Exemplo n.º 1
0
def get_trimal_conservation(alg_file, trimal_bin):
    output = commands.getoutput("%s -ssc -in %s" % (trimal_bin, alg_file))
    conservation = []
    for line in output.split("\n")[3:]:
        a, b = map(float, line.split())
        conservation.append(b)
    mean = _mean(conservation)
    std = _std(conservation)
    return mean, std
Exemplo n.º 2
0
def get_trimal_conservation(alg_file, trimal_bin):
    output = commands.getoutput("%s -ssc -in %s" % (trimal_bin,
                                                    alg_file))
    conservation = []
    for line in output.split("\n")[3:]:
        a, b = map(float, line.split())
        conservation.append(b)
    mean = _mean(conservation)
    std = _std(conservation)
    return mean, std
Exemplo n.º 3
0
def get_identity(fname):
    s = SeqGroup(fname)
    seqlen = len(s.id2seq.itervalues().next())
    ident = list()
    for i in xrange(seqlen):
        states = defaultdict(int)
        for seq in s.id2seq.itervalues():
            if seq[i] != "-":
                states[seq[i]] += 1
        values = states.values()
        if values:
            ident.append(float(max(values)) / sum(values))
    return (_max(ident), _min(ident), _mean(ident), _std(ident))
Exemplo n.º 4
0
def get_seqs_identity(alg, seqs):
    """ Returns alg statistics regarding a set of sequences"""
    seqlen = len(alg.get_seq(seqs[0]))
    ident = list()
    for i in xrange(seqlen):
        states = defaultdict(int)
        for seq_id in seqs:
            seq = alg.get_seq(seq_id)
            if seq[i] != "-":
                states[seq[i]] += 1
        values = states.values()
        if values:
            ident.append(float(max(values)) / sum(values))
    return (_max(ident), _min(ident), _mean(ident), _std(ident))
Exemplo n.º 5
0
def get_cog_score(candidates, sp2hits, max_cogs, all_species):

    cog_cov = _mean([len(cogs) for cogs in candidates])/float(len(sp2hits)+1)
    cog_mean_cov = _mean([len(cogs)/float(len(sp2hits)) for cogs in candidates]) # numero medio de especies en cada cog
    cog_min_sp = _min([len(cogs) for cogs in candidates])

    sp_coverages = [sp2hits.get(sp, 0)/float(len(candidates)) for sp in all_species]
    species_covered = len(set(sp2hits.keys()))+1

    nfactor = len(candidates)/float(max_cogs) # Numero de cogs
    min_cov = _min(sp_coverages) # el coverage de la peor especie
    max_cov = _min(sp_coverages)
    median_cov = _median(sp_coverages)
    cov_std = _std(sp_coverages)

    score = _min([nfactor, cog_mean_cov, min_cov])
    return score, min_cov, max_cov, median_cov, cov_std, cog_cov 
Exemplo n.º 6
0
def get_cog_score(candidates, sp2hits, max_cogs, all_species):

    cog_cov = _mean([len(cogs)
                     for cogs in candidates]) / float(len(sp2hits) + 1)
    cog_mean_cov = _mean([
        len(cogs) / float(len(sp2hits)) for cogs in candidates
    ])  # numero medio de especies en cada cog
    cog_min_sp = _min([len(cogs) for cogs in candidates])

    sp_coverages = [
        sp2hits.get(sp, 0) / float(len(candidates)) for sp in all_species
    ]
    species_covered = len(set(sp2hits.keys())) + 1

    nfactor = len(candidates) / float(max_cogs)  # Numero de cogs
    min_cov = _min(sp_coverages)  # el coverage de la peor especie
    max_cov = _min(sp_coverages)
    median_cov = _median(sp_coverages)
    cov_std = _std(sp_coverages)

    score = _min([nfactor, cog_mean_cov, min_cov])
    return score, min_cov, max_cov, median_cov, cov_std, cog_cov
Exemplo n.º 7
0
    def finish(self):
        def sort_cogs_by_size(c1, c2):
            '''
            sort cogs by descending size. If two cogs are the same size, sort
            them keeping first the one with the less represented
            species. Otherwise sort by sequence name sp_seqid.'''
            
