Exemplo n.º 1
0
def main():

    if (use_low_mem == 1):
        data_iter = cu.iter_data_frames(train_file, _chunksize)

        i = _chunksize
        fea = None
        y = []

        for train_data in data_iter:
            print "About to have processed: " + str(i)
            print("Extracting features")
            if fea is None:
                fea = features.extract_features(feature_names, train_data)
            else:
                fea = fea.append(
                    features.extract_features(feature_names, train_data))
            for element in train_data['OpenStatus']:
                for index, status in enumerate(ques_status):
                    if element == status: y.append(index)

            i = i + _chunksize
    else:
        print("Reading the data from:" + train_file)
        data = cu.get_dataframe(train_file)
        print("Extracting features")
        fea = features.extract_features(feature_names, data)
        y = []
        for element in data['OpenStatus']:
            for index, status in enumerate(ques_status):
                if element == status: y.append(index)

    if do_cross_validation == 1:
        depth = len(feature_names)
        print "depth=" + str(depth)
        rf = GradientBoostingClassifier(loss='deviance',
                                        learn_rate=0.1,
                                        n_estimators=100,
                                        subsample=1.0,
                                        min_samples_split=1,
                                        min_samples_leaf=1,
                                        max_depth=depth,
                                        init=None,
                                        random_state=None)

        print 'starting 10 fold verification'
        # Dividing the dataset into k = 10 folds for cross validation
        kf = KFold(len(y), k=10)
        fold = 0
        result_sum = 0
        for train_index, test_index in kf:
            fold += 1
            X_train = []
            X_test = []
            y_train = []
            y_test = []
            for i in train_index:
                temp = []
                for feature_name in feature_names:
                    if feature_name == 'BodyLength':
                        temp.append(fea['BodyMarkdown'][i])
                    elif feature_name == 'TitleLength':
                        temp.append(fea['Title'][i])
                    else:
                        temp.append(fea[feature_name][i])
                X_train.append(temp)
                y_train.append(y[i])

            for i in test_index:
                temp = []
                for feature_name in feature_names:
                    if feature_name == 'BodyLength':
                        temp.append(fea['BodyMarkdown'][i])
                    elif feature_name == 'TitleLength':
                        temp.append(fea['Title'][i])
                    else:
                        temp.append(fea[feature_name][i])
                X_test.append(temp)
                y_test.append(y[i])

            print "Fitting for fold " + str(fold)

            rf.fit(X_train, y_train)
            y_test = vectorize_actual(y_test)

            _pred_probs = rf.predict_proba(X_test)
            print("Calculating priors and updating posteriors")
            #new_priors = cu.get_priors(full_train_file)
            # priors distribution over classes based on the training set
            #new_priors = [0.00913477057600471, 0.004645859639795308, 0.005200965546050945, 0.9791913907850639, 0.0018270134530850952]
            # priors distribution over classes based on the updated training set's last month
            new_priors = [
                0.03410911204982466, 0.01173872976800856, 0.018430671606251586,
                0.926642216133641, 0.009079270442274271
            ]
            old_priors = cu.get_priors(train_file)
            _pred_probs = cu.cap_and_update_priors(old_priors, _pred_probs,
                                                   new_priors, 0.001)
            # evaluating the performance
            result = eval.mcllfun(y_test, _pred_probs)
            result_sum += result
            print "MCLL score for fold %d = %0.11f" % (fold, result)

        print "depth=" + str(depth)
        print "Average MCLL score for this classifier = %0.11f" % (result_sum /
                                                                   10)
    else:
        #rf = RandomForestClassifier(n_estimators=50, verbose=0, compute_importances=True, n_jobs=-1)
        rf = GradientBoostingClassifier(loss='deviance',
                                        learn_rate=0.1,
                                        n_estimators=100,
                                        subsample=1.0,
                                        min_samples_split=1,
                                        min_samples_leaf=1,
                                        max_depth=len(feature_names),
                                        init=None,
                                        random_state=None)

        rf.fit(fea, y)

        print("Reading test file " + test_file + " and making predictions")
        data = cu.get_dataframe(test_file)
        test_features = features.extract_features(feature_names, data)
        probs = rf.predict_proba(test_features)

        # commented out, because we want to adjust probabilities to the last month data anyway
        #if do_full_train == 0:
        print("Calculating priors and updating posteriors")
        new_priors = cu.get_priors(full_train_file)
        old_priors = cu.get_priors(train_file)
        probs = cu.cap_and_update_priors(old_priors, probs, new_priors, 0.001)

        print("Saving submission to %s" % submission_file)
        cu.write_submission(submission_file, probs)
Exemplo n.º 2
0
def main():
    start = time.time()

    print "Reading train data and its features from: " + train_file
    data = cu.get_dataframe(train_file)
    global fea
    fea = features.extract_features(feature_names, data)

    mnbayes = MultinomialNB(alpha=1.0, fit_prior=True)
    '''Make sure you have the up to date version of sklearn; v0.12 has the
           predict_proba method; http://scikit-learn.org/0.11/install.html '''

