Exemplo n.º 1
0
def test():
    ft = opts.FFTnd()
    # simulated image
    mat_contents = sio.loadmat(
        '/working/larson/UTE_GRE_shuffling_recon/brain_mt_recon_20160919/brain_3dMRI_32ch.mat'
    )
    x = mat_contents["DATA"]
    #ut.plotim3(np.absolute(x[:,:,:,0]))
    im = ft.backward(x)
    ut.plotim3(np.absolute(im[:, :, im.shape[2] // 2, :]))
    #crop k-space
    xcrop = ut.crop3d(x, 12)
    #do espirit2d
    Vim, sim = espirit_3d(xcrop, x.shape, 150, hkwin_shape = (12,12,12),\
     pad_before_espirit = 0, pad_fact = 2)
    esp = opts.espirit(Vim)
    esp_im = esp.backward(im)
    ut.plotim3(np.absolute(esp_im[:, :, :]))
    im_recon = esp.forward(esp_im)
    ut.plotim3(np.absolute(im_recon[:, :, im.shape[2] // 2, :]))
Exemplo n.º 2
0
def test():
    #path = '/home/pcao/3d_recon/'
    #matfile = 'Phantom_res256_256_20.mat'
    #phantom data
    #path = '/working/larson/UTE_GRE_shuffling_recon/UTEcones_recon/20170301/scan_1_phantom/'
    #matfile = 'Phantom_utecone.mat'
    #lung data
    path = '/working/larson/UTE_GRE_shuffling_recon/UTEcones_recon/20170301/lung_exp4_no_prep/'
    matfile = 'lung_utecone.mat'

    mat_contents = sio.loadmat(path + matfile)

    ktraj = mat_contents["ktraj"]
    dcf = mat_contents["dcf"]
    kdata = mat_contents["kdata"].astype(np.complex64)
    ncoils = kdata.shape[3]

    #bart nufft assumes the im_shape is weighted on ktraj, so I can extract this info here
    im_shape = [
        2 * int(np.max(ktraj[0])), 2 * int(np.max(ktraj[1])),
        2 * int(np.max(ktraj[2]))
    ]
    # remove the weighting of im_shape from ktraj
    ktraj[0, :] = ktraj[0, :] * (1.0 / im_shape[0])
    ktraj[1, :] = ktraj[1, :] * (1.0 / im_shape[1])
    ktraj[2, :] = ktraj[2, :] * (1.0 / im_shape[2])
    #reshape the kdata, flatten the xyz dims
    kdata = kdata.reshape((np.prod(kdata.shape[0:3]), ncoils)).squeeze()
    #call nufft3d here
    nft = cuoptc.NUFFT3d_cuda(im_shape, dcf)
    #nft = optc.NUFFT3d(im_shape, dcf)
    nft.normalize_set_ktraj(ktraj)
    ft = opts.FFTnd()

    im = nft.backward(kdata)

    x = ft.forward(im)
    ut.plotim3(np.absolute(im[:, :, :, 1]), pause_close=5)
    #get shape
    #nx,ny,nz,nc  = x.shape
    #crop k-space
    xcrop = ut.crop3d(x, 12)
    if 0:  #do espirit
        Vim, sim = espirit_3d(xcrop, x.shape, 500, hkwin_shape = (12,12,12),\
         pad_before_espirit = 0, pad_fact = 2, sigv_th = 0.001, nsigv_th = 0.2 )
        #coil map
        #ut.plotim3(np.absolute(Vim[:,:,im.shape[2]//2,:]),bar = 1)
        #ut.plotim3(np.absolute(sim),bar = 1)
        #create espirit operator
        esp = opts.espirit(Vim)
        #esp.save('../save_data/espirit_data_3d.mat')
        esp.save(path + 'espirit_data_3d.mat')
    else:
        esp = opts.espirit()
        #esp.restore('../save_data/espirit_data_3d.mat')
        esp.restore(path + 'espirit_data_3d.mat')

    #ut.plotim1(np.absolute(mask))#plot the mask
    Aopt = opts.joint2operators(esp, nft)

    #wavelet operator
    dwt = opts.DWTnd(wavelet='haar', level=4)
    #

    scaling = ut.optscaling(Aopt, kdata)
    kdata = kdata / scaling

    #do tv cs mri recon
    #Nite = 20 #number of iterations
    #step = 0.5 #step size
    #tv_r = 0.002 # regularization term for tv term
    #rho  = 1.0
    #xopt = solvers.ADMM_l2Afxnb_tvx( Aopt.forward, Aopt.backward, kdata, Nite, step, tv_r, rho )