            r = -1 * cmp(len(c1), len(c2))
            if r == 0:
                # finds the cog including the less represented species
                c1_repr = _min([sp2cogs[_sp] for _sp, _seq in c1])
                c2_repr = _min([sp2cogs[_sp] for _sp, _seq in c2])
                r = cmp(c1_repr, c2_repr)
                if r == 0:
                    return cmp(sorted(c1), sorted(c2))
                else:
                    return r
            else:
                return r

        def sort_cogs_by_sp_repr(c1, c2):
            c1_repr = _min([sp2cogs[_sp] for _sp, _seq in c1])
            c2_repr = _min([sp2cogs[_sp] for _sp, _seq in c2])
            r = cmp(c1_repr, c2_repr)
            if r == 0:
                r = -1 * cmp(len(c1), len(c2))
                if r == 0:
                    return cmp(sorted(c1), sorted(c2))
                else:
                    return r
            else:
                return r
            
        all_species = self.targets | self.outgroups
        # strict threshold
        #min_species = len(all_species) - int(round(self.missing_factor * len(all_species)))
        
        # Relax threshold for cog selection to ensure sames genes are always included
        min_species = len(all_species) - int(round(self.missing_factor * len(GLOBALS["target_species"])))
        min_species = max(min_species, (1-self.max_missing_factor) * len(all_species))
        
        smallest_cog, largest_cog = len(all_species), 0
        all_singletons = []
        sp2cogs = defaultdict(int)
        for cognumber, cog in enumerate(open(GLOBALS["cogs_file"])):
            sp2seqs = defaultdict(list)
            for sp, seqid in [map(strip, seq.split(GLOBALS["spname_delimiter"], 1)) for seq in cog.split("\t")]:
                sp2seqs[sp].append(seqid)
            one2one_cog = set()
            for sp, seqs in sp2seqs.iteritems():
                #if len(seqs) != 1:
                #    print sp, len(seqs)
                if sp in all_species and len(seqs) == 1:
                    sp2cogs[sp] += 1
                    one2one_cog.add((sp, seqs[0]))
            smallest_cog = min(smallest_cog, len(one2one_cog))
            largest_cog = max(largest_cog, len(one2one_cog))
            all_singletons.append(one2one_cog)
            #if len(one2one_cog) >= min_species:
            #    valid_cogs.append(one2one_cog)

        cognumber += 1 # sets the ammount of cogs in file
        for sp, ncogs in sorted(sp2cogs.items(), key=lambda x: x[1], reverse=True):

            log.log(28, "% 20s  found in single copy in  % 6d (%0.1f%%) COGs " %(sp, ncogs, 100 * ncogs/float(cognumber)))

        valid_cogs = sorted([sing for sing in all_singletons if len(sing) >= min_species],
                            sort_cogs_by_size)

        log.log(28, "Largest cog size: %s. Smallest cog size: %s" %(
                largest_cog, smallest_cog))
        self.cog_analysis = ""

        # save original cog names hitting the hard limit
        if len(valid_cogs) > self.cog_hard_limit:
            log.warning("Applying hard limit number of COGs: %d out of %d available" %(self.cog_hard_limit, len(valid_cogs)))
        self.raw_cogs = valid_cogs[:self.cog_hard_limit]
        self.cogs = []
        # Translate sequence names into the internal DB names
        sp_repr = defaultdict(int)
        sizes = []
        for co in self.raw_cogs:
            sizes.append(len(co))
            for sp, seq in co:
                sp_repr[sp] += 1
            co_names = ["%s%s%s" %(sp, GLOBALS["spname_delimiter"], seq) for sp, seq in co]
            encoded_names = db.translate_names(co_names)
            if len(encoded_names) != len(co):
                print set(co) - set(encoded_names.keys())
                raise DataError("Some sequence ids could not be translated")
            self.cogs.append(encoded_names.values())

        # ERROR! COGs selected are not the prioritary cogs sorted out before!!!
        # Sort Cogs according to the md5 hash of its content. Random
        # sorting but kept among runs
        #map(lambda x: x.sort(), self.cogs)
        #self.cogs.sort(lambda x,y: cmp(md5(','.join(x)), md5(','.join(y))))
        
        log.log(28, "Analysis of current COG selection:")
        for sp, ncogs in sorted(sp_repr.items(), key=lambda x:x[1], reverse=True):
            log.log(28, " % 30s species present in % 6d COGs (%0.1f%%)" %(sp, ncogs, 100 * ncogs/float(len(self.cogs))))
                
        log.log(28, " %d COGs selected with at least %d species out of %d" %(len(self.cogs), min_species, len(all_species)))
        log.log(28, " Average COG size %0.1f/%0.1f +- %0.1f" %(_mean(sizes), _median(sizes), _std(sizes)))

