Exemplo n.º 1
0
def test_recognition_results_with_lm(etype, m_str, text_idx1):
    const = 1e-4
    numpy.random.seed(1)
    seq_true_texts = [["o", "iuiuiuiuiuiuiuiuo", "aiaiaiaiaiaiaiaio"],
                      ["o", "uiuiuiuiuiuiuiuio", "aiaiaiaiaiaiaiaio"],
                      ["o", "iuiuiuiuiuiuiuiuo", "aiaiaiaiaiaiaiaio"],
                      ["o", "uiuiuiuiuiuiuiuio", "aiaiaiaiaiaiaiaio"]]

    # ctc_weight: 0.0 (attention), 0.5 (hybrid CTC/attention), 1.0 (CTC)
    for text_idx2, ctc_weight in enumerate([0.0, 0.5, 1.0]):
        seq_true_text = seq_true_texts[text_idx1][text_idx2]

        args = make_arg(etype=etype,
                        rnnlm="dummy",
                        ctc_weight=ctc_weight,
                        lm_weight=0.3)
        m = importlib.import_module(m_str)
        model = m.Loss(m.E2E(40, 5, args), 0.5)

        if "_th" in m_str:
            rnnlm = lm_pytorch.ClassifierWithState(
                lm_pytorch.RNNLM(len(args.char_list), 2, 10))
            init_torch_weight_const(model, const)
            init_torch_weight_const(rnnlm, const)
        else:
            rnnlm = lm_chainer.ClassifierWithState(
                lm_chainer.RNNLM(len(args.char_list), 2, 10))
            init_chainer_weight_const(model, const)
            init_chainer_weight_const(rnnlm, const)

        data = [("aaa",
                 dict(feat=numpy.random.randn(100, 40).astype(numpy.float32),
                      token=seq_true_text))]

        in_data = data[0][1]["feat"]
        nbest_hyps = model.predictor.recognize(in_data, args, args.char_list,
                                               rnnlm)
        y_hat = nbest_hyps[0]['yseq'][1:]
        seq_hat = [args.char_list[int(idx)] for idx in y_hat]
        seq_hat_text = "".join(seq_hat).replace('<space>', ' ')
        seq_true_text = data[0][1]["token"]

        assert seq_hat_text == seq_true_text
Exemplo n.º 2
0
def test_lm():
    n_vocab = 3
    n_layers = 2
    n_units = 2
    batchsize = 5
    rnnlm_ch = lm_chainer.ClassifierWithState(
        lm_chainer.RNNLM(n_vocab, n_layers, n_units))
    rnnlm_th = lm_pytorch.ClassifierWithState(
        lm_pytorch.RNNLM(n_vocab, n_layers, n_units))
    transfer_lm(rnnlm_ch.predictor, rnnlm_th.predictor)
    import numpy
    # TODO(karita) implement weight transfer
    # numpy.testing.assert_equal(rnnlm_ch.predictor.embed.W.data, rnnlm_th.predictor.embed.weight.data.numpy())
    # numpy.testing.assert_equal(rnnlm_ch.predictor.l1.upward.b.data, rnnlm_th.predictor.l1.bias_ih.data.numpy())
    # numpy.testing.assert_equal(rnnlm_ch.predictor.l1.upward.W.data, rnnlm_th.predictor.l1.weight_ih.data.numpy())
    # numpy.testing.assert_equal(rnnlm_ch.predictor.l1.lateral.W.data, rnnlm_th.predictor.l1.weight_hh.data.numpy())
    # numpy.testing.assert_equal(rnnlm_ch.predictor.l2.upward.b.data, rnnlm_th.predictor.l2.bias_ih.data.numpy())
    # numpy.testing.assert_equal(rnnlm_ch.predictor.l2.upward.W.data, rnnlm_th.predictor.l2.weight_ih.data.numpy())
    # numpy.testing.assert_equal(rnnlm_ch.predictor.l2.lateral.W.data, rnnlm_th.predictor.l2.weight_hh.data.numpy())
    # numpy.testing.assert_equal(rnnlm_ch.predictor.lo.b.data, rnnlm_th.predictor.lo.bias.data.numpy())
    # numpy.testing.assert_equal(rnnlm_ch.predictor.lo.W.data, rnnlm_th.predictor.lo.weight.data.numpy())