    # Must be array type object. Strings must be converted to
    # to integer values, otherwise fit method raises ValueError
    y = []

    for element in data['OpenStatus']:
        for index, status in enumerate(ques_status):
            if element == status: y.append(index)

    if do_cross_validation == 1:
        print 'starting 10 fold verification'
        # Dividing the dataset into k = 10 folds for cross validation
        #skf = StratifiedKFold(y,k = 10)
        skf = KFold(len(y), k=10)
        fold = 0
        result_sum = 0
        for train_index, test_index in skf:
            fold += 1
            X_train = []
            X_test = []
            y_train = []
            y_test = []
            for i in train_index:
                temp = []
                for feature_name in feature_names:
                    temp.append(fea[feature_name][i])
                X_train.append(temp)
                y_train.append(y[i])

            for i in test_index:
                temp = []
                for feature_name in feature_names:
                    temp.append(fea[feature_name][i])
                X_test.append(temp)
                y_test.append(y[i])

            mnbayes.fit(
                X_train, y_train
            )  #, sample_weight=None, class_prior=[0.0091347705760047, 0.0046458596397953, 0.0052009655460509, 0.9791913907850639, 0.0018270134530851])
            y_test = vectorize_actual(y_test)  # vectorize y_test

            _pred_probs = mnbayes.predict_proba(X_test)
            # evaluating the performance
            result = eval.mcllfun(y_test, _pred_probs)
            result_sum += result
            print "MCLL score for fold %d = %0.11f" % (fold, result)

        print "Average MCLL score for this classifier = %0.11f" % (result_sum /
                                                                   10)

        print "Reading test data and features"
        test_data = cu.get_dataframe(test_file)
        test_fea = features.extract_features(feature_names, test_data)

        print "Fitting"
        mnbayes.fit(
            fea, y
        )  #, class_prior=[0.0091347705760047, 0.0046458596397953, 0.0052009655460509, 0.9791913907850639, 0.0018270134530851])

        print "Making predictions"
        global probs
        probs = mnbayes.predict_proba(test_fea)

        #if is_full_train_set == 0:
        #	print("Calculating priors and updating posteriors")
        #	new_priors = cu.get_priors(full_train_file)
        #	old_priors = cu.get_priors(train_file)
        #	probs = cu.cap_and_update_priors(old_priors, probs, new_priors, 0.001)

        print "writing submission to " + submission_file
        cu.write_submission(submission_file, probs)

    finish = time.time()
    print "completed in %0.4f seconds" % (finish - start)
Exemplo n.º 3
0
def main():
    start = time.time()

    if (use_low_mem == 1):
        data_iter = cu.iter_data_frames(train_file, _chunksize)
    
        i = _chunksize
        fea = None
        y = []        
        
        for train_data in data_iter:
            print "About to have processed: " + str(i)
            print("Extracting features")
            if fea is None:
                fea = features.extract_features(feature_names, train_data)
            else:
                fea = fea.append(features.extract_features(feature_names, train_data))
            for element in train_data['OpenStatus']:
                for index, status in enumerate(ques_status):
                    if element == status: y.append(index)
        
            i = i + _chunksize
    else:
        print "Reading train data and its features from: " + train_file
        data = cu.get_dataframe(train_file)
        fea = features.extract_features(feature_names,data)
        print "Collecting statuses"
        y = []
        for element in data["OpenStatus"]:
                for index, status in enumerate(ques_status):
                    if element == status:
                        y.append(index)

    if do_cross_validation == 1:
        logit = LogisticRegression(penalty='l2', dual=False, C=1.0, class_weight=None,
                                       fit_intercept=True, intercept_scaling=1, tol=0.0001)

        print 'starting 10 fold verification'
        # Dividing the dataset into k = 10 folds for cross validation
        kf = KFold(len(y),k = 10)
        fold = 0
        result_sum = 0
        for train_index,test_index in kf:
            fold += 1
            X_train = []
            X_test = []
            y_train = []
            y_test = []
            for i in train_index:
                temp = []
                for feature_name in feature_names:
                    if feature_name == 'BodyLength':
                        temp.append(fea['BodyMarkdown'][i])
                    elif feature_name == 'TitleLength':
                        temp.append(fea['Title'][i])
                    else:
                        temp.append(fea[feature_name][i])
                X_train.append(temp)
                y_train.append(y[i])
                
            for i in test_index:
                temp = []
                for feature_name in feature_names:
                    if feature_name == 'BodyLength':
                        temp.append(fea['BodyMarkdown'][i])
                    elif feature_name == 'TitleLength':
                        temp.append(fea['Title'][i])
                    else:
                        temp.append(fea[feature_name][i])
                X_test.append(temp)
                y_test.append(y[i])
            
            print "fitting this fold's data"
            
            rf.fit(X_train, y_train)
            y_test = vectorize_actual(y_test)
            
