Exemplo n.º 1
0
def recursive_paths(dimensions, path_history=""):
    """
    calculates the number of paths through an m x n grid

    dimensions (list): specifies an m x n grid as [m, n]
    returns (int): number of paths
    """
    # logging
    stub = Stub()
    stub.start()

    # base case
    if dimensions == [0, 0]:
        stub.msg(path_history, "path found")
        return 1

    # path and history initialization
    paths = 0
    path_history_r = path_history_d = path_history
    # recursion
    if dimensions[0] > 0:
        path_history_r += "r"
        paths += recursive_paths([dimensions[0]-1, dimensions[1]], path_history_r)
    if dimensions[1] > 0:
        path_history_d += "d"
        paths += recursive_paths([dimensions[0], dimensions[1]-1], path_history_d)
    return paths
Exemplo n.º 2
0
def longest_collatz_sequence(limit):
    """
    exhaustively finds the longest collatz sequence from starting numbers
    up to a certain limit, exclusive

    limit (int): limit, exclusive
    returns (int): starting number
    """
    stub = Stub()
    stub.start()

    max_steps = 0
    max_start_num = 1

    collatz_branches = {}
    for num in range(1, limit):
        next_num = next_collatz_number
        if next_num in collatz_branches:
            collatz_sequence = [num] + collatz_branches[next_num]
        else:
            collatz_sequence = get_collatz_sequence(num)
        steps = len(collatz_sequence)
        if steps > max_steps:
            max_steps = steps
            max_start_num = num
            stub.msg(str(max_steps) + " steps", max_start_num)
        collatz_branches[num] = collatz_sequence
    return max_start_num
def largest_palindrome_product(minimum=100, maximum=999):
    """
    exhaustively finds the largest palindromic product in a range

    minimum, maximum (int): defines range, inclusive
    returns (int): solution
    """
    stub = Stub()
    #stub.start()

    candidate_solution = None
    palindrome_products = []
    candidate_factors = [None, None]

    for i in range(maximum, minimum-1, -1):
        for j in range(i, minimum-1, -1):
            product = i*j
            if is_palindrome(product):
                palindrome_products.append(product)
                if product > candidate_solution:
                    candidate_solution = product
                    candidate_factors = [i, j]

    stub.msg(candidate_factors, "factors")
    return candidate_solution
def get_fib_with_digits(num_digits):
    """
    finds the first Fibonacci number with a certain amount of digits
    """
    stub = Stub()
    stub.start()
    
    counter = 0
    for num in gen_fibonacci():
        if count_digits(num) >= num_digits:
            return counter
        if counter % 1000 == 0:
            stub.msg(count_digits(num), counter)
        counter += 1
Exemplo n.º 5
0
def summation_of_primes(limit):
    """
    adds all the primes up to some limit

    limit (int): limit, exclusive
    returns (int): result
    """
    stub = Stub()
    stub.start()
    
    result = 0
    for prime in gen_primes(limit):
        result += prime

    return result
Exemplo n.º 6
0
def sum_square_difference(limit):
    """
    finds the difference of the square of sums and sum of squares for
    numbers 1 through some number

    limit (int): limit, inclusive
    returns (int): difference
    """
    stub = Stub()
    #stub.start()

    sum_of_squares = sum([num**2 for num in range(limit+1)])
    square_of_sums = sum([num for num in range(limit+1)])**2

    stub.msg(sum_of_squares, "sum")
    stub.msg(square_of_sums, "square")

    return square_of_sums - sum_of_squares
def special_pythagorean_triplet():
    """
    finds the special pythagorean triplet that also sums to 1000

    returns (int): product of triplet
    """
    stub = Stub()
    # stub.start()