    # test prediction equality
    x = torch.from_numpy(numpy.random.randint(n_vocab,
                                              size=(batchsize))).long()
    with torch.no_grad(), chainer.no_backprop_mode(), chainer.using_config(
            'train', False):
        rnnlm_th.predictor.eval()
        state_th, y_th = rnnlm_th.predictor(None, x.long())
        state_ch, y_ch = rnnlm_ch.predictor(None, x.data.numpy())
        for k in state_ch.keys():
            for n in range(len(state_th[k])):
                print(k, n)
                print(state_th[k][n].data.numpy())
                print(state_ch[k][n].data)
                numpy.testing.assert_allclose(state_th[k][n].data.numpy(),
                                              state_ch[k][n].data, 1e-5)
        print("y")
        print(y_th.data.numpy())
        print(y_ch.data)
        numpy.testing.assert_allclose(y_th.data.numpy(), y_ch.data, 1e-5)
Exemplo n.º 3
0
def test_batch_beam_search(etype, m_str):
    const = 1e-4
    numpy.random.seed(1)

    # ctc_weight: 0.0 (attention), 0.5 (hybrid CTC/attention), 1.0 (CTC)
    for ctc_weight in [0.0]:
        args = make_arg(etype=etype,
                        rnnlm="dummy",
                        ctc_weight=ctc_weight,
                        lm_weight=0.3)
        m = importlib.import_module(m_str)
        model = m.Loss(m.E2E(40, 5, args), 0.5)

        if "_th" in m_str:
            rnnlm = lm_pytorch.ClassifierWithState(
                lm_pytorch.RNNLM(len(args.char_list), 2, 10))
            init_torch_weight_const(model, const)
            init_torch_weight_const(rnnlm, const)
        else:
            # chainer module
            continue

        data = [("aaa",
                 dict(feat=numpy.random.randn(100, 40).astype(numpy.float32)))]
        in_data = data[0][1]["feat"]

        for lm_weight in [0.0, 0.3]:
            if lm_weight == 0.0:
                s_nbest_hyps = model.predictor.recognize(
                    in_data, args, args.char_list)
                b_nbest_hyps = model.predictor.recognize_batch([in_data], args,
                                                               args.char_list)
            else:
                s_nbest_hyps = model.predictor.recognize(
                    in_data, args, args.char_list, rnnlm)
                b_nbest_hyps = model.predictor.recognize_batch([in_data], args,
                                                               args.char_list,
                                                               rnnlm)

            assert s_nbest_hyps[0]['yseq'] == b_nbest_hyps[0][0]['yseq']
Exemplo n.º 4
0
def recog(args):
    '''Run recognition'''
    # seed setting
    torch.manual_seed(args.seed)

    # read training config
    idim, odim, train_args = get_model_conf(args.model, args.model_conf)

    # load trained model parameters
    logging.info('reading model parameters from ' + args.model)
    e2e = E2E(idim, odim, train_args)
    model = Loss(e2e, train_args.mtlalpha)
    torch_load(args.model, model)
    e2e.recog_args = args

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(train_args.char_list), rnnlm_args.layer,
                             rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    if args.word_rnnlm:
        rnnlm_args = get_model_conf(args.word_rnnlm, args.word_rnnlm_conf)
        word_dict = rnnlm_args.char_list_dict
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(word_dict), rnnlm_args.layer,
                             rnnlm_args.unit))
        torch_load(args.word_rnnlm, word_rnnlm)
        word_rnnlm.eval()

        if rnnlm is not None:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.MultiLevelLM(word_rnnlm.predictor,
                                           rnnlm.predictor, word_dict,
                                           char_dict))
        else:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.LookAheadWordLM(word_rnnlm.predictor, word_dict,
                                              char_dict))

    # gpu
    if args.ngpu == 1:
        gpu_id = range(args.ngpu)
        logging.info('gpu id: ' + str(gpu_id))
        model.cuda()
        if rnnlm:
            rnnlm.cuda()

    # read json data
    with open(args.recog_json, 'rb') as f:
        js = json.load(f)['utts']
    new_js = {}

    if args.batchsize == 0:
        with torch.no_grad():
            for idx, name in enumerate(js.keys(), 1):
                logging.info('(%d/%d) decoding ' + name, idx, len(js.keys()))
                feat = kaldi_io_py.read_mat(js[name]['input'][0]['feat'])
                nbest_hyps = e2e.recognize(feat, args, train_args.char_list,
                                           rnnlm)
                new_js[name] = add_results_to_json(js[name], nbest_hyps,
                                                   train_args.char_list)
    else:
        try:
            from itertools import zip_longest as zip_longest
        except Exception:
            from itertools import izip_longest as zip_longest

        def grouper(n, iterable, fillvalue=None):
            kargs = [iter(iterable)] * n
            return zip_longest(*kargs, fillvalue=fillvalue)

