Exemplo n.º 1
0
    def __init__(
        self,
        wtype: str = "blstmp",
        widim: int = 257,
        wlayers: int = 3,
        wunits: int = 300,
        wprojs: int = 320,
        dropout_rate: float = 0.0,
        taps: int = 5,
        delay: int = 3,
        use_dnn_mask: bool = True,
        nmask: int = 1,
        nonlinear: str = "sigmoid",
        iterations: int = 1,
        normalization: bool = False,
        eps: float = 1e-6,
        diagonal_loading: bool = True,
        diag_eps: float = 1e-7,
        mask_flooring: bool = False,
        flooring_thres: float = 1e-6,
        use_torch_solver: bool = True,
    ):
        super().__init__()
        self.iterations = iterations
        self.taps = taps
        self.delay = delay
        self.eps = eps

        self.normalization = normalization
        self.use_dnn_mask = use_dnn_mask

        self.inverse_power = True
        self.diagonal_loading = diagonal_loading
        self.diag_eps = diag_eps
        self.mask_flooring = mask_flooring
        self.flooring_thres = flooring_thres
        self.use_torch_solver = use_torch_solver

        if self.use_dnn_mask:
            self.nmask = nmask
            self.mask_est = MaskEstimator(
                wtype,
                widim,
                wlayers,
                wunits,
                wprojs,
                dropout_rate,
                nmask=nmask,
                nonlinear=nonlinear,
            )
        else:
            self.nmask = 1
Exemplo n.º 2
0
    def __init__(
        self,
        wtype: str = "blstmp",
        widim: int = 257,
        wlayers: int = 3,
        wunits: int = 300,
        wprojs: int = 320,
        dropout_rate: float = 0.0,
        taps: int = 5,
        delay: int = 3,
        use_dnn_mask: bool = True,
        nonlinear: str = "sigmoid",
        iterations: int = 1,
        normalization: bool = False,
    ):
        super().__init__()
        self.iterations = iterations
        self.taps = taps
        self.delay = delay

        self.normalization = normalization
        self.use_dnn_mask = use_dnn_mask

        self.inverse_power = True

        if self.use_dnn_mask:
            self.mask_est = MaskEstimator(
                wtype,
                widim,
                wlayers,
                wunits,
                wprojs,
                dropout_rate,
                nmask=1,
                nonlinear=nonlinear,
            )
Exemplo n.º 3
0
    def __init__(
        self,
        bidim,
        btype: str = "blstmp",
        blayers: int = 3,
        bunits: int = 300,
        bprojs: int = 320,
        num_spk: int = 1,
        use_noise_mask: bool = True,
        nonlinear: str = "sigmoid",
        dropout_rate: float = 0.0,
        badim: int = 320,
        ref_channel: int = -1,
        beamformer_type: str = "mvdr_souden",
        rtf_iterations: int = 2,
        mwf_mu: float = 1.0,
        eps: float = 1e-6,
        diagonal_loading: bool = True,
        diag_eps: float = 1e-7,
        mask_flooring: bool = False,
        flooring_thres: float = 1e-6,
        use_torch_solver: bool = True,
        # only for WPD beamformer
        btaps: int = 5,
        bdelay: int = 3,
    ):
        super().__init__()
        bnmask = num_spk + 1 if use_noise_mask else num_spk
        self.mask = MaskEstimator(
            btype,
            bidim,
            blayers,
            bunits,
            bprojs,
            dropout_rate,
            nmask=bnmask,
            nonlinear=nonlinear,
        )
        self.ref = (
            AttentionReference(bidim, badim, eps=eps) if ref_channel < 0 else None
        )
        self.ref_channel = ref_channel

        self.use_noise_mask = use_noise_mask
        assert num_spk >= 1, num_spk
        self.num_spk = num_spk
        self.nmask = bnmask

        if beamformer_type not in BEAMFORMER_TYPES:
            raise ValueError("Not supporting beamformer_type=%s" % beamformer_type)
        if (
            beamformer_type == "mvdr_souden" or not beamformer_type.endswith("_souden")
        ) and not use_noise_mask:
            if num_spk == 1:
                logging.warning(
                    "Initializing %s beamformer without noise mask "
                    "estimator (single-speaker case)" % beamformer_type.upper()
                )
                logging.warning(
                    "(1 - speech_mask) will be used for estimating noise "
                    "PSD in %s beamformer!" % beamformer_type.upper()
                )
            else:
                logging.warning(
                    "Initializing %s beamformer without noise mask "
                    "estimator (multi-speaker case)" % beamformer_type.upper()
                )
                logging.warning(
                    "Interference speech masks will be used for estimating "
                    "noise PSD in %s beamformer!" % beamformer_type.upper()
                )

        self.beamformer_type = beamformer_type
        if not beamformer_type.endswith("_souden"):
            assert rtf_iterations >= 2, rtf_iterations
        # number of iterations in power method for estimating the RTF
        self.rtf_iterations = rtf_iterations
        # noise suppression weight in SDW-MWF
        self.mwf_mu = mwf_mu

        assert btaps >= 0 and bdelay >= 0, (btaps, bdelay)
        self.btaps = btaps
        self.bdelay = bdelay if self.btaps > 0 else 1
        self.eps = eps
        self.diagonal_loading = diagonal_loading
        self.diag_eps = diag_eps
        self.mask_flooring = mask_flooring
        self.flooring_thres = flooring_thres
        self.use_torch_solver = use_torch_solver
Exemplo n.º 4
0
    def __init__(
        self,
        bidim,
        btype: str = "blstmp",
        blayers: int = 3,
        bunits: int = 300,
        bprojs: int = 320,
        num_spk: int = 1,
        use_noise_mask: bool = True,
        nonlinear: str = "sigmoid",
        dropout_rate: float = 0.0,
        badim: int = 320,
        ref_channel: int = -1,
        beamformer_type: str = "mvdr",
        eps: float = 1e-6,
        # only for WPD beamformer
        btaps: int = 5,
        bdelay: int = 3,
    ):
        super().__init__()
        bnmask = num_spk + 1 if use_noise_mask else num_spk
        self.mask = MaskEstimator(
            btype,
            bidim,
            blayers,
            bunits,
            bprojs,
            dropout_rate,
            nmask=bnmask,
            nonlinear=nonlinear,
        )
        self.ref = AttentionReference(bidim,
                                      badim) if ref_channel < 0 else None
        self.ref_channel = ref_channel

        self.use_noise_mask = use_noise_mask
        assert num_spk >= 1, num_spk
        self.num_spk = num_spk
        self.nmask = bnmask

        if beamformer_type not in ("mvdr", "mpdr", "wpd"):
            raise ValueError(
                "Not supporting beamformer_type={}".format(beamformer_type))
        if beamformer_type == "mvdr" and (not use_noise_mask):
            if num_spk == 1:
                logging.warning(
                    "Initializing MVDR beamformer without noise mask "
                    "estimator (single-speaker case)")
                logging.warning(
                    "(1 - speech_mask) will be used for estimating noise "
                    "PSD in MVDR beamformer!")
            else:
                logging.warning(
                    "Initializing MVDR beamformer without noise mask "
                    "estimator (multi-speaker case)")
                logging.warning(
                    "Interference speech masks will be used for estimating "
                    "noise PSD in MVDR beamformer!")

        self.beamformer_type = beamformer_type
        assert btaps >= 0 and bdelay >= 0, (btaps, bdelay)
        self.btaps = btaps
        self.bdelay = bdelay if self.btaps > 0 else 1
        self.eps = eps