    # generate power set of numbers that sum to 1000
    counter = 0
    for triplet in gen_triplets_that_sum_to(1000):
        if is_pythagorean(*triplet):
            stub.msg(triplet, counter)
            return product(triplet)
        counter += 1

    raise ValueError("unable to find special pythagorean triplet after " + str(counter) + " trials.")
Exemplo n.º 8
0
def largest_prime_factor(num):
    """
    finds the largest prime factor of a number

    num (int): some number
    returns (int): solution
    """
    stub = Stub()
    #stub.start()
    j = 0

    for i in range(2, int(num**0.5)):
        j += 1
        while num % i == 0:
            stub.msg(i, j)
            num //= i
            if num == 1 or num == i:
                return i
Exemplo n.º 9
0
def sum_of_amicable_numbers(limit):
    """
    finds the sum of "amicable numbers" up to some limit

    limit (int): limit, exclusive > 1
    returns (int): solution
    """
    stub = Stub()
    stub.start()

    stack = []

    for num in range(2, limit):
        if num in stack:
            continue
        elif is_amicable(num):
            stack.append(num)
            stack.append(sum_of_proper_divisors(num))
            stub.msg(stack[-2:])

    return sum(stack)
Exemplo n.º 10
0
def largest_product_in_a_grid(grid, chunk_len):
    """
    finds the largest consecutive product in a grid (horiz, vert, diag)

    grid (list): 2d list or array representing grid dimensions and values
    chunk_len (int): length of consecutive numbers to check
    returns (int): solution
    """
    stub = Stub()
    #stub.start()

    grid_rows = len(grid)
    grid_cols = len(grid[0])

    largest = 0

    # check N-S, W-E, NW-SE products
    for i in range(grid_rows - chunk_len):
        for j in range(grid_cols - chunk_len):
            n_s = [grid[i+n][j] for n in range(chunk_len)]
            w_e = grid[i][j:j+chunk_len]
            nw_se = [grid[i+n][j+n] for n in range(chunk_len)]

            for chunk in [n_s, w_e, nw_se]:
                if product(chunk) > largest:
                    stub.msg(chunk)
                    largest = product(chunk)

    # check SW-NE products
    for i in range(chunk_len-1, grid_rows):
        for j in range(grid_cols - chunk_len):
            sw_ne = [grid[i-n][j+n] for n in range(chunk_len)]
            if product(sw_ne) > largest:
                stub.msg(sw_ne)
                largest = product(sw_ne)
    return largest
Exemplo n.º 11
0
def large_sum(large_numbers, first_digits):
    """
    finds an estimated sum of several large numbers

    large_numbers (list): unordered list of large numbers
    first_digits (int): number of leading digits to calculate
    returns (int or long): solution
    """
    stub = Stub()
    #stub.start()

    max_digits = len(str(large[0]))
    places_to_check = first_digits + int(log10(len(large_numbers)*10))
    stub.msg(places_to_check, "places to check")

    sum_estimate = 0
    for place in range(max_digits, max_digits-places_to_check, -1):
        temp_sum = sum([int(str(num)[max_digits-place]) for num in large_numbers])
        stub.msg((str(temp_sum) + "*10^" + str(place)), "intermediate sum")
        sum_estimate += temp_sum * 10**place

    stub.msg(sum_estimate, "final sum")
    return sum_estimate
Exemplo n.º 12
0
    triangle (list): e.g. [[3], [7, 4], [2, 4, 6], [8, 5, 9, 3]]
    returns (int): max path sun
    """
    # base case
    peak = triangle[0][0]
    new_path = path + [peak]
    if len(triangle) == 1:
        stub.msg(path, peak + sum(path))
        return sum(new_path)
    
    # recursion
    left_triangle = [row[:-1] for row in triangle[1:]]
    left_sum = exhaustive_max_path_sum(left_triangle, new_path)
    right_triangle = [row[1:] for row in triangle[1:]]
    right_sum = exhaustive_max_path_sum(right_triangle, new_path)
    return max(left_sum, right_sum)

if __name__ == "__main__":
    stub = Stub()
    stub.start()
    triangle = [[75], [95, 64], [17, 47, 82], [18, 35, 87, 10], [20, 4, 82, 47,
                65], [19, 1, 23, 75, 3, 34], [88, 2, 77, 73, 7, 63, 67], [99,
                65, 4, 28, 6, 16, 70, 92], [41, 41, 26, 56, 83, 40, 80, 70, 33],
                [41, 48, 72, 33, 47, 32, 37, 16, 94, 29], [53, 71, 44, 65, 25,
                43, 91, 52, 97, 51, 14], [70, 11, 33, 28, 77, 73, 17, 78, 39,
                68, 17, 57], [91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29,
                48], [63, 66, 4, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31],
                [04, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 4, 23]]
    euler_test(18, max_path_sum(triangle))