        # sort data
        keys = list(js.keys())
        feat_lens = [js[key]['input'][0]['shape'][0] for key in keys]
        sorted_index = sorted(range(len(feat_lens)),
                              key=lambda i: -feat_lens[i])
        keys = [keys[i] for i in sorted_index]

        with torch.no_grad():
            for names in grouper(args.batchsize, keys, None):
                names = [name for name in names if name]
                feats = [
                    kaldi_io_py.read_mat(js[name]['input'][0]['feat'])
                    for name in names
                ]
                nbest_hyps = e2e.recognize_batch(feats,
                                                 args,
                                                 train_args.char_list,
                                                 rnnlm=rnnlm)
                for i, nbest_hyp in enumerate(nbest_hyps):
                    name = names[i]
                    new_js[name] = add_results_to_json(js[name], nbest_hyp,
                                                       train_args.char_list)

    # TODO(watanabe) fix character coding problems when saving it
    with open(args.result_label, 'wb') as f:
        f.write(
            json.dumps({
                'utts': new_js
            }, indent=4, sort_keys=True).encode('utf_8'))
Exemplo n.º 5
0
def train(args):
    '''Run training'''
    # seed setting
    torch.manual_seed(args.seed)

    # debug mode setting
    # 0 would be fastest, but 1 seems to be reasonable
    # by considering reproducability
    # revmoe type check
    if args.debugmode < 2:
        chainer.config.type_check = False
        logging.info('torch type check is disabled')
    # use determinisitic computation or not
    if args.debugmode < 1:
        torch.backends.cudnn.deterministic = False
        logging.info('torch cudnn deterministic is disabled')
    else:
        torch.backends.cudnn.deterministic = True

    # check cuda availability
    if not torch.cuda.is_available():
        logging.warning('cuda is not available')

    # get input and output dimension info
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']
    utts = list(valid_json.keys())
    idim = int(valid_json[utts[0]]['input'][0]['shape'][1])
    odim = int(valid_json[utts[0]]['output'][0]['shape'][1])
    logging.info('#input dims : ' + str(idim))
    logging.info('#output dims: ' + str(odim))

    # specify attention, CTC, hybrid mode
    if args.mtlalpha == 1.0:
        mtl_mode = 'ctc'
        logging.info('Pure CTC mode')
    elif args.mtlalpha == 0.0:
        mtl_mode = 'att'
        logging.info('Pure attention mode')
    else:
        mtl_mode = 'mtl'
        logging.info('Multitask learning mode')

    # specify model architecture
    e2e = E2E(idim, odim, args)
    model = Loss(e2e, args.mtlalpha)

    if args.rnnlm is not None:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(args.char_list), rnnlm_args.layer,
                             rnnlm_args.unit))
        torch.load(args.rnnlm, rnnlm)
        e2e.rnnlm = rnnlm

    # write model config
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)
    model_conf = args.outdir + '/model.json'
    with open(model_conf, 'wb') as f:
        logging.info('writing a model config file to ' + model_conf)
        f.write(
            json.dumps((idim, odim, vars(args)), indent=4,
                       sort_keys=True).encode('utf_8'))
    for key in sorted(vars(args).keys()):
        logging.info('ARGS: ' + key + ': ' + str(vars(args)[key]))

    reporter = model.reporter

    # check the use of multi-gpu
    if args.ngpu > 1:
        model = torch.nn.DataParallel(model, device_ids=list(range(args.ngpu)))
        logging.info('batch size is automatically increased (%d -> %d)' %
                     (args.batch_size, args.batch_size * args.ngpu))
        args.batch_size *= args.ngpu

    # set torch device
    device = torch.device("cuda" if args.ngpu > 0 else "cpu")
    model = model.to(device)

    # Setup an optimizer
    if args.opt == 'adadelta':
        optimizer = torch.optim.Adadelta(model.parameters(),
                                         rho=0.95,
                                         eps=args.eps)
    elif args.opt == 'adam':
        optimizer = torch.optim.Adam(model.parameters())

    # FIXME: TOO DIRTY HACK
    setattr(optimizer, "target", reporter)
    setattr(optimizer, "serialize", lambda s: reporter.serialize(s))

    # Setup a converter
    converter = CustomConverter(e2e.subsample[0])

    # read json data
    with open(args.train_json, 'rb') as f:
        train_json = json.load(f)['utts']
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']

