Exemplo n.º 1
0
def msm_res(params, moments_cov, func_kwargs):
    res = estimate_msm(
        simulate_moments=simulate_aggregated_moments,
        # only needed for shape since optimization is skipped
        empirical_moments=np.zeros(6),
        params=params,
        optimize_options=False,
        moments_cov=moments_cov,
        simulate_moments_kwargs=func_kwargs,
        weights="optimal",
    )
    return res
Exemplo n.º 2
0
def test_estimate_msm(simulate_moments, moments_cov, optimize_options):
    start_params = np.array([3, 2, 1])

    expected_params = np.zeros(3)

    # abuse simulate_moments to get empirical moments in correct format
    empirical_moments = simulate_moments(expected_params)
    if isinstance(empirical_moments, dict):
        empirical_moments = empirical_moments["simulated_moments"]

    calculated = estimate_msm(
        simulate_moments=simulate_moments,
        empirical_moments=empirical_moments,
        moments_cov=moments_cov,
        params=start_params,
        optimize_options=optimize_options,
    )

    # check that minimization works
    aaae(calculated.params, expected_params)

    # check that cov works
    calculated_cov = calculated.cov()
    if isinstance(calculated_cov, pd.DataFrame):
        calculated_cov = calculated_cov.to_numpy()

    # this works only in the very special case with diagonal moments cov and
    # jac = identity matrix
    expected_cov = np.diag([1, 2, 3])
    aaae(calculated_cov, expected_cov)
    aaae(calculated.se(), np.sqrt([1, 2, 3]))

    # works only because parameter point estimates are exactly zero
    aaae(calculated.p_values(), np.ones(3))

    #
    expected_ci_upper = np.array([1.95996398, 2.77180765, 3.3947572])
    expected_ci_lower = -expected_ci_upper

    lower, upper = calculated.ci()
    aaae(lower, expected_ci_lower)
    aaae(upper, expected_ci_upper)

    aaae(calculated.ci(), calculated._ci)
    aaae(calculated.p_values(), calculated._p_values)
    aaae(calculated.se(), calculated._se)
    aaae(calculated.cov(), calculated._cov)

    summary = calculated.summary()
    aaae(summary["value"], np.zeros(3))
    aaae(summary["p_value"], np.ones(3))
    assert summary["stars"].tolist() == [""] * 3
Exemplo n.º 3
0
def test_to_pickle(tmp_path):
    start_params = np.array([3, 2, 1])

    # abuse simulate_moments to get empirical moments in correct format
    empirical_moments = _sim_np(np.zeros(3))
    if isinstance(empirical_moments, dict):
        empirical_moments = empirical_moments["simulated_moments"]

    calculated = estimate_msm(
        simulate_moments=_sim_np,
        empirical_moments=empirical_moments,
        moments_cov=cov_np,
        params=start_params,
        optimize_options="scipy_lbfgsb",
    )

    calculated.to_pickle(tmp_path / "bla.pkl")
Exemplo n.º 4
0
def test_estimate_msm(simulate_moments, moments_cov):
    start_params = pd.DataFrame()
    start_params["value"] = [3, 2, 1]

    expected_params = pd.DataFrame()
    expected_params["value"] = np.zeros(3)

    # abuse simulate_moments to get empirical moments in correct format
    empirical_moments = simulate_moments(expected_params)
    if isinstance(empirical_moments, dict):
        empirical_moments = empirical_moments["simulated_moments"]

    optimize_options = {"algorithm": "scipy_lbfgsb"}

    # catching warnings is necessary because the very special case with diagonal
    # weighting and diagonal jacobian leads to singular matrices while calculating
    # sensitivity to removal of moments.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message="Standard matrix inversion failed")
        calculated = estimate_msm(
            simulate_moments=simulate_moments,
            empirical_moments=empirical_moments,
            moments_cov=moments_cov,
            params=start_params,
            optimize_options=optimize_options,
        )

    calculated_params = calculated["optimize_res"]["solution_params"][[
        "value"
    ]]
    # check that minimization works
    aaae(calculated_params["value"].to_numpy(),
         expected_params["value"].to_numpy())

    # check that cov works
    calculated_cov = calculated["cov"]
    if isinstance(calculated_cov, pd.DataFrame):
        calculated_cov = calculated_cov.to_numpy()

    # this works only in the very special case with diagonal moments cov and
    # jac = identity matrix
    expected_cov = np.diag([1, 2, 3])
    aaae(calculated_cov, expected_cov)
Exemplo n.º 5
0
def test_estimate_msm_ls(simulate_moments, moments_cov, optimize_options):
    start_params = np.array([3, 2, 1])

    expected_params = np.zeros(3)

    # abuse simulate_moments to get empirical moments in correct format
    empirical_moments = simulate_moments(expected_params)
    if isinstance(empirical_moments, dict):
        empirical_moments = empirical_moments["simulated_moments"]

    calculated = estimate_msm(
        simulate_moments=simulate_moments,
        empirical_moments=empirical_moments,
        moments_cov=moments_cov,
        params=start_params,
        optimize_options=optimize_options,
    )

    aaae(calculated.params, expected_params)
Exemplo n.º 6
0
def test_caching():
    start_params = np.array([3, 2, 1])

