def start_pso():
    logger.info("*" * 80)
    logger.info("*" * 80)
    logger.info("Particle Swarm Optimization")
    logger.info("*" * 80)
    logger.info("Number of Generations: %s", NUMBER_OF_GENERATIONS)
    logger.info("Population Size: %s", POPULATION_SIZE)
    logger.info("Function: %s", SELECTED_FUNCTION)
    logger.info("Epsilon: %s", EPSILON)
    logger.info("*" * 80)
    logger.info("*" * 80)
    # Generate population[] of Particle()
    population = generate_population()
    # Get the best position in population
    best_of_all = get_best_of_all(population, population[0].best)
    logger.info("Best: %s Fitness: %s", best_of_all, evaluate(best_of_all))

    for y in range(NUMBER_OF_GENERATIONS):
        if abs(evaluate(best_of_all)) < EPSILON:  # Stop condition
            logger.info("*" * 80)
            logger.info("Best solution found at %s generation.", y)
            logger.info("Best  of all: %s Fitness: %s", str(best_of_all), str(evaluate(best_of_all)))
            logger.info("*" * 80)
            break

        for particle in population:
            # Move each particle using its velocity
            particle.move_position(best_of_all)
        # Update best position ever in population's history
        best_of_all = get_best_of_all(population, best_of_all)
        # logger,info("%s", particle)
        if y % PRINTING_INTERVAL == 0:
            logger.debug("-" * 80)
            logger.debug("Generation: %s", y)
            logger.debug("Best  of all: %s Fitness: %s", str(best_of_all), str(evaluate(best_of_all)))
            logger.debug("-" * 80)

    logger.info("*" * 80)
    logger.info("No better solution found. ")
    logger.info("Best solution at %s generation", NUMBER_OF_GENERATIONS)
    logger.info("Best  of all: %s Fitness: %s", str(best_of_all), str(evaluate(best_of_all)))
    logger.info("*" * 80)

    return population
def start_pso():
    logger.info("*" * 80)
    logger.info("*" * 80)
    logger.info("Particle Swarm Optimization")
    logger.info("*" * 80)
    logger.info("Number of Generations: %s", NUMBER_OF_GENERATIONS)
    logger.info("Population Size: %s", POPULATION_SIZE)
    logger.info("Function: %s", SELECTED_FUNCTION)
    logger.info("Epsilon: %s", EPSILON)
    logger.info("*" * 80)
    logger.info("*" * 80)
    # Generate population[] of Particle()
    population = generate_population()
    # Get the best position in population
    best_of_all = get_best_of_all(population, population[0].best)
    logger.info("Best: %s Fitness: %s", best_of_all, evaluate(best_of_all))

    for y in range(NUMBER_OF_GENERATIONS):
        if abs(evaluate(best_of_all)) < EPSILON:  # Stop condition
            logger.info("*" * 80)
            logger.info("Best solution found at %s generation.", y)
            logger.info("Best  of all: %s Fitness: %s", str(best_of_all),
                        str(evaluate(best_of_all)))
            logger.info("*" * 80)
            break

        for particle in population:
            # Move each particle using its velocity
            particle.move_position(best_of_all)
        # Update best position ever in population's history
        best_of_all = get_best_of_all(population, best_of_all)
        # logger,info("%s", particle)
        if y % PRINTING_INTERVAL == 0:
            logger.debug("-" * 80)
            logger.debug("Generation: %s", y)
            logger.debug("Best  of all: %s Fitness: %s", str(best_of_all),
                         str(evaluate(best_of_all)))
            logger.debug("-" * 80)

    logger.info("*" * 80)
    logger.info("No better solution found. ")
    logger.info("Best solution at %s generation", NUMBER_OF_GENERATIONS)
    logger.info("Best  of all: %s Fitness: %s", str(best_of_all),
                str(evaluate(best_of_all)))
    logger.info("*" * 80)

    return population
Exemplo n.º 3
0
def show_population(population, fitness):
    logger.info("Population ")
    for index in range(0, POPULATION_SIZE):
        logger.info("%f => %f", (population[index], fitness[index]))
def start_evaluation():
    logger.info("*" * 80)
    logger.info("*" * 80)
    logger.info("Starting Strassen Finder")
    logger.info("*" * 80)
    logger.info("Number of Generations: %s", NUMBER_OF_GENERATIONS)
    logger.info("Chromosome Length: %s", CHROMOSOME_LENGTH)
    logger.info("Population Size: %s", POPULATION_SIZE)
    logger.info("*" * 80)
    logger.info("*" * 80)
    # generating population
    population = generate_population(-1, 1)
    fitness = strassen_fitness(population)
    #
    ancestor = fitness[0]
    for i in range(0, NUMBER_OF_GENERATIONS):
        if fitness[0] < EPSILON:
            logger.info("*" * 80)
            logger.info("Best solution found at %s generation.", i)
            logger.info(population[0])
            logger.info(fitness[0])
            logger.info("*" * 80)
            break

        # There's no change, let's create an unfortunate event!
        if (ancestor == fitness[0]) and (i % (PRINTING_INTERVAL / 2) == 0):
            logger.debug("Wake Up!!!!")
            new_sons = one_point_crosses(population[0], population[1])
            population[2] = new_sons[0]
            population[-1] = random_mutation(population[-1], -1, 1)
        else:
            ancestor = fitness[0]

        new_population = generate_new_population(population,
                                                 fitness,
                                                 mutator=strassen_mutation)
        population = sorted(new_population,
                            key=evaluate_product,
                            reverse=False)[0:POPULATION_SIZE]
        fitness = strassen_fitness(population)

        if i % PRINTING_INTERVAL == 0:
            #
            logger.debug("-" * 80)
            logger.debug("Generation %s ", i)
            logger.debug("BEST :")
            logger.debug("Single %s ", population[0])
            logger.debug("Fitness %s ", fitness[0])
            logger.debug("." * 80)
            logger.debug("WORST :")
            logger.debug("Single %s ", population[-1])
            logger.debug("Fitness %s ", fitness[-1])
            logger.debug("-" * 80)

    logger.info("*" * 80)
    logger.info("No better solution found. ")
    logger.info("Best solution at %s generation", NUMBER_OF_GENERATIONS)
    logger.info(population[0])
    logger.info(fitness[0])
    logger.info("*" * 80)

    return population
def show_population(population, fitness):
    logger.info("Population ")
    for index in range(0, POPULATION_SIZE):
        logger.info("%f => %f", (population[index], fitness[index]))