Exemplo n.º 1
0
class Runner:
    def __init__(self):
        self.loader = UADetracLoader()
        self.preprocess = PreprocessingModule()
        self.network = UNet()
        self.cluster = ClusterModule()
        self.index = IndexingModule()

    def run(self):
        """
        Steps:
        1. Load the data
        2. Preprocess the data
        3. Train the network
        4a. Cluster the data
        4b. Postprocess the data
        5a. Generate compressed form
        5b. Generate indexes and preform CBIR
        :return: ???
        """
        import time
        st = time.time()
        # 1. Load the image
        images = self.loader.load_cached_images()
        labels = self.loader.load_cached_labels()
        vehicle_labels = labels['vehicle']
        video_start_indices = self.loader.get_video_start_indices()
        print("Done loading images in", time.time() - st, "(sec)")

        # 2. Begin preprocessing
        st = time.time()
        segmented_images = self.preprocess.run(images, video_start_indices)
        print("Done with background subtraction in", time.time() - st, "(sec)")
        self.preprocess.saveSegmentedImages()

        st = time.time()
        self.network.train(images, segmented_images)
        final_compressed_images, final_segmented_images = self.network.execute(
        )
        print("Done training the main network in", time.time() - st, "(sec)")

        st = time.time()
        cluster_labels = self.cluster.run(final_compressed_images)
        print("Done clustering in", time.time() - st, "(sec)")

        st = time.time()
        self.index.train(images, final_segmented_images, vehicle_labels)
Exemplo n.º 2
0
def load_jnet_results(images,
                      model_directory,
                      segmented_images_directory=None):
    """
    we need to load the segmented images instead of the original ones
    :return:
    """

    ## need to check if segmented images exist
    if segmented_images_directory is None:
        ## load the model
        network = UNet()

        ## execute the model on the images of interest
        _, level4_outputs = network.execute(images, load_dir=model_directory)

        ## we should overlap the images
        level4_overlapped_outputs = util_custom.overlap(images, level4_outputs)
        return level4_overlapped_outputs

    else:
        return np.load(segmented_images_directory)
Exemplo n.º 3
0
 def __init__(self):
     self.loader = UADetracLoader()
     self.preprocess = PreprocessingModule()
     self.network = UNet()
     self.cluster = ClusterModule()
     self.index = IndexingModule()
Exemplo n.º 4
0
        segmented_images = self.preprocess.run(images, video_start_indices)
        print("Done with background subtraction in", time.time() - st, "(sec)")
        self.preprocess.saveSegmentedImages()

        st = time.time()
        self.network.train(images, segmented_images)
        final_compressed_images, final_segmented_images = self.network.execute(
        )
        print("Done training the main network in", time.time() - st, "(sec)")

        st = time.time()
        cluster_labels = self.cluster.run(final_compressed_images)
        print("Done clustering in", time.time() - st, "(sec)")

        st = time.time()
        self.index.train(images, final_segmented_images, vehicle_labels)


if __name__ == "__main__":
    # 0. Initialize the modules
    loader = UADetracLoader()
    preprocess = PreprocessingModule()
    network = UNet()

    import time
    st = time.time()
    # 1. Load the images (cached images is fine)
    images = loader.load_cached_images()
    labels = loader.load_cached_labels()
    video_start_indices = loader.get_video_start_indices()
Exemplo n.º 5
0
def train_conservative(train_images, preprocess, name):
    segmented_images = preprocess.run(train_images, None, load=True)
    model = UNet()
    model.train(train_images, segmented_images, save_name=name)
    return
Exemplo n.º 6
0

if __name__ == "__main__":
    # %%
    import os
    import time

    from loaders.uadetrac_loader import UADetracLoader
    from eva_storage.preprocessingModule import PreprocessingModule
    from eva_storage.UNet import UNet
    from eva_storage.postprocessingModule import PostprocessingModule
    from logger import Logger

    loader = UADetracLoader()
    preprocess = PreprocessingModule()
    bare_model = UNet()
    postprocess = PostprocessingModule()
    logger = Logger()

    st = time.time()
    # 1. Load the images (cached images is fine)
    images = loader.load_cached_images()
    labels = loader.load_cached_labels()
    video_start_indices = loader.get_video_start_indices()
    print(f"Done loading images in {time.time() - st} (sec)")

    directory_begin = '/nethome/jbang36/eva_jaeho/data/models/'
    """
    model_names = ['history20_dist2thresh300',
                   'history20_dist2thresh300_bloat_lvl2',
                   'history20_dist2thresh300_bloat_lvl3',