        # Some consistency checks
        missing_sp = (all_species) - set(sp_repr.keys())
        if missing_sp:
            log.error("%d missing species or not present in single-copy in any cog:\n%s" %\
                      (len(missing_sp), '\n'.join(missing_sp)))
            open('etebuild.valid_species_names.tmp', 'w').write('\n'.join(sp_repr.keys()) +'\n')
            log.error("All %d valid species have been dumped into etebuild.valid_species_names.tmp."
                      " You can use --spfile to restrict the analysis to those species." %len(sp_repr))
            raise TaskError('missing or not single-copy species under current cog selection')

        CogSelectorTask.store_data(self, self.cogs, self.cog_analysis)
Exemplo n.º 8
0
def get_best_selection(cogs_selections, species):
    ALL_SPECIES = set(species)

    def _compare_cog_selection(cs1, cs2):
        seed_1, missing_sp_allowed_1, candidates_1, sp2hits_1 = cs1
        seed_2, missing_sp_allowed_2, candidates_2, sp2hits_2 = cs2

        score_1, min_cov_1, max_cov_1, median_cov_1, cov_std_1, cog_cov_1 = get_cog_score(
            candidates_1, sp2hits_1, median_cogs, ALL_SPECIES - set([seed_1]))
        score_2, min_cov_2, max_cov_2, median_cov_2, cov_std_2, cog_cov_2 = get_cog_score(
            candidates_2, sp2hits_2, median_cogs, ALL_SPECIES - set([seed_2]))

        sp_represented_1 = len(sp2hits_1)
        sp_represented_2 = len(sp2hits_1)
        cmp_rpr = cmp(sp_represented_1, sp_represented_2)
        if cmp_rpr == 1:
            return 1
        elif cmp_rpr == -1:
            return -1
        else:
            cmp_score = cmp(score_1, score_2)
            if cmp_score == 1:
                return 1
            elif cmp_score == -1:
                return -1
            else:
                cmp_mincov = cmp(min_cov_1, min_cov_2)
                if cmp_mincov == 1:
                    return 1
                elif cmp_mincov == -1:
                    return -1
                else:
                    cmp_maxcov = cmp(max_cov_1, max_cov_2)
                    if cmp_maxcov == 1:
                        return 1
                    elif cmp_maxcov == -1:
                        return -1
                    else:
                        cmp_cand = cmp(len(candidates_1), len(candidates_2))
                        if cmp_cand == 1:
                            return 1
                        elif cmp_cand == -1:
                            return -1
                        else:
                            return 0

    min_score = 0.5
    max_cogs = _max([len(data[2]) for data in cogs_selections])
    median_cogs = _median([len(data[2]) for data in cogs_selections])

    cogs_selections.sort(_compare_cog_selection)
    cogs_selections.reverse()

    header = [
        'seed', 'missing sp allowed', 'spcs covered', '#COGs',
        'mean sp coverage)', '#COGs for worst sp.', '#COGs for best sp.',
        'sp. in COGS(avg)', 'SCORE'
    ]
    print_header = True
    best_cog_selection = None
    cog_analysis = StringIO()
    for i, cogs in enumerate(cogs_selections):
        seed, missing_sp_allowed, candidates, sp2hits = cogs
        sp_percent_coverages = [
            (100 * sp2hits.get(sp, 0)) / float(len(candidates))
            for sp in species
        ]
        sp_coverages = [sp2hits.get(sp, 0) for sp in species]
        score, min_cov, max_cov, median_cov, cov_std, cog_cov = get_cog_score(
            candidates, sp2hits, median_cogs, ALL_SPECIES - set([seed]))

        if best_cog_selection is None:
            best_cog_selection = i
            flag = "*"
        else:
            flag = " "
        data = (candidates,
                flag+"%10s" %seed, \
                    missing_sp_allowed, \
                    "%d (%0.1f%%)" %(len(set(sp2hits.keys()))+1, 100*float(len(ALL_SPECIES))/(len(sp2hits)+1)) , \
                    len(candidates), \
                    "%0.1f%% +- %0.1f" %(_mean(sp_percent_coverages), _std(sp_percent_coverages)), \
                    "% 3d (%0.1f%%)" %(min(sp_coverages),100*min(sp_coverages)/float(len(candidates))), \
                    "% 3d (%0.1f%%)" %(max(sp_coverages),100*max(sp_coverages)/float(len(candidates))), \
                    cog_cov,
                    score
                )
        if print_header:
            print_as_table([data[1:]],
                           header=header,
                           print_header=True,
                           stdout=cog_analysis)
            print_header = False
        else:
            print_as_table([data[1:]],
                           header=header,
                           print_header=False,
                           stdout=cog_analysis)

