def repl(env): print('Lion Programming') line = '' results = None while True: line = input('*** ') if len(line) != 0: if line[-1] != ';': line += ';' results = eval_list(parse(lex(line)), env) if results is not None: print(token_str(results))
os.environ['PYTHONHASHSEED'] = '0' np.random.seed(17) rn.seed(12345) if __name__ == "__main__": set_reproductible() datadir = "../data/" trainfile = datadir + "traindata.csv" devfile = datadir + "devdata.csv" testfile = None # Basic checking start_time = time.perf_counter() classifier = Classifier() print("\n") # Training print("1. Training the classifier...\n") classifier.train(trainfile) # Evaluation on the dev dataset print("\n2. Evaluation on the dev dataset...\n") slabels = classifier.predict(devfile) glabels = load_label_output(devfile) eval_list(glabels, slabels) if testfile is not None: # Evaluation on the test data print("\n3. Evaluation on the test dataset...\n") slabels = classifier.predict(testfile) glabels = load_label_output(testfile) eval_list(glabels, slabels) print("\nExec time: %.2f s." % (time.perf_counter() - start_time))
def add_native(expr, env): return eval_list(parse(lex(expr)), env)
def run(filename, env): eval_list(parse(lex(get_chars(filename))), env)
def std_eval(string, env): if string[0] != 'string': return none; return eval_list(parse(lex(string[1])), env)