , pc_obs , singular_values) return None
def test_create(self): obs_data = ObsData() obs_size = 10 block = obs_data.addBlock("OBS" , obs_size) self.assertTrue( isinstance( block , ObsBlock )) block[0] = (10,10) block[1] = (12,12) D = obs_data.createDObs() self.assertTrue( isinstance(D , Matrix )) self.assertEqual( D.dims() , (2,1)) self.assertEqual( D[0,0] , 10 ) self.assertEqual( D[1,0] , 12 ) obs_data.scaleMatrix( D ) self.assertEqual( D[0,0] , 1 ) self.assertEqual( D[1,0] , 1 ) R = obs_data.createR() self.assertEqual( (2,2) , R.dims() ) with self.assertRaises(IndexError): obs_data[10] v,s = obs_data[0] self.assertEqual( v , 10 ) self.assertEqual( s , 10 ) v,s = obs_data[1] self.assertEqual( v , 12 ) self.assertEqual( s , 12 )
def test_scale_obs(self): with ErtTestContext("obs_test", self.config_file) as test_context: ert = test_context.getErt() obs = ert.getObservations() obs1 = obs["WWCT:OP_1"].getNode(50) obs2 = obs["WWCT:OP_1_50"].getNode(50) self.assertEqual(obs1.getStandardDeviation(), obs2.getStandardDeviation()) std0 = obs1.getStandardDeviation() local_obsdata = LocalObsdata("obs", obs) node1 = local_obsdata.addNode("WWCT:OP_1") node2 = local_obsdata.addNode("WWCT:OP_1_50") node1.addTimeStep(50) node2.addTimeStep(50) mask = BoolVector(default_value=True) mask[2] = True meas_data = MeasData(mask) obs_data = ObsData() fs = ert.getEnkfFsManager().getCurrentFileSystem() active_list = IntVector() active_list.initRange(0, 2, 1) obs.getObservationAndMeasureData(fs, local_obsdata, EnkfStateType.FORECAST, active_list, meas_data, obs_data) self.assertEqual(2, len(obs_data)) v1 = obs_data[0] v2 = obs_data[1] self.assertEqual(v1[1], std0) self.assertEqual(v2[1], std0) meas_data = MeasData(mask) obs_data = ObsData(10) obs.getObservationAndMeasureData(fs, local_obsdata, EnkfStateType.FORECAST, active_list, meas_data, obs_data) self.assertEqual(2, len(obs_data)) v1 = obs_data[0] v2 = obs_data[1] self.assertEqual(v1[1], std0 * 10) self.assertEqual(v2[1], std0 * 10) actl = ActiveList() obs1.updateStdScaling(10, actl) obs2.updateStdScaling(20, actl) meas_data = MeasData(mask) obs_data = ObsData() obs.getObservationAndMeasureData(fs, local_obsdata, EnkfStateType.FORECAST, active_list, meas_data, obs_data) self.assertEqual(2, len(obs_data)) v1 = obs_data[0] v2 = obs_data[1] self.assertEqual(v1[1], std0 * 10) self.assertEqual(v2[1], std0 * 20)