    #raw_input("Press")
    print cog_analysis.getvalue()
    #best_cog_selection = int(raw_input("choose:"))
    return cogs_selections[best_cog_selection], cog_analysis
Exemplo n.º 9
0
def get_best_selection(cogs_selections, species):
    ALL_SPECIES = set(species)
    
    def _compare_cog_selection(cs1, cs2):
        seed_1, missing_sp_allowed_1, candidates_1, sp2hits_1 = cs1
        seed_2, missing_sp_allowed_2, candidates_2, sp2hits_2 = cs2

        score_1, min_cov_1, max_cov_1, median_cov_1, cov_std_1, cog_cov_1 = get_cog_score(candidates_1, sp2hits_1, median_cogs, ALL_SPECIES-set([seed_1]))
        score_2, min_cov_2, max_cov_2, median_cov_2, cov_std_2, cog_cov_2 = get_cog_score(candidates_2, sp2hits_2, median_cogs, ALL_SPECIES-set([seed_2]))

        sp_represented_1 = len(sp2hits_1)
        sp_represented_2 = len(sp2hits_1)
        cmp_rpr = cmp(sp_represented_1, sp_represented_2)
        if cmp_rpr == 1:
            return 1
        elif cmp_rpr == -1:
            return -1
        else:
            cmp_score = cmp(score_1, score_2)
            if cmp_score == 1:
                return 1
            elif cmp_score == -1:
                return -1
            else:
                cmp_mincov = cmp(min_cov_1, min_cov_2)
                if cmp_mincov == 1: 
                    return 1
                elif cmp_mincov == -1: 
                    return -1 
                else:
                    cmp_maxcov = cmp(max_cov_1, max_cov_2)
                    if cmp_maxcov == 1: 
                        return 1
                    elif cmp_maxcov == -1: 
                        return -1 
                    else:
                        cmp_cand = cmp(len(candidates_1), len(candidates_2))
                        if cmp_cand == 1:
                            return 1
                        elif cmp_cand == -1:
                            return -1
                        else:
                            return 0 
    
    min_score = 0.5
    max_cogs = _max([len(data[2]) for data in cogs_selections])
    median_cogs = _median([len(data[2]) for data in cogs_selections])

    cogs_selections.sort(_compare_cog_selection)            
    cogs_selections.reverse()

    header = ['seed',
              'missing sp allowed',
              'spcs covered',
              '#COGs',
              'mean sp coverage)',
              '#COGs for worst sp.',
              '#COGs for best sp.',
              'sp. in COGS(avg)',
              'SCORE' ]
    print_header = True
    best_cog_selection = None
    cog_analysis = StringIO()
    for i, cogs in enumerate(cogs_selections):
        seed, missing_sp_allowed, candidates, sp2hits = cogs
        sp_percent_coverages = [(100*sp2hits.get(sp,0))/float(len(candidates)) for sp in species]
        sp_coverages = [sp2hits.get(sp, 0) for sp in species]
        score, min_cov, max_cov, median_cov, cov_std, cog_cov = get_cog_score(candidates, sp2hits, median_cogs, ALL_SPECIES-set([seed]))

        if best_cog_selection is None:
            best_cog_selection = i
            flag = "*"
        else:
            flag = " "
        data = (candidates, 
                flag+"%10s" %seed, \
                    missing_sp_allowed, \
                    "%d (%0.1f%%)" %(len(set(sp2hits.keys()))+1, 100*float(len(ALL_SPECIES))/(len(sp2hits)+1)) , \
                    len(candidates), \
                    "%0.1f%% +- %0.1f" %(_mean(sp_percent_coverages), _std(sp_percent_coverages)), \
                    "% 3d (%0.1f%%)" %(min(sp_coverages),100*min(sp_coverages)/float(len(candidates))), \
                    "% 3d (%0.1f%%)" %(max(sp_coverages),100*max(sp_coverages)/float(len(candidates))), \
                    cog_cov,
                    score         
                )
        if print_header:
            print_as_table([data[1:]], header=header, print_header=True, stdout=cog_analysis)
            print_header = False
        else:
            print_as_table([data[1:]], header=header, print_header=False, stdout=cog_analysis)

    #raw_input("Press")
    print cog_analysis.getvalue()
    #best_cog_selection = int(raw_input("choose:"))
    return cogs_selections[best_cog_selection], cog_analysis