            #_pred_probs = denormalize(rf.predict_proba(X_test))
            _pred_probs = rf.predict_proba(X_test)
            
            print("Calculating priors and updating posteriors")
            #new_priors = cu.get_priors(full_train_file)
            new_priors = [0.00913477057600471, 0.004645859639795308, 0.005200965546050945, 0.9791913907850639, 0.0018270134530850952]
            old_priors = cu.get_priors(train_file)
            _pred_probs = cu.cap_and_update_priors(old_priors, _pred_probs, new_priors, 0.001)            
            # evaluating the performance
            result = eval.mcllfun(y_test,_pred_probs)
            result_sum += result
            print "MCLL score for fold %d = %0.11f" % (fold,result)
            
        print "Average MCLL score for this classifier = %0.11f" % (result_sum/10)     
    else:
        logit = LogisticRegression(penalty='l2', dual=False, C=1.0, class_weight=None,
                                       fit_intercept=True, intercept_scaling=1, tol=0.0001) # not available: compute_importances=True

        print "Fitting"
        logit.fit(fea, y)
        
        print "Reading test data and features"
        test_data = cu.get_dataframe(test_file)
        test_fea = features.extract_features(feature_names,test_data)

        print "Making predictions"
        global probs
        probs = logit.predict_proba(test_fea)
        
        if is_full_train_set == 0:
            print("Calculating priors and updating posteriors")
            #new_priors = cu.get_priors(full_train_file)
            new_priors = [0.00913477057600471, 0.004645859639795308, 0.005200965546050945, 0.9791913907850639, 0.0018270134530850952]
            old_priors = cu.get_priors(train_file)
            probs = cu.cap_and_update_priors(old_priors, probs, new_priors, 0.001)    

        print "writing submission to " + submission_file
        cu.write_submission(submission_file, probs)

    finish = time.time()
    print "completed in %0.4f seconds" % (finish-start)
def main():
	start = time.time()

	print "Reading train data and its features from: " + train_file
	data = cu.get_dataframe(train_file)
	global fea
	fea = features.extract_features(feature_names,data)

	mnbayes = MultinomialNB(alpha=1.0, fit_prior=True)
	
	'''Make sure you have the up to date version of sklearn; v0.12 has the
           predict_proba method; http://scikit-learn.org/0.11/install.html '''   
	
	# Must be array type object. Strings must be converted to
	# to integer values, otherwise fit method raises ValueError
	y = []
	
	for element in data['OpenStatus']:
		for index, status in enumerate(ques_status):
			if element == status: y.append(index)
	
	if do_cross_validation == 1:
		print 'starting 10 fold verification'
		# Dividing the dataset into k = 10 folds for cross validation
		#skf = StratifiedKFold(y,k = 10)
		skf = KFold(len(y),k = 10)
		fold = 0
		result_sum = 0
		for train_index,test_index in skf:
			fold += 1
			X_train = []
			X_test = []
			y_train = []
			y_test = []
			for i in train_index:
				temp = []
				for feature_name in feature_names:
					temp.append(fea[feature_name][i])
				X_train.append(temp)
				y_train.append(y[i])
				
			for i in test_index:
				temp = []
				for feature_name in feature_names:
					temp.append(fea[feature_name][i])
				X_test.append(temp)
				y_test.append(y[i])
			
			mnbayes.fit(X_train, y_train) #, sample_weight=None, class_prior=[0.0091347705760047, 0.0046458596397953, 0.0052009655460509, 0.9791913907850639, 0.0018270134530851])
			y_test = vectorize_actual(y_test)               # vectorize y_test
			
			_pred_probs = mnbayes.predict_proba(X_test)
			# evaluating the performance
			result = eval.mcllfun(y_test,_pred_probs)
			result_sum += result
			print "MCLL score for fold %d = %0.11f" % (fold,result)
			
		print "Average MCLL score for this classifier = %0.11f" % (result_sum/10)
	
		print "Reading test data and features"
		test_data = cu.get_dataframe(test_file)
		test_fea = features.extract_features(feature_names,test_data)
		
		print "Fitting"
		mnbayes.fit(fea,y)#, class_prior=[0.0091347705760047, 0.0046458596397953, 0.0052009655460509, 0.9791913907850639, 0.0018270134530851])
		
		print "Making predictions"
		global probs
		probs = mnbayes.predict_proba(test_fea)

		#if is_full_train_set == 0:
		#	print("Calculating priors and updating posteriors")
		#	new_priors = cu.get_priors(full_train_file)
		#	old_priors = cu.get_priors(train_file)
		#	probs = cu.cap_and_update_priors(old_priors, probs, new_priors, 0.001)

		print "writing submission to " + submission_file
		cu.write_submission(submission_file, probs)
	
	finish = time.time()
	print "completed in %0.4f seconds" % (finish-start)