    # abuse simulate_moments to get empirical moments in correct format
    empirical_moments = _sim_np(np.zeros(3))
    if isinstance(empirical_moments, dict):
        empirical_moments = empirical_moments["simulated_moments"]

    got = estimate_msm(
        simulate_moments=_sim_np,
        empirical_moments=empirical_moments,
        moments_cov=cov_np,
        params=start_params,
        optimize_options="scipy_lbfgsb",
    )

    assert got._cache == {}
    cov = got.cov(method="robust", return_type="array")
    assert got._cache == {}
    cov = got.cov(method="robust", return_type="array", seed=0)
    assert_array_equal(list(got._cache.values())[0], cov)
Exemplo n.º 7
0
def test_estimate_msm_with_jacobian():
    start_params = np.array([3, 2, 1])

    expected_params = np.zeros(3)

    # abuse simulate_moments to get empirical moments in correct format
    empirical_moments = _sim_np(expected_params)
    if isinstance(empirical_moments, dict):
        empirical_moments = empirical_moments["simulated_moments"]

    calculated = estimate_msm(
        simulate_moments=_sim_np,
        empirical_moments=empirical_moments,
        moments_cov=cov_np,
        params=start_params,
        optimize_options="scipy_lbfgsb",
        jacobian=lambda x: np.eye(len(x)),
    )

    aaae(calculated.params, expected_params)
    aaae(calculated.cov(), cov_np)
Exemplo n.º 8
0
def test_estimate_msm_dict_params_and_moments():
    def simulate_moments(params):
        return {k * 2: v for k, v in params.items()}

    start_params = {"a": 3, "b": 2, "c": 1}

    expected_params = {"a": 0, "b": 0, "c": 0}

    empirical_moments = {"aa": 0, "bb": 0, "cc": 0}

    moments_cov = {
        "aa": {"aa": 1, "bb": 0, "cc": 0},
        "bb": {"aa": 0, "bb": 2, "cc": 0},
        "cc": {"aa": 0, "bb": 0, "cc": 3},
    }

    calculated = estimate_msm(
        simulate_moments=simulate_moments,
        empirical_moments=empirical_moments,
        moments_cov=moments_cov,
        params=start_params,
        optimize_options="scipy_lbfgsb",
    )

    # check that minimization works
    assert_almost_equal(calculated.params, expected_params)

    # this works only in the very special case with diagonal moments cov and
    # jac = identity matrix
    assert_almost_equal(calculated.cov(), moments_cov)

    assert_almost_equal(calculated.se(), {"a": 1, "b": np.sqrt(2), "c": np.sqrt(3)})

    # works only because parameter point estimates are exactly zero
    assert_almost_equal(calculated.p_values(), {"a": 1, "b": 1, "c": 1})

    expected_ci_upper = {"a": 1.95996398, "b": 2.77180765, "c": 3.3947572}
    expected_ci_lower = {k: -v for k, v in expected_ci_upper.items()}

    lower, upper = calculated.ci()
    assert_almost_equal(lower, expected_ci_lower)
    assert_almost_equal(upper, expected_ci_upper)

    assert_almost_equal(calculated.ci(), calculated._ci)
    assert_almost_equal(calculated.p_values(), calculated._p_values)
    assert_almost_equal(calculated.se(), calculated._se)
    assert_almost_equal(calculated.cov(), calculated._cov)

    summary = calculated.summary()
    summary_df = pd.concat(list(summary.values()))
    aaae(summary_df["value"], np.zeros(3))
    aaae(summary_df["p_value"], np.ones(3))
    assert summary_df["stars"].tolist() == [""] * 3

    expected_sensitivity_to_bias_dict = {
        "a": {"aa": -1.0, "bb": 0.0, "cc": 0.0},
        "b": {"aa": 0.0, "bb": -1.0, "cc": 0.0},
        "c": {"aa": 0.0, "bb": 0.0, "cc": -1.0},
    }

    assert_almost_equal(
        calculated.sensitivity("bias"), expected_sensitivity_to_bias_dict
    )

    expected_sensitivity_to_bias_arr = -np.eye(3)

    aaae(
        calculated.sensitivity("bias", return_type="array"),
        expected_sensitivity_to_bias_arr,
    )
    aaae(
        calculated.sensitivity("bias", return_type="dataframe").to_numpy(),
        expected_sensitivity_to_bias_arr,
    )

    expected_jacobian = {
        "a": {"aa": 1.0, "bb": 0.0, "cc": 0.0},
        "b": {"aa": 0.0, "bb": 1.0, "cc": 0.0},
        "c": {"aa": 0.0, "bb": 0.0, "cc": 1.0},
    }

    assert_almost_equal(calculated.jacobian, expected_jacobian)