    # make minibatch list (variable length)
    train = make_batchset(train_json,
                          args.batch_size,
                          args.maxlen_in,
                          args.maxlen_out,
                          args.minibatches,
                          min_batch_size=args.ngpu if args.ngpu > 1 else 1)
    valid = make_batchset(valid_json,
                          args.batch_size,
                          args.maxlen_in,
                          args.maxlen_out,
                          args.minibatches,
                          min_batch_size=args.ngpu if args.ngpu > 1 else 1)
    # hack to make batchsze argument as 1
    # actual bathsize is included in a list
    if args.n_iter_processes > 0:
        train_iter = chainer.iterators.MultiprocessIterator(
            TransformDataset(train, converter.transform),
            batch_size=1,
            n_processes=args.n_iter_processes,
            n_prefetch=8,
            maxtasksperchild=20)
        valid_iter = chainer.iterators.MultiprocessIterator(
            TransformDataset(valid, converter.transform),
            batch_size=1,
            repeat=False,
            shuffle=False,
            n_processes=args.n_iter_processes,
            n_prefetch=8,
            maxtasksperchild=20)
    else:
        train_iter = chainer.iterators.SerialIterator(TransformDataset(
            train, converter.transform),
                                                      batch_size=1)
        valid_iter = chainer.iterators.SerialIterator(TransformDataset(
            valid, converter.transform),
                                                      batch_size=1,
                                                      repeat=False,
                                                      shuffle=False)

    # Set up a trainer
    updater = CustomUpdater(model, args.grad_clip, train_iter, optimizer,
                            converter, device, args.ngpu)
    trainer = training.Trainer(updater, (args.epochs, 'epoch'),
                               out=args.outdir)

    # Resume from a snapshot
    if args.resume:
        logging.info('resumed from %s' % args.resume)
        torch_resume(args.resume, trainer)

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(
        CustomEvaluator(model, valid_iter, reporter, converter, device))

    # Save attention weight each epoch
    if args.num_save_attention > 0 and args.mtlalpha != 1.0:
        data = sorted(list(valid_json.items())[:args.num_save_attention],
                      key=lambda x: int(x[1]['input'][0]['shape'][1]),
                      reverse=True)
        if hasattr(model, "module"):
            att_vis_fn = model.module.predictor.calculate_all_attentions
        else:
            att_vis_fn = model.predictor.calculate_all_attentions
        trainer.extend(PlotAttentionReport(att_vis_fn,
                                           data,
                                           args.outdir + "/att_ws",
                                           converter=converter,
                                           device=device),
                       trigger=(1, 'epoch'))

    # Make a plot for training and validation values
    trainer.extend(
        extensions.PlotReport([
            'main/loss', 'validation/main/loss', 'main/loss_ctc',
            'validation/main/loss_ctc', 'main/loss_att',
            'validation/main/loss_att'
        ],
                              'epoch',
                              file_name='loss.png'))
    trainer.extend(
        extensions.PlotReport(['main/acc', 'validation/main/acc'],
                              'epoch',
                              file_name='acc.png'))

    # Save best models
    trainer.extend(
        extensions.snapshot_object(model,
                                   'model.loss.best',
                                   savefun=torch_save),
        trigger=training.triggers.MinValueTrigger('validation/main/loss'))
    if mtl_mode is not 'ctc':
        trainer.extend(
            extensions.snapshot_object(model,
                                       'model.acc.best',
                                       savefun=torch_save),
            trigger=training.triggers.MaxValueTrigger('validation/main/acc'))

    # save snapshot which contains model and optimizer states
    trainer.extend(torch_snapshot(), trigger=(1, 'epoch'))

    # epsilon decay in the optimizer
    if args.opt == 'adadelta':
        if args.criterion == 'acc' and mtl_mode is not 'ctc':
            trainer.extend(restore_snapshot(model,
                                            args.outdir + '/model.acc.best',
                                            load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/acc', lambda best_value,
                               current_value: best_value > current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/acc', lambda best_value,
                               current_value: best_value > current_value))
        elif args.criterion == 'loss':
            trainer.extend(restore_snapshot(model,
                                            args.outdir + '/model.loss.best',
                                            load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/loss', lambda best_value,
                               current_value: best_value < current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/loss', lambda best_value,
                               current_value: best_value < current_value))

    # Write a log of evaluation statistics for each epoch
    trainer.extend(extensions.LogReport(trigger=(REPORT_INTERVAL,
                                                 'iteration')))
    report_keys = [
        'epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att',
        'validation/main/loss', 'validation/main/loss_ctc',
        'validation/main/loss_att', 'main/acc', 'validation/main/acc',
        'elapsed_time'
    ]
    if args.opt == 'adadelta':
        trainer.extend(extensions.observe_value(
            'eps', lambda trainer: trainer.updater.get_optimizer('main').
            param_groups[0]["eps"]),
                       trigger=(REPORT_INTERVAL, 'iteration'))
        report_keys.append('eps')
    if args.report_cer:
        report_keys.append('validation/main/cer')
    if args.report_wer:
        report_keys.append('validation/main/wer')
    trainer.extend(extensions.PrintReport(report_keys),
                   trigger=(REPORT_INTERVAL, 'iteration'))

    trainer.extend(extensions.ProgressBar(update_interval=REPORT_INTERVAL))

    # Run the training
    trainer.run()