    #do wavelet l1 soft thresholding
    Nite = 40  #number of iterations
    step = 0.1  #step size
    th = 0.06  # theshold level
    #xopt = solvers.IST_2( Aopt.forward, Aopt.backward, kdata, Nite, step, th )
    #xopt = solvers.IST_22( Aopt.forward_backward, Aopt.backward, kdata, Nite, step, th )
    #xopt = solvers.FIST_3( Aopt.forward, Aopt.backward, dwt.backward, dwt.forward, kdata, Nite, step, th )
    #xopt = solvers.FIST_32( Aopt.forward_backward, Aopt.backward, dwt.backward, dwt.forward, kdata, Nite, step, th )
    xopt = solvers.FIST_wrap(Aopt, dwt, kdata, Nite, step, th)
    #xopt = solvers.IST_wrap( Aopt, dwt, kdata, Nite, step, th )
    ut.plotim3(np.absolute(xopt[:, :, :]), pause_close=5)
    sio.savemat(path + 'test_im_th0p06.mat', {'xopt': xopt})
Exemplo n.º 3
0
def test():
    ft = opts.FFTnd()
    mat_contents = sio.loadmat(
        '/working/larson/UTE_GRE_shuffling_recon/brain_mt_recon_20160919/brain_3dMRI_32ch.mat'
    )
    x = mat_contents["DATA"]
    #ut.plotim3(np.absolute(x[:,:,:,0]))
    im = ft.backward(x)
    #ut.plotim3(np.absolute(im[:,:,im.shape[2]//2,:]))
    #get shape
    nx, ny, nz, nc = x.shape
    #crop k-space
    xcrop = ut.crop3d(x, 12)
    if 1:  #do espirit
        Vim, sim = espirit_3d(xcrop, x.shape, 150, hkwin_shape = (12,12,12),\
         pad_before_espirit = 0, pad_fact = 2)
        #coil map
        #ut.plotim3(np.absolute(Vim[:,:,im.shape[2]//2,:]),bar = 1)
        #ut.plotim3(np.absolute(sim),bar = 1)
        #create espirit operator
        esp = opts.espirit(Vim)
        #esp.save('../save_data/espirit_data_3d.mat')
        esp.save(
            '/working/larson/UTE_GRE_shuffling_recon/python_test/save_data/espirit_data_3d.mat'
        )
    else:
        esp = opts.espirit()
        #esp.restore('../save_data/espirit_data_3d.mat')
        esp.restore(
            '/working/larson/UTE_GRE_shuffling_recon/python_test/save_data/espirit_data_3d.mat'
        )
    #create mask
    mask = ut.mask3d(nx, ny, nz, [15, 15, 0])
    #FTm  = opts.FFTnd_kmask(mask)
    FTm = opts.FFTWnd_kmask(mask, threads=5)
    #ut.plotim1(np.absolute(mask))#plot the mask
    Aopt = opts.joint2operators(esp, FTm)
    #create image
    im = FTm.backward(x)
    #ut.plotim3(np.absolute(im[:,:,:]))
    #wavelet operator
    dwt = opts.DWTnd(wavelet='haar', level=4)
    # undersampling in k-space
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm, b)
    b = b / scaling
    #ut.plotim3(np.absolute(Aopt.backward(b))) #undersampled imag

    #do tv cs mri recon
    Nite = 20  #number of iterations
    step = 0.5  #step size
    tv_r = 0.002  # regularization term for tv term
    rho = 1.0
    #xopt = solvers.ADMM_l2Afxnb_tvx( Aopt.forward, Aopt.backward, b, Nite, step, tv_r, rho )
    xopt = solvers.ADMM_l2Afxnb_l1Tfx(Aopt.forward, Aopt.backward,
                                      dwt.backward, dwt.forward, b, Nite, step,
                                      tv_r, rho)

    #do wavelet l1 soft thresholding
    #Nite = 50 #number of iterations
    #step = 1 #step size
    #th = 0.4 # theshold level
    #xopt = solvers.FIST_3( Aopt.forward, Aopt.backward, dwt.backward, dwt.forward, b, Nite, step, th )

    ut.plotim3(np.absolute(xopt[:, :, :]))